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Abstract 
This paper describes a polynomially-solvable sub-problem 
of temporal planning. Polynomiality follows from two 
assumptions. Firstly, by supposing that each sub-goal fluent 
can be established by at most one action, we can quickly 
determine which actions are necessary in any plan. 
Secondly, the monotonicity of sub-goal fluents allows us to 
express planning as an instance of STP≠ (Simple Temporal 
Problem, difference constraints). Our class includes 
temporally-expressive problems, which we illustrate with an 
example of chemical process planning. 

Introduction   
Planning is a field of AI which is intractable in the general 
case (Erol, Nau, Subrahmanian, 1995). In particular, 
propositional planning is PSPACE-Complete (Bylander, 
1994). 
 
Nevertheless, a lot of work has been done on the 
computational complexity of non-optimal and optimal 
planning for classical benchmark domains. (Helmert, 2003, 
2006), (Slaney, Thiébaux, 2001) proved that most of them 
can be solved by simple procedures running in low-order 
polynomial time. Moreover, the planners FF (Hoffmann, 
2005) and eCPT (Vidal, Geffner, 2005) empirically proved 
that the number of benchmarks that can be solved without 
search may be even larger. 
 
Since the work of (Bäckström, Klein, 1991) on the SAS 
formulation of planning, several studies have also been 
performed to define tractable classes of planning problems. 
Many of these tractability results are based on syntactic 
restrictions on the set of operators (Bylander, 1994), 
(Bäckström, Nebel, 1995), (Erol, Nau, Subrahmanian, 
1995), (Jonsson, Bäckström, 1998) and another important 
body of work focused on the underlying structure of 
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planning problems which can be highlighted using the 
causal graph (Knoblock, 1994). With restrictions on the 
causal graph structure, tractable classes can be exhibited 
(Jonsson, Bäckström, 1994, 1995, 1998), (Williams, 
Nayak, 1997), (Domshlak, Dinitz, 2001), (Brafman, 
Domshlak, 2003, 2006), (Helmert, 2003, 2006), (Jonsson, 
2007), (Haslum 2007, 2008), (Giménez, Jonsson, 2008), 
(Katz, Domshlak, 2008). A unified framework to classify 
the complexity of planning under causal graph restrictions 
is given in (Chen, Giménez, 2008). 
 
However, in real application domains, the assumptions of 
classical planning are too restrictive: a temporal planning 
framework must be used to formalize temporal relations 
between actions as temporal constraints. In the PDDL 2.1 
temporal framework (McDermott, 1998), (Fox, Long, 
2003), the PSPACE-complete complexity of classical 
planning can be preserved only when different instances of 
the same action cannot overlap. If they do overlap, testing 
the existence of a valid plan becomes an EXPSPACE-
complete problem (Rintanen, 2007). In this paper we 
present a polynomially-solvable sub-problem of temporal 
planning. To our knowledge no previous work has 
specifically addressed this issue. 
 
The article is organized as follows: Section 2 presents our 
temporal framework. Section 3 introduces the notion of 
monotonicity of fluents. Section 4 studies how to 
determine whether fluents are monotone. Section 5 gives 
an example of a temporal planning problem that can be 
solved in polynomial time: temporal chemical process 
planning. All solutions to this example require concurrent 
actions. Sections 6 and 7 conclude and give an outlook on 
future research. 

                                                Copyright © 2012, Association for the Advancement of Artificial 
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Temporal Planning 
We study temporal propositional planning in a language 
based on the temporal aspects of PDDL2.1. A fluent is a 
positive or negative atomic proposition. As in PDDL2.1, 
we consider that changes of the values of fluents are 
instantaneous but that conditions on the value of fluents 
may be imposed over an interval. An action a is a 
quadruple <Cond(a), Add(a), Del(a), Constr(a)>, where 
the set of conditions Cond(a) is the set of fluents which are 
required to be true for a to be executed, the set of additions 
Add(a) is the set of fluents which are established by a, the 
set of deletions Del(a) is the set of fluents which are 
destroyed by a, and the set of constraints Constr(a) is a set 
of constraints between the relative times of events which 
occur during the execution of a. An event corresponds to 
one of four possibilities: the establishment or destruction of 
a fluent by an action a, or the beginning or end of an 
interval over which a fluent is required by an action a. In 
PDDL2.1, events can only occur at the beginning or end of 
actions, but we relax this assumption so that events can 
occur at any time provided the constraints Constr(a) are 
satisfied.  
 
We use the notation a → f to denote the event that action a 
establishes fluent f, a → ¬f to denote the event that a 
destroys f, and f |→ a  and  f →| a, respectively, to denote 
the beginning and end of the interval over which a requires 
the condition f. If f is already true (respectively, false) 
when the event a → f (a → ¬f) occurs, we still consider 
that a establishes (destroys) f. A temporal plan may contain 
several instances of the same action, but since most of the 
temporal plans studied in this paper contain at most one 
instance of each action, for notational simplicity, we only 
make the distinction between actions and instances of 
actions if this is absolutely necessary. The notation τ(E) 
represents the time in a plan at which an event E occurs.  
 
For a given action a, let Events(a) represent the different 
events which constitute its definition, namely (a → f) for 
all f in Add(a), (a → ¬f) for all f in Del(a), (f |→ a) and 
(f →| a) for all f in Cond(a). The definition of an action a 
includes constraints Constr(a) on the relative times of 
events in Events(a). As in PDDL2.1, we consider that the 
length of time between events in Events(a) is not 
necessarily fixed and that Constr(a) corresponds to interval 
constraints on pairs of events, such as τ(f |→ a) − τ(f →| a) 
∈ [α, β] for some constants α,β. We use [αa(E1,E2), 
βa(E1,E2)] to denote the interval of possible values for the 
relative distance between events E1,E2 in action a. A fixed 
length of time between events E1,E2 ∈ Events(a) can, of 
course, be modelled by setting α a(E1,E2) = β a(E1,E2). We 
now introduce two basic constraints that all temporal plans 
must satisfy. 

 
inherent constraints on the set of actions A: for all a∈A, a 
satisfies Constr(a), i.e. for all pairs of events E1,E2 ∈ 
Events(a), τ(E1) − τ(E2) ∈ [αa(E1,E2), βa(E1,E2)]. 
 
contradictory-effects constraints on the set of actions A: 
for all ai,aj∈A, for all positive fluents f ∈ Del(ai) ∩ 
Add(aj),  τ(ai → ¬f) ≠ τ(aj → f). 
 
Definition 1. A temporal planning problem <I,A,G> 
consists of a set of actions A, an initial state I and a goal G, 
where I and G are sets of fluents.   
 
Notation: If A is a set of action-instances, then Events(A) 
is the union of the sets Events(a) (for all action-instances 
a ∈ A). 
 
Definition 2. P = <A,τ>, where A is a set of action-
instances {a1,...,an} and τ is a real-valued function on 
Events(A), is a temporal plan for the problem <I,Aʹ′,G> if  
(1) A ⊆ Aʹ′, and 
(2) P satisfies the inherent and contradictory-effect 
constraints on A;  

and when P is executed (i.e. fluents are established or 
destroyed at the times given by τ) starting from the initial 
state I: 
(3) for all ai ∈ A, each f ∈ Cond(ai) is true when it is 
required, and  
(4) all goal fluents g ∈ G are true at the end of the 
execution of P. 
 
We now look in more detail in the type of constraints that 
we impose on the relative times of events within an action. 
 
Definition 3. An interval constraint C(x,y) on real-valued 
variables x,y is a binary constraint of the form x-y ∈ [a,b] 
where a,b are real constants. 
 
Definition 4. (Jeavons and Cooper 1995) A binary 
constraint C(x,y) is min-closed if for all pairs of values 
(x1,y1), (x2,y2) which satisfy C, (min(x1,x2),min(y1,y2)) also 
satisfies C.  
 
Lemma 1. Let A={a1,...,an} be a set of actions and Aʹ′ a set 
of action-instances in which each action ai (i=1,...,n) occurs 
ti≥1 times. Let τ be a real-valued function on the set of 
events in Aʹ′. For each E ∈ Events(ai), let E[j] (j=1,...,ti) 
represent the occurrence of event E within the jth instance 
of ai. For i ∈ {1,...,n}, define the real-valued function τmin 
on the set of events in the set of actions A by τmin(E) = 
min{τ(E[j]) | j=1,...,ti}. If τ satisfies the inherent constraints 
on Aʹ′, then τmin satisfies the inherent constraints on A. 
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Proof: All interval constraints are min-closed (Jeavons and 
Cooper 1995). By applying the definition of min-
closedness ti−1 times, for each action ai, we can deduce 
that if τ satisfies an interval constraint on each of the ti 
instances of ai, then τmin satisfies this constraint on the 
action ai. In other words, for all pairs of events E1,E2 in 
Events(ai), if τ(E1[j]) − τ(E2[j]) ∈ [αa(E1,E2), βa(E1,E2)] for 
j=1,...,ti, then τmin(E1) − τmin(E2) ∈ [αa(E1,E2), β a(E1,E2)]. 
Hence if τ satisfies the inherent constraints on Aʹ′, then τmin 
satisfies the inherent constraints on A. 
 
Definition 5. A temporal planning problem <I,A,G> is 
positive if there are no negative fluents in the conditions of 
actions nor in the goal G. 
 
In this paper, we will only consider positive temporal 
planning problems <I,A,G>. It is well known that any 
planning problem can be transformed into an equivalent 
positive problem in linear time by the introduction of a 
new fluent notf for each positive fluent f (Ghallab, Nau, 
Traverso 2004). By this assumption, G and Cond(a) (for 
any action a) are composed of positive fluents. By 
convention, Add(a) and Del(a) are also composed 
exclusively of positive fluents. The initial state I, however, 
may contain negative fluents.  
 
We will need the following notion of establisher-
uniqueness in order to define our tractable class of 
temporal planning problems. This is equivalent to post-
uniqueness in SAS+ planning (Jonsson, Bäckström, 1998) 
restricted to Boolean variables but generalised so that it 
applies to a specific subset of the positive fluents. In the 
next section, we apply it to the set of subgoals S, those 
fluents which are essential to the realisation of the goal. 
 
Definition 6. A set of actions A={a1,...,an} is establisher-
unique relative to a set of positive fluents S if for all i ≠ j, 
Add(ai) ∩ Add(aj) ∩ S = ∅, i.e. no fluent of S can be 
established by two distinct actions of A. 
 
If a set of actions is establisher-unique relative to the set of 
subgoals of a problem, then we can determine in 
polynomial time the set of actions which are necessarily 
present in a temporal plan. There remains the problem of 
determining how many times each action must occur and 
then scheduling these action-instances in order to produce 
a valid temporal plan. 

Monotone Planning 
In this section, we introduce the notion of monotonicity of 
fluents. Together with establisher-uniqueness, the 
monotonicity of fluents is sufficient for a polynomial-time 
algorithm to exist for temporal planning. 

Definition 7. A fluent f is –monotone (relative to a positive 
temporal planning problem <I,A,G>) if, after being 
destroyed f is never re-established in any temporal plan for 
<I,A,G>. A fluent f is +monotone (relative to <I,A,G>) if, 
after having been established f is never destroyed in any 
temporal plan for <I,A,G>. A fluent is monotone (relative 
to <I,A,G>) if it is either + or −monotone (relative to 
<I,A,G>). 
 
Examples: In fairly obvious contexts, the following fluents 
are –monotone: alive (of a person), never-used, live (of a 
match), ready-to-eat (of a meal). Similarly, the following 
fluents are all +monotone: not-alive, burnt, dissolved, burst 
(of a balloon), eaten, cooked, graduated, born and extinct. 
The detection of the monotonicity of fluents is discussed in 
Section 4. 
 
Notation: If A is a set of actions, we use the notation 
Del(A) to represent the union of the sets Del(a) (for all 
actions a ∈ A). Add(A), Cond(A), Constr(A) are defined 
similarly. 
 
The following lemma follows trivially from Definition 7. 
 
Lemma 2. If f ∉ Add(A) ∩ Del(A), then f is both 
−monotone and +monotone relative to the positive 
temporal planning problem <I,A,G>.  
 
We now introduce three other sets of constraints which 
will only be applied to monotone fluents: 
 
−authorisation constraints on the positive fluent f and the 
set of actions A: for all ai,aj∈A, if f ∈ Del(aj) ∩ Cond(ai), 
then  τ(f →| ai)  <  τ(aj → ¬f). 
 
+authorisation constraints on the positive fluent f and the 
set of actions A: for all ai,aj∈A, if f ∈ Del(aj) ∩ Add(ai) ∩ 
(Cond(A) ∪ G), then  τ(aj → ¬f) < τ(ai → f). 
 
causality constraints on the positive fluent f and the set of 
actions A: for all ai,aj∈A, if f ∈ (Cond(aj) ∩ Add(ai))\I 
then  τ(ai → f) < τ(f |→ aj). 
 
Definition 8. A temporal plan for a positive temporal 
planning problem <I,A,G> is monotone if each pair of 
actions (in A) satisfies the +authorisation constraints for all 
+monotone fluents and the –authorisation constraints for 
all –monotone fluents. 
 
The following lemma follows directly from the definition 
of monotonicity along with the fact that a fluent cannot be 
simultaneously established and destroyed in a temporal 
plan. 
 

22



Lemma 3. Suppose that the positive fluent f is monotone 
relative to a positive temporal planning problem <I,A,G> 
and that actions ai,aj ∈ A are such that f ∈ Add(ai) ∩ 
Del(aj). If f is +monotone relative to this problem, then in 
all temporal plans including both ai and aj, τ(aj → ¬f) < 
τ(ai → f). If f is –monotone relative to this problem, then in 
all temporal plans including both ai and aj, τ(ai → f) < τ(aj 
→ ¬f). 
 
Proposition 1. If each fluent in Cond(A) is monotone 
relative to a positive temporal planning problem <I,A,G>, 
then all temporal plans for <I,A,G> are monotone.  
 
Proof: Let P be a temporal plan. Consider firstly a positive 
–monotone fluent f. We have to show that the 
−authorisation constraints are satisfied for f in P i.e. that f 
is not destroyed before (or at the same time as) it is 
required in P. But this must be the case since f cannot be 
re-established once it is destroyed. Consider secondly a 
positive +monotone fluent f. By Lemma 3, the 
+authorisation constraint is satisfied for f in P.  
 
Definition 9. Given a temporal planning problem <I,A,G>, 
the set of sub-goals is the minimum subset SG of 
Cond(A) ∪ G satisfying 

1. G  ⊆ SG 
2. for all a ∈ A, if Add(a) ∩ (SG\I) ≠ ∅, then 

Cond(a) ⊆ SG. 
The reduced set of actions is  Ar = {a ∈ A | Add(a) ∩ 
(SG\I) ≠ ∅}. 

 
We can clearly determine SG and then Ar in polynomial 
time and the result is unique. If each fluent in Cond(Ar) ∪ 
G is monotone, we say that a plan P for the temporal 
planning problem <I,A,G> satisfies the authorisation 
constraints if each −monotone fluent satisfies the 
−authorisation constraints and each +monotone fluent 
satisfies the +authorisation constraints (it is assumed that 
we know, for each fluent f ∈ Cond(Ar) ∪ G, whether f is + 
or –monotone.) 
 
Theorem 1.  Given a positive temporal planning problem 
<I,A,G>, where A is a set of actions such that Constr(A) 
are interval constraints, let SG and Ar be, respectively, the 
set of sub-goals and reduced set of actions. If the set of 
actions Ar is establisher-unique relative to SG, each fluent 
in Cond(Ar) ∪ G is monotone relative to <I,Ar,G> and 
each fluent in I ∩ (Cond(Ar) ∪ G) is –monotone relative to 
<I,Ar,G>, then <I,A,G> has a temporal plan P if and only if 
(1) G ⊆ (I\Del(Ar)) ∪ Add(Ar)  
(2) Cond(Ar) ⊆ I ∪ Add(Ar) 
(3) all fluents g ∈ G ∩ Del(Ar) ∩ Add(Ar) are +monotone 
relative to <I,Ar,G> 

(4) the set of authorisation, inherent, contradictory-effects 
and causality constraints has a solution over the set of 
actions Ar. 
 
Proof: (⇒) Ar is the set of actions which establish sub-
goals f in SG\I. SG = Cond(Ar) ∪ G. Since Ar is 
establisher-unique relative to SG, each sub-goal f ∈ SG\I 
has a unique action which establishes it. Hence each action 
in Ar must occur in the plan P. Furthermore, 
(Add(A)\Add(Ar)) ∩ (Cond(Ar)\I) = ∅ by Definition 9. It 
follows that (2) is a necessary condition for a temporal plan 
P to exist. 
    Let Pʹ′ be a version of P in which we only keep actions in 
Ar. Pʹ′ is also a valid temporal plan since no conditions of 
actions in Pʹ′ and no goals in G are established by any of 
the actions eliminated from P, except possibly if they are 
also in I. Such fluents f ∈ I ∩ (Cond(Ar) ∪ G) are –
monotone, by hypothesis, and hence cannot be established 
in P after being destroyed. It follows that any such f was 
already true when established in P by any action in A\ Ar.  
    (1) is clearly a necessary condition for Pʹ′ to be a valid 
temporal plan. Consider g ∈ G ∩ Del(Ar) ∩ Add(Ar). 
From Lemma 3, we can deduce that g cannot be 
−monotone, since g is true at the end of the execution of Pʹ′. 
Thus (3) holds. Let Pmin=<Ar,τmin> be the version of the 
temporal plan Pʹ′=<Ar,τ>  in which we only keep one 
instance of each action ai ∈ Ar (and no instances of the 
actions in A\Ar) and τmin is defined from τ by taking the 
first instance of each event in Events(ai), for each action ai 
∈ Ar, as described in the statement of Lemma 1. We will 
show that Pmin satisfies the authorisation, inherent, 
contradictory-effects and causality constraints.  
    By Proposition 1, the temporal plan Pʹ′ must be 
monotone. Since Pʹ′ is monotone and by the definition of a 
temporal plan, the authorisation constraints are all 
satisfied. Pʹ′ must also, by definition of a temporal plan, 
satisfy the inherent and contradictory-effects constraints. It 
follows from Lemma 1 that Pmin also satisfies the inherent 
constraints. Since the events in Pmin are simply a subset of 
the events in Pʹ′, Pmin necessarily satisfies both the 
authorisation constraints and the contradictory-effects 
constraints. 
    Consider a positive fluent f ∈ (Cond(aj) ∩ Add(ai))\I, 
where ai, aj ∈ Ar. Since aj ∈ Ar, we know that Add(aj) ∩ 
(SG\I) ≠ ∅ and hence that Cond(aj) ⊆ SG, by the definition 
of the set of sub-goals SG. Since f ∈ Cond(aj) we can 
deduce that f ∈ SG. In fact, f ∈ SG\I since we assume that 
f ∉ I. It follows that if f ∈ Add(a) for some a ∈ A, then a ∈ 
Ar. But we know that Ar is establisher-unique (relative to 
SG). Hence, since f ∈ Cond(aj) ⊆ Cond(Ar) and f ∈ 
Add(ai), f can be established by the single action a=ai in A. 
Since f ∉ I, the first establishment of f by an instance of ai 
must occur in Pʹ′ before f is first required by any instance of 
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aj. It follows that the causality constraint must be satisfied 
by f in Pmin. 
 
(⇐) Suppose that (1) and (2) are satisfied by Ar. Let P be a 
solution to the set of authorisation, inherent, contradictory-
effects and causality constraints over Ar. A solution to 
these constraints uses each action in Ar (in fact, it uses each 
action exactly once since it assigns one start time to each 
action in Ar). Consider any g ∈ G. By (1), g ∈ (I\Del(Ar)) 
∪ Add(Ar). If g ∉ Del(Ar), then g is necessarily true at the 
end of the execution of P. On the other hand, if g ∈ Del(aj) 
for some action aj ∈ Ar, then by (1) there is necessarily 
some action ai ∈ Ar which establishes g. Then, by (3) g is 
+monotone. Since P satisfies the +authorisation constraint 
for g, ai establishes g after all deletions of g. It follows that 
g is true at the end of the execution of P.  
    Consider some –monotone f ∈ Cond(aj) where aj ∈ Ar. 
Since the –authorisation constraint is satisfied for f in P, f 
can only be deleted in P after it is required by aj. Therefore, 
it only remains to show that f was either true in the initial 
state I or it was established some time before it is required 
by aj. By (2), f ∈ I ∪ Add(Ar), so we only need to consider 
the case in which f ∉ I but f ∈ Add(ai) for some action ai ∈ 
Ar. Since P satisfies the causality constraint, τ(ai → f) < 
τ(f |→ aj) and hence, during the execution of P, f is true 
when it is required by action aj. 
    Consider some f ∈ Cond(aj),  where  aj ∈ Ar,  which  is  
not –monotone. By the assumptions of the theorem, f is 
necessarily +monotone and f ∉ I. First, consider the case f 
∉ Del(Ar) ∩ Add(Ar). By Lemma 2, f is −monotone which 
contradicts our assumption. Therefore f ∈ Del(ak) ∩ 
Add(ai), for some ai, ak ∈ Ar, and recall that f ∉ I. Since 
the +authorisation constraint is satisfied for f in P, any 
destruction of f occurs before f is established by ai. It then 
follows from the causality constraint that the condition f 
will be true when required by aj during the execution of P. 
 
Theorem 2. Let ΠU+M be the class of positive temporal 
planning problems <I,A,G> in which A is establisher-
unique relative to Cond(A) ∪ G, all fluents in Cond(A) ∪ 
G are monotone relative to <I,A,G> and all fluents in I ∩ 
(Cond(A) ∪ G) are −monotone relative to <I,A,G>. Then 
ΠU+M can be solved in time O(n3) and space O(n2), where n 
is the total number of events in the actions in A. Indeed, we 
can even find a temporal plan with the minimum number 
of action-instances in the same complexity. 
 
Proof: This follows almost directly from Theorem 1 and 
the fact that the set of authorisation, inherent, 
contradictory-effects and causality constraints are STP≠ 
(Koubarakis, 1992). An instance of STP≠ can be solved in 
O(n3+k) time and O(n2+k) space (Gerevini, Cristani, 1997), 
where n is the number of variables and k the number of 
inequations (i.e. constraints of the form xj – xi ≠ d). Here, 

the only inequations are the contradictory-effects 
constraints of which there are at most n2, so k=O(n2). 
Furthermore, the calculation of SG and Ar is clearly O(n2). 
    Establisher-uniqueness tells us exactly which actions 
must belong to the temporal plan. Then, as shown in the 
proof of Theorem 1, the monotonicity assumptions imply 
that we only need one instance of each of these actions. It 
then trivially follows that we solve the optimal version of 
the temporal planning problem, in which the aim is to find 
a temporal plan with the minimum number of action-
instances, by solving the set of authorisation, inherent, 
contradictory-effects and causality constraints. 

Detecting Monotonicity of Fluents 
A class Π of instances of an NP-hard problem is generally 
considered tractable if it satisfies two conditions: (1) there 
is a polynomial-time algorithm to solve Π, and (2) there is 
a polynomial-time algorithm to recognise Π. It is clearly 
polynomial-time to detect whether all actions are 
establisher-unique. On the other hand, our very general 
definition of monotonicity of fluents implies that this is not 
the case for determining whether fluents are monotone.  
 
Theorem 3. Determining whether a fluent of a temporal 
planning problem <I,A,G> is monotone is PSPACE-hard if 
overlapping instances of the same action are not allowed in 
plans and EXPSPACE-complete if overlapping instances 
of the same action are allowed. 
 
Proof: Notice that if <I,A,G> has no solution, then all 
fluents are trivially monotone by Definition 7, since they 
are neither established nor destroyed in any plans. It is 
sufficient to add two new goal fluents f1,f2 and two new 
instantaneous actions to A, a1 which simply adds f1 and a2 
which has f1 as a condition, adds f2 and deletes f1 (a1 and a2 
being independent of all other fluents) to any problem 
<I,A,G>: f1 is monotone if and only if the resulting 
problem has no temporal plan. The theorem then follows 
from the fact that testing the existence of a temporal plan 
for a temporal planning problem <I,A,G> is PSPACE-hard 
if overlapping instances of the same action are not allowed 
in plans and EXPSPACE-complete if overlapping 
instances of the same action are allowed (Rintanen, 2007). 
 
We can nevertheless detect the monotonicity of certain 
fluents in polynomial time. There are several ways in 
which we might demonstrate that a fluent is monotone. In 
this section we give some examples which give rise to low-
order polynomial-time algorithms. Given Theorem 3, we 
clearly do not claim to be able to detect all monotone 
fluents with these rules. The set of temporal planning 
problems whose fluents can be proved +monotone or 
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−monotone by the rules given in this section, as required 
by the conditions of Theorem 2, represents a tractable 
class, since it can be both recognised and solved in 
polynomial time. 
 
Our first rule simply restates Lemma 2 from the previous 
section. 
 
Rule 1: If there are no actions a, aʹ′ ∈ Ar such that f ∈ 
Del(a) ∩ Add(aʹ′) then f is both +monotone and 
−monotone. 
 
It may also be possible to show that a fluent is monotone 
because of its links with other fluents which are already 
known to be monotone. Consider a simple example of a 
planning problem with the two fluents item_in_shop, 
item_for_sale and only two actions which have these 
fluents as conditions or effects: the action 
DISPLAY_ITEM which has a condition item_in_shop and 
establishes item_for_sale, and the action SELL_ITEM 
which has a condition item_for_sale and destroys both 
item_for_sale and item_in_shop. For simplicity, suppose 
that both actions are instantaneous. The fluent 
item_in_shop is –monotone since it can never be 
established. (It may or may not be present in the initial 
state.) We cannot apply Rule 1 to deduce the monotonicity 
of item_for_sale, since it can be both established and 
destroyed. However, since item_in_shop is –monotone, it 
is clear that DISPLAY_ITEM cannot be executed after 
SELL_ITEM. It then follows that item_for_sale is –
monotone. We formalise this basic idea in the following 
two rules. 
 
Rule 2: Suppose that the reduced set of actions Ar is 
establisher-unique relative to the set of sub-goals SG (as 
defined by Definition 9) and let af denote the unique action 
that establishes fluent f ∈ SG. If for all a ∈ Ar such that f ∈ 
Del(a),  
either ∃ a −monotone fluent p ∈ Del(a) ∩ Cond(af) such 
that  τ(a → ¬p) − τ(a → ¬f) ≤ τ(p →| af) − τ(af → f), 
or ∃ a −monotone fluent p ∈ Del(a) ∩ Add(af) such that  
 τ(a → ¬p) − τ(a → ¬f) ≤ τ(af → p) − τ(af → f), 
or ∃ a +monotone fluent p ∈ Add(a) ∩ Del(af) such that  
 τ(a → p) − τ(a → ¬f) ≤ τ(af → ¬p) − τ(af → f), 
or ∃ a +monotone fluent p ∈ (Cond(a) ∩ Del(af))\I such  
 that τ(p →| a) − τ(a → ¬f) ≤ τ(af → ¬p) − τ(af → f), 
then f is −monotone. 
 
Rule 3: Suppose that set of actions Ar is establisher-unique 
relative to the set of sub-goals SG and let af denote the 
unique action that establishes fluent f ∈ SG. If for all a ∈ 
Ar such that f ∈ Del(a),  
either ∃ a −monotone fluent p ∈ Cond(a) ∩ Del(af) such 
that  τ(af → ¬p) − τ(af → f) ≤ τ(p →| a) − τ(a → ¬f),  

or ∃ a −monotone fluent p ∈ Add(a) ∩ Del(af) such that  
 τ(af → ¬p) − τ(af → f) ≤ τ(a → p) − τ(a → ¬f), 
or ∃ a +monotone fluent p ∈ Del(a) ∩ Add(af) such that  
 τ(af → p) − τ(af → f) ≤ τ(a → ¬p) − τ(a → ¬f), 
or ∃ a +monotone fluent p ∈ (Del(a) ∩ Cond(af))\I such  
 that τ(p →| af) − τ(af → f) ≤ τ(a → ¬p) − τ(a → ¬f), 
then f is +monotone. 
 
Proposition 2. Rules 2 and 3 are valid. 
 
Proof: We only give the proof of the validity of Rule 2, 
since the proof of Rule 3 is entirely similar. Suppose that 
the premises of Rule 2 hold. Consider an arbitrary fluent f 
∈ SG and let af denote the unique action that establishes 
fluent f ∈ SG. Suppose that f ∈ Del(a) and there is a 
−monotone fluent p ∈ Del(a) ∩ Cond(af) such that  τ(a → 
¬p) − τ(a → ¬f) ≤ τ(p →| af) − τ(af → f). But, since p is 
−monotone, we know that τ(p →| af) < τ(a → ¬p). It 
follows directly that τ(af → f) < τ(a → ¬f). By a similar 
argument for the other three cases listed in Rule 2, we can 
deduce that for all actions a ∈ Ar such that f ∈ Del(a), τ(af 
→ f) < τ(a → ¬f). Since af is the unique action that 
establishes f, we can deduce that f can never be established 
after it is destroyed and hence is −monotone. 
 
The following theorem now follows from the fact that 
Rules 1,2 and 3 can clearly be applied until convergence in 
polynomial time. 
 
Theorem 4. Let Π be the class of positive temporal 
planning problems <I,A,G> in which A is establisher-
unique relative to Cond(A) ∪ G, all fluents in Cond(A) ∪ 
G are monotone and all fluents in I ∩ (Cond(A) ∪ G) are 
−monotone, where monotonicity of all fluents can be 
detected by applying Rules 1, 2 and 3 until convergence. 
Then Π is tractable. 

An Example of Chemical Process Planning 
The Temporal Chemical Process domain involves different 
kinds of operations on chemicals that are performed in the 
industrial production of compounds. For example, there is 
an operator that can activate a source of raw material. 
Then, this raw material can be catalysed in two ways to 
synthesize two different products. These products can be 
mixed and reacted using the raw material once again to 
produce the desired compound. This process is illustrated 
by the temporal plan given in the figure. We represent non-
instantaneous actions by a rectangle. The duration of an 
action is given in square brackets after the name of the 
action. Conditions are written above an action, and effects 
below. 
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The initial state and the goal of corresponding planning 
problem are: 
I={Available(water),Available(s),Available(c1), 
   Available(c2)} 

G={Reacted(p1,p2)} 

Given the temporal planning problem <I,A,G>, where A is 
the set of all actions from the Temporal Chemical Process 
domain, the set of sub-goals SG and the reduced set of 
actions Ar are: 
SG={Reacted(p1,p2), Reacting(s), Mixed(p1,p2), 
Available(water), Available(s), End-Catalyze(p1), 
End-Catalyze(p1), Synthesized(p2), 
Synthesized(p2), Available(c1), Available(c2), 
Catalyzing(p1,c1), Catalyzing(p2,c2)} 

Ar={REACT(p1,p2,s), ACTIVATE(s), MIX(p1,p2), 
CATALYZE(p1,s,c1), SYNTHESIZE(p1,c1), 
CATALYZE(p2,s,c2), SYNTHESIZE(p2,c2)} 

For all i ≠ j such that {ai, aj} ⊂ Ar we have 
Add(ai) ∩ Add(aj) ∩ SG = ∅. Hence, the set of actions Ar 
is establisher-unique relative to SG. We can immediately 
remark that fluent Available(water) is never added or 
destroyed, fluents Reacted(p1,p2), Mixed(p1,p2), End-

Catalyze(p1), Synthesized(p1), End-Catalyze(p2), 
Synthesized(p2) are only added, and fluents 
Available(s), Available(c1), Available(c2) are only 
destroyed. Thus, none of these fluents are in Add(Ar) ∩ 
Del(Ar), and by Rule 1, they are –monotone. Using Rule 2, 
we can then prove that Reacting(s) is –monotone. af = 

ACTIVATE(s) is the unique action that establishes fluent f = 
Reacting(s) ∈ SG. a = ACTIVATE(s) is also the unique 
action that destroys f = Reacting(s) and for the –
monotone fluent p = Available(s) ∈ Del(a) ∩ Cond(af), 
we have τ(a → ¬p) − τ(a → ¬f) ≤ τ(p →| af) − τ(af → f). 
Therefore, by Rule 2, Reacting(s) is –monotone. By a 
similar argument, again using Rule 2, we can prove that 
Catalyzing(p1,c1) and Catalyzing(p2,c2) are –
monotone. 
 
The set of actions Ar is establisher-unique relative to SG, 
each fluent in Cond(Ar) ∪ G is monotone and each fluent 
in I ∩ (Cond(Ar) ∪ G) is –monotone relative to <I,Ar,G>. 
Moreover, 
(1) G ⊆ (I\Del(Ar)) ∪ Add(Ar)  
(2) Cond(Ar) ⊆ I ∪ Add(Ar) 
(3) all fluents g ∈ G ∩ Del(Ar) ∩ Add(Ar) are +monotone 
relative to <I,Ar,G> (trivially, since this set is empty) 
(4) There are no contradictory effects nor +authorisation 
constraints. The remaining set of constraints has a solution 
over the set of actions Ar. 
Thus, by Theorem 1, the problem <I,A,G> has a solution-
plan, shown in the figure (causality constraints are 
represented by bold arrows, and –authorisation constraints 
by dotted arrows), and, by Theorem 2, this solution can be 
found in polynomial time. 
 

Available(s) 

Available(water) 

Mixed(p1,p2) 

ACTIVATE(s)[22] 

CATALYZE(p1,s,c1)[8] 

MIX(p1,p2)[5] 

SYNTHESIZE(p1,c1)[6] 
REACT(p1,p2,s)[5] 

Catalyzing(p1,c1) ¬Catalyzing(p1,c1) 
End-Catalyze(p1) 

Reacting(s) 

Reacting(s) 

Catalyzing(p1,c1) 

Synthesized(p1) 

CATALYZE(p2,s,c2)[8] 

SYNTHESIZE(p2,c2)[6] 

Catalyzing(p2,c2) ¬Catalyzing(p2,c2) 
End-Catalyze(p2) 

Reacting(s) 

Synthesized(p2) 

Catalyzing(p2,c2) 

End-Catalyze(p1) 

End-Catalyze(p2) 
Synthesized(p1) 

Synthesized(p2) 

Mixed(p1,p2) 

Reacted(p1,p2) 

Reacting(s) 

¬Available(s) 

¬Reacting(s) 

¬Available(c1) 

Available(c2) 

¬Available(c2) 

Available(c1) 
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Many other temporal planning problems from the chemical 
industry can also be solved in polynomial time in a similar 
manner. For example, acetylene is a raw material derived 
from calcium carbide using water. Then, a vinyl chloride 
monomer is produced from acetylene and hydrogen 
chloride using mercuric chloride as a catalyst. PVC is then 
produced by polymerization. Other examples occur in the 
pharmaceutical industry in the production of drugs (such as 
paracetamol or ibuprofen) and, in general, in many 
processes requiring the production and combination of 
several molecules, given that there is a unique way to 
obtain them (often imposed by industrial, economical or 
ecological reasons). 

Discussion 
The results in this paper can also be applied to non-
temporal planning since, for example, a classical STRIPS 
planning problem can be modelled as a temporal planning 
problem in which all actions are instantaneous. It is worth 
pointing out that the tractable class of classical planning 
problems in which all actions are establisher-unique and all 
fluents are detectable as (both + and −) monotone by 
applying only Rule 1, is covered by the PA tractable class 
of (Jonsson, Bäckström, 1998). 
 
For simplicity of presentation and for conformity with 
PDDL2.1, we have considered that inherent constraints 
between the times of the events within the same action-
instance are all interval constraints. We can, however, 
generalise our tractable classes to allow for arbitrary min-
closed constraints since this was the only property required 
of the constraints in the proof of Theorem 1. An example 
of such a constraint C(x,y) is a binary interval constraint 
with variable bounds: y-x ∈ [f(x,y),g(x,y)], which is min-
closed provided that f(x,y) is a monotone increasing 
function of x and g(x,y) is a monotone decreasing function 
of y. Another example of a min-closed constraint is the 
ternary constraint (x+y)/2 ≤ z, which could be used, for 
example, to impose that an effect takes place in the latter 
half of an action. 
 
An important aspect of temporal planning, which is absent 
from non-temporal planning, is that certain temporal 
planning problems, known as temporally-expressive 
problems, require concurrency of actions in order to be 
solved (Cushing et al. 2007). A typical example of a 
temporally-expressive problem is cooking: several 
ingredients or dishes must be cooked simultaneously in 
order to be ready at the same moment. In industrial 
environments, concurrency of actions is often used to keep 
storage space and turn-around times within given limits. 
(Cooper et al. 2010) identified a subclass of temporally 

expressive problems, known as temporally-cyclic, which 
require cyclically-dependent sets of actions in order to be 
solved. A simple example of this type of problem is the 
construction of two pieces of software, written by two 
different subcontractors, each needing to know the 
specification of the other program in order to correctly 
build the interface between the two programs. The 
tractable class of temporal planning problems described in 
Theorem 4 contains both temporally-expressive and 
temporally-cyclic problems. This follows from that fact 
that, as illustrated by the example given in (Cooper et al. 
2010) it is possible to construct an example of a 
temporally-cyclic problem which is establisher-unique and 
in which no fluents are destroyed by any action (and hence, 
by Lemma 2, all fluents are both + and  −monotone). The 
chemical process planning problem given in Section 5 is 
another example of a problem which is temporally-
expressive since concurrency of actions is required in any 
solution. 

Conclusion 
We have presented a class of temporal planning problems 
which can be solved in polynomial time. We have 
identified a number of possible applications in the 
chemical industry. Further research is required to discover 
other possible application areas and, on a theoretical level, 
to uncover other rules to prove the monotonicity of fluents. 
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