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Abstract
Recent research leverages results from the continuous-armed
bandit literature to create a reinforcement-learning algorithm
for continuous state and action spaces. Initially proposed in a
theoretical setting, we provide the first examination of the em-
pirical properties of the algorithm. Through experimentation,
we demonstrate the effectiveness of this planning method
when coupled with exploration and model learning and show
that, in addition to its formal guarantees, the approach is
very competitive with other continuous-action reinforcement
learners.

Introduction
Continuous-valued states and actions naturally arise in the
reinforcement-learning setting when the agent is interacting
with a dynamic physical system. Swimming, driving, flying,
and walking all involve observing positions and velocities
and applying forces to control them. A common approach
when learning to act in continuous environments is to en-
force a (necessarily coarse) discretization over the state and
action dimensions, and make decisions in that simpler, dis-
crete Markov Decision Process (MDP). This approach re-
quires the system designer to make a hard choice to avoid
overdiscretizing (drastically increasing the resources needed
to plan and learn) or underdiscretizing (risking failure if crit-
ically different actions or states are conflated).

Reinforcement-learning (RL) algorithms that avoid
coarse discretization often focus on domains with continu-
ous state spaces but discrete action spaces—algorithms that
function in continuous action spaces have been examined
less thoroughly. In many ways, working in a continuous state
space is much easier than working in a continuous action
space. In both cases, algorithms must generalize information
from one point in the space elsewhere. However, continuous
action spaces also require optimization over the continuous
action dimension to plan effectively.

The few algorithms designed for use in continuous action
spaces can be divided between those that attempt to build
a value function and those that search the policy space di-
rectly. To obtain reliable results and worst-case guarantees,
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methods that build a value function in continuous spaces
are limited to classes of function approximators (FAs) that
can safely be used, such as averagers (Gordon 1995). This
restriction aside, the approach often fails because noise in
value estimates can lead to a systematic overestimation of
the value function, causing a degenerate policy to be com-
puted (Thrun and Schwartz 1994). Another source of dif-
ficulty is that of choosing which features to use when rep-
resenting the value function; the wrong set of features can
cause failure due to either inexpressiveness (with too few
features), or overfitting (too many features) (Kolter and Ng
2009). Policy search methods have their own set of limita-
tions. Their applicability is restricted to episodic domains
and to searching the space of policies representable by the
function approximator. Additionally, policy-gradient meth-
ods, a popular subset of policy search methods, converge
only to locally optimal policies (Sutton et al. 1999).

In this paper, we examine the empirical performance of a
method that functions in continuous action spaces by plan-
ning over the set of possible sequences of actions that can be
taken within a finite horizon. By doing so, the problem can
be reformulated as one of optimization, where the total re-
turn with respect to the action sequence starting from a par-
ticular state is the quantity being optimized, and the cumu-
lative reward is the only quantity relevant to planning. After
optimization is performed, the estimated initial optimal ac-
tion is taken in the domain and planning is started anew from
the resulting state. Although this method is a form of pol-
icy search, it is different from the most common approach
of representing the policy by an FA, which is incrementally
improved at the end of each episode.

When used in the deterministic setting, the algorithm has
a number of appealing theoretic properties, such as a fast
rate of convergence to optimal behavior. It also does not suf-
fer from the limitations of other classes of algorithms. While
algorithms that bootstrap estimates of FAs to build an esti-
mated value function may suffer from divergence (Boyan
and Moore 1995), the algorithm discussed here does not use
that approach and cannot have a divergent estimate of value.
Likewise, because policy is represented by a sequence of
actions, as opposed to parameterization of an FA, the algo-
rithm will always be able to represent the optimal D-step
policy (in deterministic settings). Finally, any method that
tries to find a global mapping from states to actions must
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search a hypothesis space the size of the state and action
space. Because the method discussed here plans in an open-
loop manner (a sequence of actions as opposed to a mapping
of states to actions), it is state agnostic, and therefore is not
impacted by the size of the state space. As such, it also has
the property of functioning identically in discrete, hybrid, or
partially observable MDPs, as long as a generative model is
available.

In the next section, background information will be out-
lined, including the Hierarchical Optimistic Optimization
(HOO) strategy we use for stochastic optimization. Next,
the extension of HOO to sequential decision making and
its theoretical properties are discussed. Since the algorithm
requires access to a generative model, a method of explo-
ration and model building will be presented that allows a
high-quality model to be built in the absence of a generative
model. Experimental results will be presented in the settings
where a generative model is available, as well as where a
model must be constructed from direct interaction with a do-
main. In both cases, our method consistently outperforms
other methods, even in the presence of large amounts of
noise. Following this material will be the conclusion with
proposals for future extensions and improvements.

Background
This section discusses the bandit setting, along with hierar-
chical optimistic optimization, a bandit algorithm that func-
tions when there is a continuum of arms. A small modifica-
tion to this algorithm will allow it to function as a planner
in Markov decision processes, which is also described for-
mally.

Hierarchical Optimistic Optimization
The simplest possible setting for RL is the multi-armed ban-
dit, where an agent makes a decision as to which of the fi-
nite number arms to pull at each time step, attempting to
maximize reward. If we call the arm pulled at time step
n an, the agent receives a reward drawn from the payoff
distribution for that arm, rn ∼ R(an). A common goal is
to find an algorithm with cumulative regret that grows as
slowly as possible with time. If we call the optimal arm
a∗ = argmaxaE[R(a)], the cumulative regret at n is de-
fined as

∑n
t=0(E[R(a∗)]− E[R(at)]).

In some settings, however, there is a continuum of arms
as opposed to a small, finite set of arms. The Hierarchical
Optimistic Optimization (Bubeck et al. 2008) or HOO strat-
egy is a bandit algorithm that assumes the set of arms forms
a general topological space. HOO operates by developing a
piecewise decomposition of the action space, which is rep-
resented as a tree (Figure 1). When queried for an action
to take, the algorithm starts at the root and continues to the
leaves by taking a path according to the maximal score be-
tween the two children, called the B-value (to be discussed
shortly). At a leaf node, an action is sampled from any part
of the range that the node represents. The node is then bi-
sected at any location, creating two children. The process is
repeated each time HOO is queried for an action selection.

A description of HOO is shown in Algorithm 1, with some
functions defined below. A node ν is defined as having a

Figure 1: Illustration of the the tree built by HOO (red) in
response to a particular continuous bandit (blue). Thickness
of edges indicates the estimated mean reward for the region
each node covers. Note that samples are most dense (indi-
cated by a deeper tree) near the maximum.

number of related pieces of data. Unless it is a leaf, each
node has two children C(ν) = {C1(ν), C2(ν)}. All nodes
cover a region of the arm space A(ν). If ν is the root of the
HOO tree, A(ν) = A. For any non-leaf node ν A(ν) =
A(C1(ν)) + A(C2(ν)). The number of times a path from
root to leaf passes through ν isN(ν), and the average reward
obtained as a result of those paths is R̂(ν). The upper bound
on the reward is

U(ν) = R̂(ν) +

√
2 lnn

N(ν)
+ v1ρ

h

for v1 > 0 and 0 < ρ < 1, where v1 and ρ are parameters
to the algorithm. If the dissimilarity metric between arms
x and y of dimension |A| is defined as ||x − y||α, setting
v1 = (

√
|A|/2)α, ρ = 2−α/|A| will yield minimum possible

regret. Finally, N , R̂, and U are combined to compute the
B-value, defined as

B(ν) = min {U(ν),max {B(C1(ν)), B(C2(ν))}}
which is a tighter estimate of the upper bound than U be-
cause it is the minimal value of the upper bound on the
node itself, and the maximalB-values of its children. Taking
the minimum of these two upper bounds produces a tighter
bound that is still correct but less overoptimistic. Nodes with
N(ν) = 0 must be leaves and have U(ν) = B(ν) =∞.

Given the assumption that the domain is locally Hölder
around the maximum, HOO has regret Õ(

√
n), which is in-

dependent of the dimension of the arms and is tight with the
lower bound of regret possible. Additionally, it is one of the
few available algorithms designed to perform global opti-
mization in noisy settings, a property we build on to perform
sequential planning in stochastic MDPs.

Markov Decision Processes
An MDP M is described by a five-tuple 〈S,A, T,R, γ〉,
where S ⊆ R|S| is the state space, A ⊆ R|A| is the action
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Algorithm 1 HOO (see text for details)
1: function PULL
2: n← 0
3: loop
4: a←NEXTACTION
5: r ∼ R(a)
6: INSERT(a, r)
7: function NEXTACTION
8: n← n+ 1
9: ν ← root

10: while ν is not a leaf do
11: ν ← argmaxc∈C(ν)B(c)

12: return a ∈ A(ν)
13: function INSERT(a, r)
14: ν ← root
15: while ν is not a leaf do
16: Update R(ν), N(ν)
17: ν ← c ∈ C(ν) such that a ∈ A(c)
18: Update R(ν), N(ν)
19: Create children C(ν) = {C1(ν), C2(ν)}

space, T is the transition function, with T (s′|s, a) denoting
the distribution over next states s′ by taking action a in state
s.

The reward function R(s, a) denotes the deterministic re-
ward from taking action a in state s and γ ∈ [0, 1) is the
discount factor. A policy π is a mapping π : S → A
from states to actions. The value of a policy, V π(s), is de-
fined as the expected sum of discounted rewards starting at
state s and following policy π. Likewise, the action-value
function Qπ(s, a) = R(s, a) + γ

∑
s′∈S T (s, a, s

′)V π(s′),
which is the value of taking a from s and then following
π afterwards. The discounted return from time t = 0 to
t = n is

∑n
t=0 γ

trt, where rt is the reward obtained at step
t. The optimal policy, π∗, is the policy π that maximizes
V π(s),∀s ∈ S. The goal in reinforcement learning is to find
a policy π as close as possible to optimal, as measured by
maxs |V π(s)− V π

∗
(s)|.

Bandit-Based Planning in
Continuous Action MDPs

The approach of extending bandit algorithms to sequential
planning problems has been examined in Bayesian (Duff and
Barto 1997) and PAC-MDP (Strehl and Littman 2004) set-
tings. The specific analysis of HOO applied to sequential
planning in terms of simple regret has also been explored
theoretically (Bubeck and Munos 2010). The simple regret
of an action a in a state s is defined as the difference be-
tween taking a in s and then following the optimal path
and taking the optimal path starting from s. When we ap-
ply the HOO bandit algorithm to MDPs for sequential plan-
ning, we refer to it as Hierarchical Open-Loop Optimistic
Planning (HOLOP), which borrows part of its name from
the Open-Loop Optimistic Planning approach (Bubeck and
Munos 2010).

HOLOP
Whereas HOO optimizes regret in the bandit setting (max-
imizing immediate reward), HOLOP optimizes regret in
MDPs by optimizing the return of an D-step rollout.
HOLOP is a sample-based algorithm, which assumes access
to a generative model. Given a query of any (s, a), a gen-
erative model will return R(s, a), and s′ ∼ T (s, a). The
requirement of such a generative model is weaker than a
complete description of the MDP needed by planning ap-
proaches like linear programming but stronger than the as-
sumption used in on-line RL where information is only ob-
tained by direct interaction with the MDP, as generative
models must return samples for any possible query (s, a).
Sample-based methods can be used in any domain for which
a generative model is available or a model can be built.

Given a query state s, HOLOP creates a HOO agent.
The role of this HOO agent is to find the best D-step ac-
tion sequence through interaction with the generative model.
HOLOP then executes the first action of this sequence in the
actual domain. HOO is unaware the optimization has a tem-
poral component. It computes B-values for all nodes in the
tree and takes a path from the root to a leaf by following the
maximum B-value of each node’s children along the way.
Once execution reaches a leaf node l, an action sequence of
dimension |A|D, drawn from A(l), is returned. The return
r of this action is computed by doing a rollout simulation
using this action sequence from the root state s0 obtaining
r =

∑D
d=0 γ

dR(sd, ad), where |ad| = |A|, and corresponds
to the dth action in the sequence.

The value of r is then included in l and all its ancestors,
and l is split into two children, as in HOO. Planning contin-
ues until a planning cutoff (such as time) is reached. At that
point, HOO returns a recommended greedy action, which is
executed in the actual MDP. HOLOP repeats this planning
process for each new state encountered.

Algorithm 2 HOLOP
1: function PLAN(s)
2: loop
3: a←NEXTACTION(s)
4: s ∼ T (s, a)
5: function NEXTACTION(s)
6: repeat
7: 〈a0...aD〉 ←HOO.NEXTACTION
8: s0 ← s
9: r ← 0

10: for d = 0→ D do
11: sd+1 ∼ T (sd, ad)
12: r ← r + γdR(sd, ad)

13: HOO.INSERT(〈a0...aD〉, r)
14: until planning cutoff
15: 〈a0...aD〉 ←HOO.GREEDYACTION
16: return a0

As a regret-based algorithm, HOLOP is used in an any-
time manner. That is, as more queries are used, performance
continually increases. This behavior is in contrast to other
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methods of planning like those that satisfy the PAC-MDP
conditions (Strehl and Littman 2004), which cannot be inter-
rupted prematurely and only learn an approximately optimal
solution.

In the implementation used in this paper1, the dimension
at which a node is split is done probabilistically according to
the maximum value the action at that step j in the sequence
could contribute to the return: γj/

∑D
d=0 γ

d. Once j is se-
lected, a cut is made in one of the |A| dimensions uniformly
at random. To more thoroughly leverage data resulting from
planning, all (r, a) samples are passed down the tree into
the appropriate leaves as the tree is grown. Finally, greedy
actions are chosen by following the R̂-values from root to
leaf, and the action returned is the action stored in the leaf
found by following R̂.

HOLOP in Deterministic MDPs
One important aspect of HOLOP is that it has sound the-
oretical backing. Bubeck and Munos [2010] show that if
the search space is smooth—that is, nearby sequences have
nearby rewards2—the HOO agent has simple regret of
Õ
(
n−1/(δ+2)

)
, δ = log κ

log 1/γ . Here, κ is the number of near-
optimal paths. Because the bound goes to zero asymptoti-
cally, as the number of trajectories grows, the HOO agent
converges to finding the optimal open-loop plan.

From a theoretical perspective, it is noteworthy that this
bound is independent of the size of the state and action
spaces. In practical terms, however, the quantity D|A| (the
dimension of a D-step policy) does determine the rate of
learning. In particular, the regret bound considers the case
when the number of samples grows very large compared to
the dimensionality, which is often not feasible in practice.

An open-loop plan like the kind HOLOP finds is essen-
tially “blind”—it commits to a sequence of actions and then
executes them regardless of the states encountered along
the way. In deterministic environments, state transitions are
completely predictable in advance. Thus, the best open-loop
plan will match the performance of the best possible pol-
icy (given the same planning horizon). In general, however,
there may be a significant gap between the best open-loop
plan and the best policy.

HOLOP in Stochastic MDPs
Since HOO is an optimization method that functions in
stochastic domains, HOLOP can be used for planning in
stochastic MDPs. As mentioned, open-loop plans may not
produce optimal decisions in such domains. Consider the
MDP in Figure 2. There are four different open-loop plans.
The solid-solid and solid-dashed sequences have an ex-
pected reward of 1.0, whereas both sequences beginning
with the dashed transition get 0.0 on average. Thus, the best
open-loop plan is solid-solid. However, the best first action

1Some technical details are omitted here due to space con-
straints. As such, a complete implementation of the algo-
rithms and experimental domains has been made available at
http://code.google.com/p/holop/

2A natural distance metric on sequences is γ∆ where ∆ is the
depth at which the sequences diverge.

s4
r=1

s0

s1 s2 s3

s5
r= 2

s6
r=2

p=0.5 p=0.5

Figure 2: An MDP with structure that causes suboptimal be-
havior when open-loop planning is used.

is dashed as the agent will get to observe whether it is in
state s2 or s3 and choose its next action accordingly to get a
reward of 2.0, regardless.

In spite of this performance gap, HOLOP has two proper-
ties that can mitigate the limitations of open-loop planning.
First, the expected reward that HOLOP computes for a given
D-step sequence reflects the fact that a single action roll-
out can lead to different sequences of states as a result of
the stochastic transition function. Thus, it searches for open-
loop sequences with high expected reward.

The second property is that, although the planning per-
formed by HOLOP is open loop, the policy it executes
is closed loop—replanning occurs at every step from
whichever state the agent is in at that time. Thus, the cu-
mulative reward obtained by HOLOP in the environment is
guaranteed to be no worse (and can be considerably higher)
than the return predicted during planning. As we will see in
the experimental section, these two properties help HOLOP
achieve very strong performance in stochastic domains in
spite of its worst-case limitations.

Exploration and Model Building
Sample-based planners like HOLOP require a generative
model, which may not be available in all situations. When an
agent only has access to (s, a, r, s′) samples resulting from
direct interactions with an MDP, model building can be used
to construct a generative model. In general, two components
are necessary to build an accurate model in such an RL sce-
nario: exploration and supervised learning, described next.

Multi-Resolution Exploration (Nouri and Littman 2008)
or MRE is a method that can be used inside almost any RL
algorithm to encourage adequate exploration of a domain,
assumingR and T are Lipschitz continuous. Originally con-
cerned with domains with discrete actions and continuous
state, the version here is modified to explore the continu-
ous space S × A. MRE functions by decomposing S × A
via a tree structure. Each leaf of the tree represents a region
of S × A within which “knownness”, κ(s, a) is computed.
As samples are experienced in the MDP, they are added to
the corresponding leaf that covers the sample. Once the leaf
contains a certain number of samples, it is bisected.
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When a query is made for a predicted reward and next
state, MRE may intervene and return a transition to smax
(a state with maximal possible value) with probability 1 −
κ(s, a). The presence of this artificial state draws the agent
to explore and improve its model of that region. This in-
creases κ, which in turn means it will be less likely to be
explored in the future. In terms of model building, the tree
used by MRE can also be used as a regression tree. Instead
of inserting only (s, a) samples, inserting (s, a, r, s′) allows
estimates R̂(s, a)→ r and T̂ (s, a)→ s′ to be constructed.

We note that other methods of exploration and model
building are available. In terms of randomized exploration,
the most popular method is ε-greedy, but as an undirected
search method it can fail to explore efficiently in certain
MDPs (Strehl and Littman 2004), a limitation MRE does
not have. In terms of model building, any supervised learn-
ing algorithm can be used to build estimates of R and T .
Once MRE is chosen as the method of exploration, however,
the same tree can also be used as a regression tree with only
constant-time additional costs.

In the implementation tested, we used a variant of MRE
where κ = min(1, g/(k(|S| + |A|))), as we found this def-
inition of κ to yield better performance. The parameter k
controls the level of exploration, and g is the depth of the
leaf in the MRE tree. Model building was performed by us-
ing linear regression over the samples in each leaf in the
MRE tree.

Comparisons in the Planning Setting
Here, we empirically compare HOLOP to UCT (Kocsis and
Szepesvári 2006). Like HOLOP, UCT plans by performing
rollouts and selects actions determined by a a bandit algo-
rithm. But, unlike HOLOP, UCT is a closed-loop planner,
and functions only in discrete domains. The closed-loop pol-
icy of UCT selects actions conditionally based on estimates
of the returns for each action at a particular state and depth
during the rollout.

As a planner for discrete state and action spaces, UCT re-
quires a discretization over continuous spaces. In the case
that a good discretization is not known beforehand, these
are additional parameters that must be searched over to en-
sure effectiveness from the planning algorithm. Here, it will
be demonstrated that even searching over a large number
of possible discretizations for UCT still yields performance
worse than HOLOP, which adaptively discretizes the action
space and is agnostic to state.

We refer to an episode as the result of an algorithm inter-
acting with the actual environment, and rollouts as being the
result calculations based on a generative model (either given
or learned). In all empirical comparisons, the performance
metric used is mean cumulative reward per episode. In both
domains, episodes are 200 steps long and planners are lim-
ited to 200 rollouts from the generative model (ending at
depth 50 or a terminal state). The discount factor γ = 0.95.

The first experimental domain is the the double inte-
grator (Santamarı́a, Sutton, and Ram 1996), which models
the motion of an object along a surface. The state is rep-
resented by a velocity v and position p. The action sets

the acceleration of the object, which is constrained to the
range (−1.5, 1.5) units. The reward function is defined as
R(p, a) = −(p2 + a2), and the initial state is set to (p, v) =
(1, 0). Noise is introduced by perturbing all actions taken by
±0.1 units uniformly distributed.

In this domain, all discretizations of the state and ac-
tion spaces used by UCT result in poorer performance than
HOLOP with statistical significance (Figure 3(a), 95% con-
fidence bounds not rendered, but used to establish signifi-
cance). The best discretization for UCT is when both state
and action dimensions are discretized into 10 units, result-
ing in a mean cumulative reward of −3.15 with an upper
confidence bound of −3.08. HOLOP, on the other hand, has
a mean cumulative reward of −2.72 and a lower bound of
−2.76.

The second domain tested is the inverted pendulum,
which models the physics of a pendulum balancing on a
pivot (Pazis and Lagoudakis 2009), where actions are in the
form of force applied to the pendulum. Noise is introduced
by perturbing the actions by ±10 newtons uniformly dis-
tributed from a full action range of (−50, 50) newtons. The
reward function in this formulation favors keeping the pen-
dulum as close to upright as possible using low magnitude
actions.

In the inverted pendulum domain (see Figure 3(b)), 3 pa-
rameterizations of UCT result in estimates of cumulative
reward that are not statistically significantly different than
HOLOP, and, in all other 46 parameterizations of UCT,
HOLOP has significantly better performance. The best pa-
rameterization of UCT found consists of 20 discretizations
per state dimension and 5 per action dimension, which re-
sults in a mean reward of −49.62 which was not statisti-
cally significantly different from the estimated mean value
of −47.45 achieved by HOLOP.

Both experiments demonstrate the advantages of HOLOP
over UCT. Although the most significant result of the exper-
iments here is that HOLOP can perform better than UCT in
continuous domains, there are two other important issues.
First, while we mention the performance of UCT with the
best parameterization found in our search over 49 possi-
ble settings for each domain, the performance for the worst
parameterizations were extremely poor. For example, with
the worst parameterizations, UCT was not even able to con-
sistently prevent the pendulum from falling, which is quite
simple in the pure planning setting. The second issue is the
complement of this point; HOLOP produces excellent re-
sults without parameter tuning.

Comparisons in the Learning Setting
In the case where a generative model is not available, explo-
ration and model building can be used in conjunction with
a planner to learn through interaction with a domain. Here,
the empirical performance of HOLOP with various explo-
ration methods, as well as other learning algorithms, will be
presented.

Performance of algorithms is framed between that of an
agent executing a random policy and that of an agent exe-
cuting the optimal policy. In any domain where the perfor-
mance of the agent was not statistically significantly better
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(a) The double integrator domain. (b) The inverted pendulum domain.

Figure 3: Performance of HOLOP and UCT in continuous domains.
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Figure 4: The impact of poor exploration on performance.

than the random policy, the performance of that agent was
not plotted. Parameterization of HOLOP is the same as in
the previous section. For MRE, k = 2 in the double integra-
tor, and k = 1 in the inverted pendulum.

The domains used here are the same as those in the previ-
ous section, with the difference that in the inverted pendulum
domain the reward signal is simplified to 1 while balance
was maintained.

Methods of Exploration

Figure 4 demonstrates the impact of poor exploration poli-
cies in the double integrator. The methods compared are:
MRE, ε-greedy, and pure greedy (no exploration). Here, ε
was initialized to 1 and degraded by a factor of 0.9 at the
end of each episode. Aside from exploration, model build-
ing and planning were performed identically. In this setting,
MRE yields good results; the performance by the end of the
5th episode is already not statistically significantly different
from HOLOP with a perfect generative model, whereas the
other exploration methods yield results that are still statisti-
cally significantly worse at the 30th episode.

Comparison Learning Algorithms
We now introduce a number of other RL algorithms for
continuous domains that will be compared to HOLOP with
MRE for exploration and model building.

Ex〈a〉 (Martı́n H. and De Lope 2009) extends TD(λ)
to continuous action MDPs by using a k-nearest neighbor
mechanism. The choice of action selection and updating of
values is done according to a weighted eligibility trace.

The Continuous Actor-Critic Learning Automa-
ton (Van Hasselt and Wiering 2007) or CACLA is an
extension of actor-critic methods to continuous MDPs.
Function approximators are used to estimate the value
function computed according to TD errors, as well as the
policy. Because of poor sample complexity, experience
replay (Lin 1992) is added in an attempt to speed learning.

Policy search (PS) deals with finding the parameters of
some function approximator that defines π(s) without com-
puting an estimation of the value function. In the exper-
iments here, PyBrain’s (Schaul et al. 2010) implementa-
tion of direct policy search is tested, which attempts to find
weights of a neural network by performing black box hill
climbing to maximize accumulated reward. In all domains,
the size of the hidden layer is set to twice the size of the state
dimension.

The only algorithm tested that functions in discrete do-
mains, R-max (Brafman and Tennenholtz 2002) is a model-
based algorithm. It has polynomial sample complexity and
has been shown to be one of the most effective algorithms
on general discrete MDPs. Like MRE, directed exploration
is conducted based on whether an (s, a) pair is considered
known or unknown. Whenever an (s, a) becomes known,
the value function of the estimated MDP is solved.

Fitted Q-iteration (Ernst, Geurts, and Wehenkel 2005) or
FQi is a batch mode reinforcement-learning algorithm that
operates by iteratively using function approximators to build
estimates of the Q-function, Q̂. Since an FA is used, extend-
ing the algorithm to the continuous action case is possible,
and any optimization method can be used in place of the
max operator. For these experiments, Q̂ is estimated using a
forest of totally random trees, and hill climbing with restarts
is used for optimization. The value function is reestimated
at the end of each episode.
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Whenever possible, implementations written directly by
the author of the algorithm are tested. When computationally
feasible, an automated coarse search for parameter values is
performed over the range of parameters from published em-
pirical results. For the more computationally expensive algo-
rithms, a coarse manual search is performed over the same
range of values. In the absence of published parameters, best
judgment is used to find values that work as well as possi-
ble. This parameter search is performed for each algorithm
independently for each experiment.

Results
Most learning algorithms perform well in the double integra-
tor (Figure 5(a)). The structure of the dynamics and rewards
means that the optimal policy is a linear combination of the
two state features. As such, many algorithms exhibit behav-
ior with good performance after 30 episodes. All algorithms
aside from policy search are able to at least find policies sta-
tistically significantly better than random. HOLOP performs
statistically significantly better than all algorithms at the end
of the experiment aside from Ex〈a〉, which is statistically
significantly lower than HOLOP from episodes 3–23, and
after which there was no significant difference.

In the inverted pendulum with simplified rewards,
HOLOP is the only algorithm that approached a near opti-
mal cumulative reward(Figure 5(b)). Performance of FQi is
significantly worse, but still improving at the the end of the
experiment, so convergence may have been to a better policy
given more samples. Ex〈a〉 and CACLA both perform sta-
tistically significantly better than random, but improvement
is slow, still employing a poor policy by episode 30.

Discussion of Experiments
In all the domains tested, HOLOP showed the fastest im-
provement of its policy while learning as well as the best
policy at the end of all experiments. The success of the ap-
proach can be attributed to the efficiency of exploration and
the accuracy of the model built, as well as the ability of the
planner to quickly find action sequences that yield high re-
ward.

This point aside, there was another, perhaps more signifi-
cant factor, that distinguished HOLOP from the other algo-
rithms tested—how difficult was it to obtain the “best” per-
formance from each of them. Based on previously published
results, it has been demonstrated that Ex〈a〉 is a power-
ful learning algorithm (Whiteson, Tanner, and White 2010;
Wingate et al. 2009). While we were able to reproduce the
performance described by Martı́n H. and De Lope [2009],
we noticed small changes to a single parameter could cause
large variations in effectiveness, as well as sensitivity to
noise. Ex〈a〉, however, was not alone with this issue as most
of the algorithms had numerous parameters whose values
significantly impact performance. Thus, parameter tuning is
both time consuming and difficult.

HOLOP, on the other hand, had no parameter change
across experiments, and only one parameter was changed for
MRE in the learning experiments. Additionally, the param-
eters are also simple to interpret. In general, the algorithm
performs best with longer rollouts, with more rollouts, and

with more exploration (if the domain is smooth, exploration
can be reduced to enable faster convergence). When using
the algorithm, all that needs to be done is choose values of
these parameters that allow planning to terminate quickly
enough. This robustness makes the algorithm much easier to
use in practice than the comparison algorithms.

Of all the algorithms, the implementation of policy search
had the poorest results. We can partially attribute this result
to the fact that the algorithm can only learn from the result of
an entire episode, as opposed to the other algorithms tested
that improve their policies each time a new (s, a, r, s′) is ex-
perienced. For example, in the double integrator, HOLOP
reaches near-optimal performance in 5 episodes, by which
time it has updated its policy 1000 times. In contrast, pol-
icy search has only done so 5 times during this interval. Al-
though policy search performance was always poor at the
end of each of our experiments, allowing the algorithm ac-
cess to more episodes (up to an order of magnitude) led to
convergence to near optimal policies.

In general though, the less sample efficient an algorithm
was, the faster its computation. The performance metrics
here compared the number of episodes experienced against
cumulative reward achieved during each episode. Another
metric could be running time as compared to the cumulative
reward after a certain amount of running time. Policy search,
which seemed to have the poorest sample complexity, only
updates its policy once every episode with a simple update
rule and as such is extremely fast to execute; the cost of com-
putation of one episode in policy search is the same as one
rollout in HOLOP. Ex〈a〉 and CACLA are only slightly more
computationally expensive, doing a quick update to the pol-
icy and value function for each step. Compared to all these,
the computational cost of planning with HOLOP is large.
Unlike R-max or fitted Q-iteration, which has an expensive
planning step on occasion, HOLOP has to replan at each step
in the environment. Although HOLOP can learn from a very
low number of samples in the environment, if certain fac-
tors such as response time are critical, other algorithms may
yield better performance.

Related Work
Aside from the algorithms discussed, there are a small num-
ber of algorithms that operate in the continuous-action set-
ting. HOOT (Hierarchical Optimistic Optimization applied
to Trees) and WHOOT (Weighted HOOT) also utilize HOO,
but perform closed-loop planning (Mansley, Weinstein, and
Littman 2011). HOOT is designed to be used in domains
with a discrete state space, whereas WHOOT functions in
continuous state spaces. While closed-loop planning allows
the algorithms to represent effective plans in domains that
are problematic for open-loop planners, the algorithms are
difficult to analyze because action-value estimates are non-
stationary estimates due to policy change that occurs lower
in the tree over time. They were not included in the com-
parison here because of the large computational complexity
of the algorithms; for a computation cost of c for HOLOP,
the costs of these closed loop planners are cD, as they must
query a HOO agent at each step of the rollout as opposed to
just at the start.
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Figure 5: Performance of HOLOP with MRE and other learning algorithms.

Tree Learning Search (Van den Broeck and Driessens
2011) is another method of performing open-loop planning
in continuous action spaces. In this method, action-value es-
timates generated from rollouts are given to an on-line re-
gression tree learner, which determines which regions of the
action space may contain high reward. These estimates then
inform the policy when performing rollouts at the next it-
eration. Unfortunately, Tree Learning Search also lacks any
theoretical guarantees of performance, and was not shown
to perform better than planners that used a priori discretiza-
tion.

Binary Action Search (Pazis and Lagoudakis 2009) or
BAS is a method that can be applied to any discrete action,
continuous-state learner or planner to make it almost indis-
tinguishable from a continuous-action learner. It transforms
the state space S into a new state space S′ = S × A, and
the actions are reduced to a binary decision in each orig-
inal dimension in A, corresponding to incrementing or re-
ducing each action value encoded in the state. Similar to
HOO, this method dynamically divides the continuous ac-
tion space into regions of smaller size. Although we did not
compare directly against this algorithm here, the perfomance
of HOLOP presented here in the double intergrator is su-
perior to the performance of BAS according to Pazis and
Lagoudakis [2009].

Conclusion
HOLOP combined with MRE is a learning and planning
system that has a number of advantageous properties when
compared to other methods designed for use in continuous
MDPs. By using directed exploration and regression, high
quality models can be built efficiently in domains regard-
less of the structure of the domain as long as it is smooth (a
property undirected exploration, such as ε-greedy, does not
have). By not building a global estimate of the value func-
tion, there is no risk of value-function divergence, with ac-
companying degenerate policies. Additionally, by searching
over the space of action sequences, as opposed to parameters
of a function describing a policy, HOLOP is guaranteed to
quickly approach the optimal global policy, and cannot be-

come caught in local optima, or fail to represent the optimal
policy in deterministic domains.

The empirical performance of HOLOP was compared
to several related algorithms on a set of benchmark
reinforcement-learning problems. Although open-loop plan-
ning can lead to suboptimal behavior in stochastic settings,
the performance of HOLOP was consistently strong—nearly
optimal in all cases.

As mentioned, planning in HOLOP is more expensive
than most of the other methods discussed. One factor mit-
igating this issue is that HOLOP, like most sample-based
planners, parallelizes easily (Chaslot, Winands, and Van den
Herik 2008); the implementation here used root paralleliza-
tion in order to speed planning. Another method could uti-
lize storing the results of previous policy queries to speed
up the running time of the algorithm (Silver, Sutton, and
Müller 2008). Both approaches, however, may remove the
performance guarantees of HOLOP.

The approach discussed here is one concrete example
of an algorithm that combines particular methods of ex-
ploration, model building, and sequential action planning.
Although MRE and HOLOP do have attractive theoretical
properties, which are also borne out in practice, it is worth
investigating what other methods can be substituted for each
of these components, potentially with a tighter coupling. At
the moment, each is agnostic to the existence of the other.
For example, HOLOP does not react differently when used
in the planning or learning setting, and MRE has no knowl-
edge of whether it is being used in a model-based setting. It
is worth investigating whether giving each component infor-
mation about the others may enhance performance.
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