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Abstract

Mapping and tracking biological ocean features, such as
harmful algal blooms, is an important problem in the environ-
mental sciences. The problem exhibits a high degree of un-
certainty, because of both the dynamic ocean context and the
challenges of sensing. Plan-based policy learning has been
shown to be a powerful technique for obtaining robust intel-
ligent behaviour in the face of uncertainty. In this paper we
apply this technique in simulation, to the problem of tracking
the outer edge of 2D biological features, such as the surfaces
of harmful algal blooms. We show that plan-based policy-
learning leads to highly accurate tracking in simulation, even
in situations where the uncertainty governing the shape of the
patch cannot be directly modelled. We present simulation
results that give confidence that the approach could work in
practice. We are now collaborating with ocean scientists at
MBARI to perform physical tests at sea.

1 Introduction
Plan-based policy learning has been successfully applied to
multiple battery load management (Fox, Long, and Maga-
zzeni 2011). The idea generalises very well to other prob-
lems where there is uncertainty that cannot be directly mod-
elled, and against which control decisions have to be made
under resource constraints. In recent discussions with ocean
scientists and engineers at Monterey Bay Aquarium Re-
search Institute (MBARI) we have been introduced to the
problem of tracking the extent of submerged and partially
submerged oceanographic features such as harmful algal
blooms (HABs) (Das et al. 2010). Understanding the de-
velopment, extent and decline of HABs is important in the
ocean sciences because they are toxic to marine life and po-
tentially to humans (Ryan et al. 2005). This paper describes
the application, in simulation, of plan-based policy-learning
to the problem of tracking the diffuse edge of the surface
boundaries of such oceanographic features. We have fo-
cussed on following the surface boundaries of HABs, deal-
ing with the dynamic nature of the bloom and the ocean en-
vironment. The physical situation is characterised by a high
level of uncertainty, as the bloom disperses and changes at
a rate determined by atmospheric and oceanographic con-
ditions. Deciding how to detect the edge of the bloom and
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navigate its boundary with an unmanned vehicle, while con-
serving energy and avoiding danger, is a planning problem
under uncertainty. Autonomous control of underwater vehi-
cles in challenging missions is an area of great interest, with
increasingly sophisticated approaches being deployed (Mc-
Gann et al. 2008; Zhang et al. 2011).

The approach we have taken is based on sampling a large
number of static surface bloom instances, which we call
patches, solving each of these as a deterministic planning
problem, and then learning a general purpose policy by clas-
sification methods. We make an important advance over the
method used by Fox et al. (2011), which is to learn improve-
ments to the policy during a second training phase. In this
paper we explain our approach in detail, discuss its relation-
ship with other approaches and present experimental results
that demonstrate the effectiveness of the method, and its ro-
bustness to the shape of the surface patch, in simulation.

The next stage in our work is to test our method at sea, in
collaboration with oceanographers at MBARI, and to extend
our approach to tracking the 3D structure of submerged, and
partially submerged, water features.

2 The Patch Tracking Problem in the Ocean
Harmful Algal Blooms develop in the coastal oceans due to
oceanographic processes which cause biological particulate
matter to come to the surface and bloom in the light (Glibert
et al. 2005). Some of these organisms release chemicals into
the ocean that are toxic to plant and marine life. Blooms are
associated with large-scale marine mortalities and can lead
to shell-fish poisoning events affecting humans.

The bloom-tracking problem, for our purposes, is the
problem of following the edge of a surface patch with an
Autonomous Underwater Vehicle (AUV) for a fixed amount
of time, in order to help determine the shape and extent of
the surface of the bloom. The AUV makes control decisions
(what path to follow in order to remain close to the edge),
based on taking regular readings with a chlorophyll sensor.
The objective is to follow a contour within the patch that rep-
resents a particular chlorophyll concentration, allowing the
surface of the bloom to be tracked and mapped over a series
of missions. A chlorophyll threshold defining the contour to
be followed is used to determine whether the AUV is inside
or outside the contour at each time that a chlorophyll read-
ing is taken. It is important to realise that the contour can-
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Figure 1: Possible traverse-widening control strategy in re-
sponse to losing the target contour.

not be sharply defined because of the limitations of the sam-
pling rate of the instrument and the interactions between the
movements of the vehicle and of the water. Vehicle control is
also constrained by the manoeuvrability limits, localisation
accuracy and trajectory constraints (the vehicle yoyos along
a sinusoidal path from the surface to about 15m depth or
more, and back). The instrument can therefore only provide
a reading for chlorophyll at points some metres apart, and
this is insufficient to identify whether the vehicle is on the
relevant contour — instead, it is only possible to determine
whether the vehicle is inside or outside the area enclosed
by the contour. Because of the degree of noise and local
fluctuation in the chlorophyll readings, the AUV cannot be
equipped with a pair of sensors mounted to simultaneously
read values that span the contour, precluding the use of a
control strategy based on the kind of simple edge-following
that one can program into a line-following robot. Instead,
to identify the approximate path of the contour requires that
the AUV alternately read values that span the contour value,
crossing the contour backward and forward to achieve this.
The AUV must make a decision about which way to turn, in
order to follow the contour, based on the combination of the
most recent measurement and the history of observations.
The path of the AUV should ideally zig-zag over the edge,
turning into the bloom when a reading below the threshold
is taken, and turning out of the bloom when the most recent
reading is above the threshold. When a series of successive
readings remain above or below the threshold, so that the
contour has been lost, the AUV has to take corrective action
to get back to the contour path. Knowing in which direc-
tion to turn to relocate the contour is the part of the prob-
lem that makes it complex enough to benefit from planning.
The problem can be contrasted with edge- or line-following,
where a single pair of readings straddling the edge or line
indicates whether the vehicle is on the correct path or not,
and the vehicle can detect a turn in the edge or line because
one of its sensors reads an unexpected value.

At first sight the patch-tracking problem looks like a re-
active control problem in which the AUV simply responds
to the last reading by turning left or right. However, this re-
active approach will not work when the AUV loses the edge
of the patch, as there is then no guidance about which way
to turn. The path followed by a reactive controller could
be designed to increase the traverse distance until the edge

is recovered (see Figure 1), but recovery will never happen
if the edge has veered away at an angle (the traverse dis-
tance will just continue to increase and the AUV will remain
lost). Alternative strategies include spiralling outward from
the point at which the contour is lost, attempting to redis-
cover it by crossing it, but a significant risk is of rediscover-
ing the contour while travelling in the wrong direction, lead-
ing to doubling back along the contour along a part that has
already been explored. The difficulty in solving the contour-
following problem depends on several factors: the distance
the robot moves between decision points, the turning circle
of the robot at those decision points and the relative curva-
ture of the contour being followed.

Construction of a good strategy, providing a robust con-
trol choice in each situation, is the task of defining a policy: a
function from the observed state (possibly including internal
state such as memory of earlier observations and actions) to
an action to execute next. Typical control strategies for robot
line-following (F.Martin 1996) represent hand-built policies
(often exploiting PID control) that solve (or partly solve) a
similar problem. The challenge in the patch-edge follow-
ing problem is that there is no obvious solution strategy to
hand-code as a policy.

3 Policy learning for Patch Tracking
Experience with tracking similar shaped patches in the past
can assist an AUV in deciding how to react in its current
situation, including how best to react to losing the contour.
This experience can be exploited by learning a policy from
examples of good solutions to tracking behaviour. By learn-
ing a policy we provide the AUV with advice about which
way to turn based on prior experience of having traversed a
large number of surface patches in the past. The AUV will
turn left (or right) if it has normally turned left (or right)
in similar situations in the trajectory around previously seen
blooms. As our experiments show, this learned policy be-
haviour often guides the AUV successfully back onto the
edge of a patch when it has temporarily lost track of the ap-
propriate contour on its zig-zag path. It turns out that learn-
ing this response from previous experience on a large num-
ber of similar patches leads to good behaviour at run-time,
even on patches that are different in shape to those seen in
training. Our results show a high level of robustness to shape
and dimensions of surface patches.

The key to our approach is to exploit sampling (Metropo-
lis and Ulam 1949) and classification to learn a powerful
general policy. A benefit of sampling is that it is not neces-
sary to have an explicit representation of the uncertainty in
the problem domain. Instead, a large number of determinis-
tic instances are chosen in such a way that they cover a broad
variety of interesting situations likely to be seen in practice.
Each of these instances can be independently solved using
deterministic methods. Solving these generates the exam-
ples for the training phase of the approach. When all of
the instances are solved, decision-tree learning can be ap-
plied to the problem of classifying combinations of decision
variables with action choices. Each such combination of de-
cision variables is called a state, and the association of an
action with each state results in a collection of state-action
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pairs which form a policy. We use the J48 classifier (pro-
vided by the WEKA toolkit (Hall et al. 2009)), and the re-
sulting policy is in the form of a decision tree. Depending
on the number of samples used in training, the method of
policy-learning takes several days to produce a policy which
then exhibits robust, general behaviour.

Our approach finds a compact representation of the best
thing to do next in any patch-tracking situation. The ap-
proach is based on sampling, rather than reinforcement
learning, because sampling provides a scalable alternative
to explicit modelling of the uncertainty in the domain. It
extends the work of Fox et al. (2011) by applying the sam-
pling strategy not only for learning an initial policy, but also
in subsequently improving its quality, making it able to re-
cover after bad decisions.

The policy-learning approach is described in detail in sec-
tion 4. Figure 2 illustrates the approach schematically. Start-
ing with a large number of static instances of patches, we
train a classification-based learning method by solving each
case independently using deterministic planning. The solu-
tions to these cases are then fed in as input to a decision
tree classifier that produces, using J48 decision tree learn-
ing, a condensed representation of the training history as a
policy. The policy can then be used on-board the AUV to
decide the best thing to do next in any situation that arises
during a patch-tracking mission. Figure 2 shows, above the
dotted line, the policy learning approach described by Fox
et al. (2011). Below the line is the second learning phase
that the current work contributes to the policy-learning ap-
proach. The learned policy can be seen as a highly intelli-
gent controller that condenses the vast experience recorded
in its state variables, selecting the next action without search.

Related approaches to policy construction have been ex-
plored by other researchers (Yoon, Fern, and Givan 2002;
Teichteil-Königsbuch, Kuter, and Infantes 2010; Sanner and
Boutilier 2009). However, MDP-based approaches cannot
be applied in this domain as there is not a probabilistic model
to describe the uncertainty involved in the problem, and then
it is not possible to define the transition function of the MDP.

The approach most closely related to ours is Hindsight
Optimisation (HO) (Chang, Givan and Chong 2000; Fern,
Yoon, and Givan 2006; Eyerich, Keller and Helmert 2010)
which has become a well-researched technique for learning
policies based on plans. The HO technique works by sam-
pling a large number of deterministic instances of an MDP
with initial state s, then solving these instances using a de-
terministic planner over a fixed horizon. Finally, the esti-
mated value for the state s is computed as the average value
obtained from the deterministic plans. A potential problem
is that the plan states are abstracted from reality and might
not match the situations encountered at execution time. The
key to our approach is to distinguish between plan states
and policy states. Policy states comprise observable vari-
ables which are correlated with the decision variables of the
plan states. This allows observations to be identified with
the corresponding plan states so that the appropriate actions
are selected at policy execution time. We call our approach
observable correlate policy-learning to emphasise this fea-
ture.

As is always the case with sampling approaches, the sam-
ples do not cover all possible cases that might be encoun-
tered in practice. It is therefore necessary to have a default
action that can be applied when the policy cannot offer a
sensible action choice. Our plan-based approach attempts to
minimise the number of times that a default action must be
taken. To design good default actions, we experimented with
providing a bounding box around the patch being tracked,
with special actions designed to navigate the AUV from the
edge of the box back onto the patch, in cases where the pol-
icy could not relocate the patch before hitting the edge of
the bounding box. In the last phase of the learning stage,
we run a set of patch-tracking missions on unseen patches
in order to find weaknesses in the policy learned so far. On
each mission we store all the default actions that are exe-
cuted on the trajectory round the patch, resulting in a new
set of small sequences of state action pairs. We then add
this new set to the original training data and we relearn a
new policy from this extended training set. This represents
an important extension of the approach presented by Fox et
al. (2011), enhancing the robustness and applicability of the
policy, as described in Section 4.7.

Figure 2: The plan-based policy-learning method

4 Patch Tracking as a Planning Problem
In this section we explain how we solve the patch-following
sample problems, beginning with a consideration of why
these problems can usefully be seen as planning problems.

4.1 Why Planning?
Each patch sample presents an edge-tracking problem that
must be solved as a deterministic instance. In each instance,
the AUV can use a small set of actions (forward moves and
turns) and these must be assembled into a sequence that
starts from the initial AUV position and tracks the edge.

Once a patch sample is created, the precise structure of
the edge of the patch for that sample is known. This means
that a simple edge-following algorithm could be used to fol-
low the edge without any deviation and would appear much
more appropriate to the task than a general purpose planner.
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However, such a solution highlights one of the potential pit-
falls of using a sampling approach to manage uncertainty:
in the generation of a sample the uncertainty in the origi-
nal problem is removed, but the problem we must ultimately
solve will retain the uncertainty. For the training samples
to convey useful information to help in solving the real, un-
certain, instances, there must be some way to connect the
observable state available to the AUV in the real instances
to the action selections made in the training samples.

To ensure an adequate training set it is necessary to gen-
erate solutions that visit a wider range of states than are re-
quired to simply track the patch edge, and that make action
selections for reasons other than that the selected action im-
mediately crosses the patch boundary. We achieve this by
setting a confusion limit in the action preconditions which
forces the planner to cross the edge every n moves (where n
is the bound). This leads the planner to compromise between
the length of the path and the need to follow the patch edge,
making the problem an interesting and difficult optimisation
task. It is this requirement (discussed further in Section 4.2)
that makes the problem one for which planning is a suitable
approach, with planners offering a route to rapid and flexible
solution.

4.2 Deterministic Problem Modelling
Given the bounding box enclosing the patch, we model it as
a grid of k × k cells. Each cell is labelled either black or
white, indicating whether the cell is inside the patch or out-
side, respectively. The patch is then described as a PDDL
problem by giving the set of all the connections between
adjacent cells, together with the colour of each cell. A frag-
ment of a PDDL problem is shown in Figure 3.

(define (problem patchtracking1)
(:domain patchtracking)
(:objects
bl wh - colour
dummy_N, dummy_E, dummy_S, dummy_W,
x17_58, x17_59, x18_55, x18_56
[...] - location
auv - vehicle
n s e w nw ne sw se - direction)

(:init
(at auv x18_59)
(facing auv n)
(= (confusion auv) 2)
(linked x17_58 x17_59 s)
(linked x17_58 x18_59 se)
(linked x17_58 x18_57 ne)
(white x17_58)
[...]

))

Figure 3: Part of PDDL problem for patch tracking

The action the AUV can perform is to move between two
connected cells. We restrict possible moves to the following
directions, to reflect constraints on manoeuvrability of the
AUV: left, forward-left, forward, forward-right, right. Fur-
thermore, in the PDDL domain we distinguish a move be-
tween cells of different colours from a move between cells of
the same colour. The former is used to cross the edge of the
patch, while the latter is used when the AUV remains inside

or outside the patch. The AUV has a confusion level which
measures how far it has travelled since last crossing the edge:
the confusion level increases when the AUV moves through
cells of the same colour, and drops to zero when the AUV
crosses the edge, as shown in Figure 4.

(:action move
:parameters
(?v - vehicle ?from ?to - location
?dold ?dint ?dnew - direction
?c1 ?c2 - colour)

:precondition
(and (< (confusion ?v) 4) (new ?to)

(colourOf ?from ?c1) (colourOf ?to ?c2)
(eq ?c1 ?c2) (at ?v ?from)
(facing ?v ?dold)
(linked ?from ?to ?dint)
(validDirection ?dold ?dint ?dnew))

:effect
(and (increase (confusion ?v) 1)

(at ?v ?to) (not (at ?v ?from))
(facing ?v ?dnew)
(not (facing ?v ?dold)) (not (new ?to))))

Figure 4: Part of the PDDL domain for patch tracking

Since the patch is known, the planner can plan to keep
the confusion level below a given threshold by choosing to
cross the edge as often as necessary while keeping the plan
as short as possible. For example, given a threshold of 4, the
plan has to zig-zag across the edge with one crossing at least
every 4 moves. The benefit of this is that the policy-learning
process will be exposed to situations where the AUV has
encountered a high confusion level, and it will learn the best
thing to do in such cases.

We use LPRPG (Coles et al. 2008), a heuristic forward
search planner, to solve the problems. However, the prob-
lem we are interested in presents a huge state space, as the
patches to be tracked cover an area of several kilometers
squared, resulting in grids of 180×180 cells. To make these
problems accessible we decompose them into a set of sub-
problems, as described in the following section.

4.3 Planning Problem Decomposition
The patch is divided into 9 squares, as shown in Figure 5
(a), and we then track the patch edge in each square. The
planner therefore deals with smaller grids and generates a
set of partial solutions corresponding to sub-paths.

(a) (b) (c)

Figure 5: Decomposing and re-linking partial solutions

However, since each square represents a different plan-
ning problem, it is necessary to build connections between
different partial solutions. Dummy nodes are used, as shown

41



in Figure 5 (b), to specify initial states and goals. All the
cells in the grid boundaries are connected to the nearest
dummy node. In each subproblem, the goal is to traverse be-
tween a dummy node A and a dummy node B while keeping
the confusion level below the threshold. LPRPG can solve
each subproblem (a 60×60 grid) in less than 10 seconds.

Finally, the partial solutions are linked to each other to
obtain the complete path, as sketched in Figure 5 (c).

4.4 Policy Learning
Having shown how to generate plans for a known patch, we
now focus on how to deal with unknown patches. In general,
it is not possible to predict the exact shape of the surface
patch of a bloom. However, satellite imagery can be used to
approximate its extent in order to define the bounding box
enclosing the patch. We also have a probabilistic model, im-
plemented as a Matlab patch generator1, which characterises
typical chlorophyll distribution and that can be used to gen-
erate a representative set of cases. An example of a patch is
shown in Figure 6, where different contours are highlighted
according to chlorophyll thresholds.

Figure 6: Example of chlorophyll distribution in a patch

In order to learn a policy, the patch generator is used to
create a set of deterministic problems which can be solved
using the approach described above. All of the patches gen-
erated for learning were roughly square or circular, approx-
imately filling the bounding box region and having no inter-
nal structure. We refer to this kind of patch as standard. The
generated plans can then be aggregated through classifica-
tion to obtain a policy.

4.5 Policy State
The key to observable correlate policy learning lies in se-
lecting a suitable policy state. In fact, an informative set of
state variables is essential to enable the classifier to structure
the decision tree so that particular actions are preferred over
others in particular states.

The states used as the basis of classification cannot be
the same states as are used for planning, since only observ-
able state values can be used to apply the policy in execu-
tion. Identifying appropriate state variables is the hard prob-
lem of feature selection encountered in all machine learning
tasks (Liu and Yu 2005). After some experimentation, we
adopted the following state as the basis for classification:

s = (θ, Lc, Rc, Fc, FLc, FRc, P, F, C)

1Provided by Michael Godin, Software Engineer, MBARI.

where:
• θ ∈ [0, 360) is the average bearing over the last 10 moves;
• Lc, Rc, Fc, FLc, FRc ∈ N count the number of times

each of the five actions (Left, Right, Forward, Forward-
Left, Forward-Right, respectively), has been performed
in the plan so far;

• P ∈ B is true if the last visited cell was within the patch,
false otherwise;

• F ∈ [N,S,E,W ] denotes the current facing direction;
• C ∈ N is the confusion level.
The values of the policy state variables are constructed by
simulated execution of the plans generated to solve the sam-
ple set. Each observation generated in a trace will be as-
sociated with the corresponding action choice made in the
plan, in order to build the entire training data set. The cor-
relation between observables and the action choices is then
determined by the classification process.

The policy maps values of these states to actions and, dur-
ing execution, will give rise to a sequence of transitions of
the following form (assuming, for example, that the action
a = Go Right is performed):

s(t) = (θ, Lc, Rc, Fc, FLc, FRc, P, F, C)
a−→

s(t′) = (θ′, Lc, Rc + 1, Fc, FLc, FRc, P
′, F ′, C ′)

where θ′ and F ′ are the new average bearing and the new
facing direction, respectively, P ′ is true if the last visited
cell is within the patch, otherwise is false, and C ′ = C + 1
if P ′ = P , else C ′ = 0.

4.6 Classification
Following Fox et al. (2011), classification is performed us-
ing WEKA (Hall et al. 2009). In particular, we used the
J48 classifier, which implements the machine learning al-
gorithm C4.5 (Quinlan 1993). The output is a decision tree
whose leaves represent, in this context, the next AUV action.

We found that the best results are obtained by classify-
ing 2, 000 plans, as further extending the training set does
not make any significant improvement to the policy perfor-
mance, but increases memory and time requirements. As
each plan consists, on average, of 500 actions, the classifi-
cation process involves considering about 107 values.

We converted the resulting decision tree into a C program,
in the form of a set of nested if-then-else statements check-
ing the values of the state variables and returning the corre-
sponding action. The compiled policy is about 2MB in size
and takes negligible time to propose each action.

4.7 Recovery Action
It is not possible for the policy to cover the whole space of
reachable states since it is too large. Therefore the policy
must be supplemented with a sensible default action to be
used when the AUV gets lost at execution time. This hap-
pens when the input state is too distant from any of the states
encountered during learning. In our setting, a default action
is required when the AUV confusion level exceeds the crit-
ical level used in planning. Just as the selection of the vari-
ables for the policy state is key to performance of the policy,
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so the choice of the recovery action is key for determining
the robustness of the policy.

We first tried ‘bouncing’ the AUV off the bounding box
that encloses the patch. Thus the default action was to con-
tinue going ahead until the bounding box edge was reached,
and then be deflected back onto a path that would cross the
patch edge and allow the AUV to relocate it. However, this
solution presents two problems: first, it is not efficient if
the bounding box is large and, second, the use of this de-
fault action impacts on the rest of the policy execution be-
cause bouncing off the box dramatically distorts the value
of the counter variables. Using the policy after this default
action results in poor behaviour. This is clearly shown in
Figure 7, where the ideal and actual behaviour of this solu-
tion are compared.

Figure 7: Ideal (left) and actual (right) behaviour of the
bouncing box repair action

To overcome this problem, we moved an area-based repair
action. Figure 8 (left) shows the direction selected in each of
the sub-areas, according to whether the AUV was last inside
or outside the patch. The repair action moves the AUV in a
straight path following the indicated bearing.

This solution performs well: an example of its behaviour
is shown in Figure 8 (right). In this test, repair was triggered
when the confusion level increased beyond a threshold of
5. Interestingly, the area-based default action results in a
state consistent with the policy, which is still able to cor-
rectly handle the AUV states obtained after default actions
have been applied.

Figure 8: Area-based repair action and its effects

4.8 Policy Improvement through Policy Rollout
and Re-Classification

We perform a second training phase in which we improve
the policy by presenting it with situations that require a de-
fault action after the first training phase. We ran a set of
10,000 simulated tests, setting a confusion level threshold
of 2. Lowering the confusion level threshold compared with
the original planning model allows us to increase the policy

sensitivity. During each test, we stored all the area-based
actions triggered when the policy could not match the input
state. This resulted in a set of small sequences of state action
pairs which we added to the training set used for learning the
initial policy. We then relearned a new policy from the ex-
tended training set. All of this work is done offline before
the policy is applied to “real” patches.

The improvement made by this phase is twofold: first, the
new policy is more sensitive than the initial one, as it tends
to keep the confusion level below the very small threshold
of 2. Second, it is more robust, as the policy rarely fails to
identify the state. In particular, the policy now handles states
in which the AUV confusion level is greater than the critical
threshold that would normally trigger a repair action.

5 Evaluation
In this section we discuss the simulation framework that we
used to evaluate our approach, and the comparisons we per-
formed with a non-planning-based strategy. In our exper-
iments, we assume to know the coordinates of the bound-
ing box enclosing the patch, and that the AUV can be com-
manded to navigate to a waypoint on the North-West corner
of the patch before deploying the policy. These assumptions
are consistent with the setting used in real sea tests.

5.1 Static Policy
In order to evaluate the advantages of using a plan-based pol-
icy we compare it with a hand-coded policy. We developed
a static policy, based on the simple strategy of simply using
the default actions described in Section 4.7. This is equiv-
alent to using the plan-based policy with a confusion level
threshold of zero: in this case the learned policy is never ap-
plied triggered and the default action is used in every state.

A static policy using the bounding box default actions
(see Figure 7) proved unable to follow the edge of the patch.
The static policy using the area-based default actions is rea-
sonably effective, corresponding closely to hand-coded line-
following policies. We enhanced this static policy with a
loops-avoidance routine, to handle positions of the AUV
where the area-based actions fail to escape a local structure
(eg the boundary of an internal structure within a patch).

This policy performed very well on the patches used in
our training set: an example is shown in Figure 9 (left).
However, a deeper evaluation, described below, shows that
this static policy lacks robustness, which is a crucial require-
ment for the patch-tracking application.

In order to evaluate the effectiveness of the policies, we
ran a large set of simulations, using the Matlab patch gener-
ator. We first considered a chlorophyll threshold of 0.2, that
results in roughly circular patches (such as Figure 6). These
patches are similar to the cases we used as training exam-
ples for learning the policy. The policy performed well, as
might be expected, since the patches are similar to the train-
ing data. An example is shown in Figure 9 (right).

5.2 Policy Efficiency Measures
The purpose of the patch-following behaviour is to attempt
to identify the contour of the patch as efficiently as possible.
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Figure 9: Standard patch with a chlorophyll threshold of 0.2
tracked using static (left) and plan-based (right) policy

Because the AUV will collect data throughout its path, it
will be possible to reconstruct from the data a view of which
parts of the trajectory are close to the contour. Therefore,
provided the AUV approaches close to all parts of the con-
tour, the mission will successfully trace the patch, although
possibly inefficiently. If the AUV only follows a path that is
close to the contour then it will be efficient, although it might
not visit all parts of the contour. We therefore consider two
measures in determining how successfully policies perform,
letting E be the set of points along the edge of the patch and
T be the points along the AUV trajectory:
• Minimal distance of the patch edge from the trajectory.

Ψ =

∑
∀e∈E·t∗∈T ·@t′∈T ·||e−t′||<||e−t∗||

(||e− t∗||2)

|E|

Ψ measures how closely the AUV tracks the patch-edge.
• Minimal distance of the trajectory from the patch.

Ω =

∑
∀t∈T ·e∗∈E·@e′∈E·||t−e′||<||t−e∗||

(||t− e∗||2)

|T |

Ω measures how efficiently the AUV tracks the patch.
Both of these measures sum squared distances, similarly to
a sum-of-squares error measurement for curve fitting.

We also measure the average confusion level of the AUV.
This reflects the global performance of the AUV in track-
ing the patch edge, showing approximately how close to the
contour the AUV passes throughout its path.

5.3 Policy Robustness
Figure 6 indicates that the shape of the contours vary sig-
nificantly at different chlorophyll levels. In fact, the varia-
tion in contours in that Figure is also reflected between the
outer shapes of HABs in practice, due to effects of ocean
currents, wind and distribution of nutrients. The patches
used for training are all roughly circular, but the shapes
met in practice vary between long and narrow patches to
multiple closely linked islands of high chlorophyll. In or-
der to be useful, the AUV control policy must adapt well
to these different situations. Therefore, together with the
standard (roughly circular) patches, we also considered three
other kinds of patches: horizontal, thin and inner-structured
patches, obtained using the patch generator with different
parameters (see Figures 10-12).

Bloom Policy Ψ Ω Conf Length

Standard static 39.37 2.56 2.52 510.94
planning 39.48 3.28 3.59 533.10

Horizontal static 1741.18 51.72 19.93 328.77
planning 187.83 15.08 14.67 387.23

Thin static 56.95 45.14 45.14 314.39
planning 25.09 35.80 9.71 353.60

Inner static 1009.51 21.40 16.23 358.45
planning 585.66 20.07 15.56 382.94

Table 1: Policy performance and robustness evaluation

Horizontal patches are flatter than they are wide, repre-
senting just a segment of the kind of patch used in training.
Thin patches are very flat and wide, representing thinner
such segments. Inner-structured patches are more interest-
ing: they are broken up into several loosely connected or
disconnected regions, which are close enough together to be
considered part of the same patch.

We only use standard patches for learning the policy as
mixing different shapes leads to a poorer decomposition of
the decision tree and weaker basis for classification. Fur-
thermore, although the three shapes above represent some
typical patches, it is not possible to anticipate all the vari-
ability, and during a mission the system cannot know what
type of patch is on, so it could not select an appropriate pol-
icy from a library. Thus, the policy has to be robust enough
to cope adequately with whatever it finds.

6 Results
The efficiency measures defined in Section 5.2 were used to
evaluate the performance of the static and plan-based poli-
cies against standard, horizontal, thin and inner-structured
patches. We used 10,000 samples of each type.

Table 1 shows the results of the comparison. For all the
measures, the lower the value (which refers to the average
value over 10,000 tests for each kind of patch), the better. As
can be seen, the plan-based policy significantly outperforms
the static one, proving a high degree of robustness. The two
policies perform quite similarly when dealing with standard
patches, which is to be expected, because they cover the
area inside the bounding box quite evenly and with a con-
vex edge, making them straightforward for both policies.

In contrast, horizontal, thin, and inner-structured blooms
are the most challenging as their shapes are quite irregular.
With respect to them, the plan-based policy performs sur-
prisingly well, reducing the Ψ values by up to one order
of magnitude compared with the static policy, when deal-
ing with horizontal patches and providing a very significant
improvement in all the other cases.

Figures 10-12 show some representative examples of the
behaviour of the policies for each kind of patch and give an
indication of how much more robust is the plan-based policy.

When dealing with horizontal patches (Figure 10), the
static policy starts zig-zagging over the edge of the patch,
but then gets lost inside it. In contrast, the plan-based policy
successfully follows the edge of the patch. The fact that the
static policy does not guide the AUV around the horizontal
blooms, while the plan-based one does, is confirmed more
generally by the big difference (' 90%) in the Ψ values in
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Figure 10: Horizontal blooms tracked using static (left) and
plan-based (right) policy

Table 1. Note that, despite the small flaws in the upper left
and lower right corners of the patch, where the AUV confu-
sion level increases, the plan-based policy is able to get the
AUV back to the edge very quickly and providing a clear
and almost perfect picture of the extent of the patch.

Figure 11: Thin bloom tracked using static (left) and plan-
based (right) policy

A similar behaviour is observed with thin blooms (Fig-
ure 11), where the Ψ values differ by ' 50% and the confu-
sion level is dramatically reduced by the plan-based policy.

Figure 12: Inner blooms tracked using static (left) and plan-
based (right) policy

Finally, inner-structured patches (Figure 12) are obtained
in the simulator by considering a chlorophyll threshold of

0.5. This gives rise to very irregular shaped patches, which
are very difficult to handle. Indeed, as can be seen in Fig-
ure 12 (top), in this case the static policy gets lost inside the
patch. This also happens to some degree with the plan-based
policy, but it does provide a better view of the extent of the
patch. It is very common to find inner-structured patches
split into separated partial patches. An example can be found
in Figure 12 (bottom) that also shows a recurrent behaviour
of the static policy when dealing with split patches. Once
the AUV leaves the first patch, the static policy is not able to
direct the AUV towards the new patch, and the AUV simply
follows a holding pattern.

On the other hand, the plan-based policy drives the AUV
towards the second patch, then it follows a part of its bound-
ary and finally gets back to the first patch, providing quite
a good picture of the union of the two patches. Note that,
although the path followed by the AUV appears to represent
a single patch, a quick look at the log file with data recorded
along the trajectory would show two set of points where
the chlorophyll readings fell and confusion level increased,
corresponding to the path fragments where the AUV was
traversing the areas between the two sub-patches.

7 Conclusion
In this paper we have described an application of plan-based
policy learning to the problem of autonomously tracking the
boundary of the surface of a partially submerged harmful
algal bloom. The approach could also be applied to guid-
ing an AUV attempting to follow other water features such
as temperature gradients. Furthermore, blooms are actually
three-dimensional masses suspended in the ocean, although
only the surface is visible from above. Oceanographers are
interested in studying the extent of the submerged part of the
bloom as well as its surface patch. The approach we have
described can be generalised to the 3D case, but is compli-
cated by the fact the AUV must follow a trajectory that yoyos
through the water column. This is the subject of future work.

The approach described here builds on the work of Fox
et al. (2011) on using plan-based policies for efficient mul-
tiple battery load management. We have demonstrated that
the approach generalises to a very different situation, char-
acterised by very different properties and constraints. In this
work we aim to closely follow a diffuse contour. We show
that plan-based policies perform very well on surface patch-
tracking problems and are robust to different patch shapes.
Our experiments show that our plan-based approach out-
performs a static policy that exploits an intelligent default
action but is not based on planning. We have begun a col-
laboration with oceanographers to test our approach at sea.
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