
How to Relax a Bisimulation?

Michael Katz and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{katz, hoffmann}@cs.uni-saarland.de

Malte Helmert
University of Basel
Basel, Switzerland

malte.helmert@unibas.ch

Abstract
Merge-and-shrink abstraction (M&S) is an approach for con-
structing admissible heuristic functions for cost-optimal plan-
ning. It enables the targeted design of abstractions, by allow-
ing to choose individual pairs of (abstract) states to aggre-
gate into one. A key question is how to actually make these
choices, so as to obtain an informed heuristic at reasonable
computational cost. Recent work has addressed this via the
well-known notion of bisimulation. When aggregating only
bisimilar states – essentially, states whose behavior is iden-
tical under every planning operator – M&S yields a perfect
heuristic. However, bisimulations are typically exponentially
large. Thus we must relax the bisimulation criterion, so that
it applies to more state pairs, and yields smaller abstractions.
We herein devise a fine-grained method for doing so. We re-
strict the bisimulation criterion to consider only a subset K
of the planning operators. We show that, if K is chosen ap-
propriately, then M&S still yields a perfect heuristic, while
abstraction size may decrease exponentially. Designing prac-
tical approximations for K, we obtain M&S heuristics that
are competitive with the state of the art.

Introduction
Heuristic forward state-space search with A∗ and admissi-
ble heuristics is a state of the art approach to cost-optimal
domain-independent planning. The main research question
in this area is how to derive the heuristic automatically. That
is what we contribute to herein. We design new variants of
the merge-and-shrink heuristic, short M&S, whose previous
variant (Nissim, Hoffmann, and Helmert 2011b) won a 2nd
price in the optimal planning track of the 2011 International
Planning Competition (IPC), and was part of the 1st-prize
winning portfolio (Helmert et al. 2011).

M&S uses solution cost in a smaller, abstract state space
to yield an admissible heuristic. The abstract state space is
built incrementally, starting with a set of atomic abstractions
corresponding to individual variables, then iteratively merg-
ing two abstractions (replacing them with their synchronized
product) and shrinking them (aggregating pairs of states into
one). In this way, M&S allows to select individual pairs of
(abstract) states to aggregate. A key question, that governs
both the computational effort taken and the quality of the re-
sulting heuristic, is how to actually select these state pairs.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

M&S was first introduced for planning by Helmert et al.
(2007), with only a rather naı̈ve method for selecting the
state pairs to aggregate. Nissim et al. (2011a) more re-
cently addressed this via the notion of bisimulation, adopted
from the verification literature (e. g., (Milner 1990)). Two
states s, t are bisimilar, roughly speaking, if every transi-
tion label (every planning operator) leads into equivalent ab-
stract states from s and t. If one aggregates only bisimilar
states, then the behavior of the transition system (the pos-
sible paths) remains unchanged. This property is invariant
over both the merging and shrinking steps in M&S, and thus
the resulting heuristic is guaranteed to be perfect. Unfor-
tunately, bisimulations are exponentially big even in trivial
examples, including benchmarks like, for example, Gripper.

A key observation made by Nissim et al. is that bisimula-
tion is unnecessarily strict for our purposes. In verification,
paths must be preserved because the to-be-verified property
shall be checked within the abstracted system. However,
here we only want to compute solution costs. Thus it suffices
to preserve not the actual paths, but only their cost. Nissim
et al. design a label reduction technique, that changes the
path inscriptions (the associated planning operators) but not
their costs. This leads to polynomial behavior in Gripper
and some other cases, but the resulting abstractions are still
much too large in most planning benchmarks.

Nissim et al. address this by (informally) introducing what
they call greedy bisimulation, which “catches” only a sub-
set of the transitions: s, t are considered bisimilar already if
every transition decreasing remaining cost leads into equiv-
alent abstract states from s and t. That is, “bad transitions”
– those increasing remaining cost – are ignored. This is a
lossy relaxation to bisimulation, i. e., a simplification that
results in smaller abstractions but may (and usually does)
yield an imperfect heuristic in M&S: “bad transition” is de-
fined locally, relative to the current abstraction, which does
not imply that the transition is globally bad. For example,
driving a truck away from its own goal may be beneficial
for transporting a package. Under such (very common) be-
havior, greedy bisimulation is not invariant across the M&S
merging step, because the relevant transitions are not caught.

We herein adopt the same approach for relaxing bisimu-
lation – we catch a subset of the transitions – but we take
a different stance for determining that subset. We first se-
lect a subset of labels (operators). Then, throughout M&S,

101

Proceedings of the Twenty-Second International Conference on Automated Planning and Scheduling

we catch the transitions bearing these labels. This simple
technique warrants that the thus-relaxed bisimulation is in-
variant across M&S. Thanks to this, to guarantee a quality
property φ of the final M&S heuristic, it suffices to select a
label subset guaranteeing φ when catching these labels in a
bisimulation of the (global) state space.

We consider two properties φ: (A) obtaining a perfect
heuristic; (B) guaranteeing that A∗ will not have to search.
(A) is warranted by selecting all remaining-cost decreasing
operators in the (global) state space. (B) is a generalization
that only requires to catch a subset of these operators – those
within a certain radius around the goal.

In practice, it is not feasible to compute the label sets just
described. To evaluate their potential in principle, we prove
that they may decrease abstraction size exponentially, and
we run experiments on IPC benchmarks small enough to de-
termine these labels. To evaluate the potential in practice,
we design approximation methods. Running these on the
full IPC benchmarks, we establish that the resulting M&S
heuristics are competitive with the state of the art, and can
improve coverage in some domains.

For space reasons, we omit many details. Full details are
available in a TR (Katz, Hoffmann, and Helmert 2012).

Background
A planning task is a 4-tuple Π = (V,O, s0, s?). V is a
finite set of variables v, each v ∈ V associated with a finite
domain Dv . A partial state over V is a function s on a
subset Vs of V , so that s(v) ∈ Dv for all v ∈ Vs; s is a state
if Vs = V . The initial state s0 is a state. The goal s? is a
partial state. O is a finite set of operators, each being a pair
(pre, eff) of partial states, called its precondition and effect.
Each o ∈ O is also associated with its cost c(o) ∈ R+

0 (note
that 0-cost operators are allowed). A special case we will
mention are uniform costs, where c(o) = 1 for all o.

The semantics of planning tasks are defined via their state
spaces, which are (labeled) transition systems. Such a sys-
tem is a 5-tuple Θ = (S,L, T, s0, S?) where S is a finite
set of states, L is a finite set of transition labels each as-
sociated with a label cost c(l) ∈ R+

0 , T ⊆ S × L × S is
a set of transitions, s0 ∈ S is the start state, and S? ⊆ S
is the set of solution states. We define the remaining cost
h∗ : S → R+

0 as the minimal cost of any path (the sum of
costs of the labels on the path), in Θ, from a given state s to
any s? ∈ S?, or h∗(s) =∞ if there is no such path.

In the state space of a planning task, S is the set of all
states. The start state s0 is the initial state of the task, and
s ∈ S? if s? ⊆ s. The transition labels L are the operators
O, and (s, (pre, eff), s′) ∈ T if s complies with pre, and
s′(v) = eff(v) for all v ∈ Veff while s′(v) = s(v) for all
v ∈ V \ Veff. A plan is a path from s0 to any s? ∈ S?. The
plan is optimal iff its summed-up cost is equal to h∗(s0).

A heuristic is a function h : S → R+
0 ∪{∞}. The heuris-

tic is admissible iff, for every s ∈ S, h(s) ≤ h∗(s); it is
consistent iff, for every (s, l, s′) ∈ T , h(s) ≤ h(s′) + c(l);
it is perfect iff h coincides with h∗. The A∗ algorithm ex-
pands states by increasing value of g(s) + h(s) where g(s)
is the accumulated cost on the path to s. If h is admissi-

ble, then A∗ returns an optimal solution. If h is consistent
then A∗ does not need to re-open any nodes. If h is perfect
then, as will be detailed later, A∗ “does not need to search”;
we will also identify a more general criterion sufficient to
achieve this last property.

How to automatically compute a heuristic, given a plan-
ning task as input? Our approach is based on designing an
abstraction. This is a function α mapping S to a set of ab-
stract states Sα. The abstract state space Θα is defined
as (Sα, L, Tα, sα0 , S

α
?), where Tα := {(α(s), l, α(s′)) |

(s, l, s′) ∈ T}, sα0 := α(s0), and Sα? := {α(s?) | s? ∈ S?}.
The abstraction heuristic hα maps each s ∈ S to the re-
maining cost of α(s) in Θα; hα is admissible and consis-
tent. We will sometimes consider the induced equivalence
relation ∼α, defined by setting s ∼α t iff α(s) = α(t).

How to choose a good α in general? Inspired by work in
the context of model checking automata networks (Dräger,
Finkbeiner, and Podelski 2006), Helmert et al. (2007) pro-
pose M&S abstraction as a method allowing fine-grained
abstraction design, selecting individual pairs of (abstract)
states to aggregate. The approach builds the abstraction in an
incremental fashion, iterating between merging and shrink-
ing steps. In detail, an abstraction α is an M&S abstraction
over V ⊆ V if it can be constructed using these rules:

(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over V and γ is a function

on Sβ , then γ ◦ β is an M&S abstraction over V .
(iii) If α1 and α2 are M&S abstractions over disjoint sets

V1 and V2, then α1 ⊗ α2 is an M&S abstraction over
V1 ∪ V2.

Rule (i) allows to start from atomic projections. These
are simple abstractions π{v} (also written πv) mapping each
state s ∈ S to the value of one selected variable v. Rule (ii),
the shrinking step, allows to iteratively aggregate an arbi-
trary number of state pairs, in abstraction β. Formally, this
simply means to apply an additional abstraction γ to the im-
age of β. In rule (iii), the merging step, the merged abstrac-
tion α1⊗α2 is defined by (α1⊗α2)(s) := (α1(s), α2(s)).1

The above defines how to construct the abstraction α, but
not how to actually compute the abstraction heuristic hα.
For that computation, the constraint V1 ∩ V2 = ∅ in rule (iii)
is important. While designing α, we maintain also the ab-
stract state space Θα. This is trivial for rules (i) and (ii), but
is a bit tricky for rule (iii). We need to compute the abstract
state space Θα1⊗α2 of α1 ⊗ α2, based on the abstract state
spaces Θα1 and Θα2 computed (inductively) for α1 and α2

beforehand. We do so by forming the synchronized prod-
uct Θα1 ⊗Θα2 . This is a standard operation, its state space
being Sα1 × Sα2 , with a transition from (s1, s2) to (s′1, s

′
2)

via label l iff (s1, l, s
′
1) ∈ Tα1 and (s2, l, s

′
2) ∈ Tα2 . As

Helmert et al. (2007) show, the constraint V1 ∩ V2 = ∅ is
sufficient (and, in general, necessary) to ensure that this is
correct, i. e., that Θα1 ⊗Θα2 = Θα1⊗α2 .

1Note that M&S abstractions are constructed over subsets V of
the variables V . Indeed, in practice, there is no need to incorporate
all variables. Like the previous work on M&S, we do not make
use of this possibility: all M&S abstractions in our experiments are
over the full set of variables V = V .

102

To implement M&S in practice, we need a merging strat-
egy deciding which abstractions to merge in (iii), and a
shrinking strategy deciding which (and how many) states
to aggregate in (ii). Throughout this paper, we use the same
merging strategy as the most recent work on M&S (Nissim,
Hoffmann, and Helmert 2011a). What we investigate is the
shrinking strategy. Helmert et al. (2007) proposed a strategy
that leaves remaining cost intact within the current abstrac-
tion. This is done simply by not aggregating states whose re-
maining cost differs. The issue with this is that it preserves
h∗ locally only. For example, in a transportation domain,
if we consider only the position of a truck, then any states
s, t equally distant from the truck’s target position can be
aggregated: locally, the difference is irrelevant. Globally,
however, there are transportable objects to which the differ-
ence in truck positions does matter, and thus aggregating s
and t results in information loss.

We need a shrinking strategy that takes into account the
global effect of state aggregations. Nissim et al. (2011a)
address this via the well-known notion of bisimulation, a
criterion under which an abstraction preserves exactly the
behavior (the transition paths) of the original system:
Definition 1 Let Θ = (S,L, T, s0, S?) be a transition sys-
tem. An equivalence relation ∼ on S is a bisimulation for
Θ if s ∼ t implies that: (1) either s, t ∈ S? or s, t 6∈ S?;
(2) for every transition label l ∈ L, {[s′] | (s, l, s′) ∈ T} =
{[t′] | (t, l, t′) ∈ T}.

As usual, [s] for a state s denotes the equivalence class of
s. Intuitively, s ∼ t only if (1) s and t agree on the status of
the goal, and (2) whatever operator applies to s or t applies
to both, and leads into equivalent states. An abstraction α is
a bisimulation iff the induced equivalence relation ∼α is.

Note that there are potentially many bisimulations. For
example, the identity relation, where [s] = {s}, is one. A
bisimulation ∼′ is coarser than another bisimulation ∼ if
∼′⊇∼, i. e., if every pair of states equivalent under ∼ is
also equivalent under ∼′. A unique coarsest bisimulation
always exists, and can be computed efficiently based on an
explicit representation of Θ (Milner 1990). Thus the pro-
posed shrinking strategy is to reduce, in any application of
rule (ii), Θβ to a coarsest bisimulation of itself.

It is easy to see that the bisimulation property is invariant
over merging and shrinking steps. We spell out the claim for
merging steps since we will generalize this result later on:2

Lemma 1 (Nissim, Hoffmann, and Helmert 2011a) Let Θ1

and Θ2 be transition systems, and let α1 and α2 be abstrac-
tions for Θ1 and Θ2 respectively. If α1 is a bisimulation
for Θ1, and α2 is a bisimulation for Θ2, then α1 ⊗ α2 is a
bisimulation for Θ1 ⊗Θ2.
Proof sketch: For all (s1, s2) ∼α1⊗α2 (t1, t2) in Θ1 ⊗Θ2,
and all labels l, we need {[(s′1, s′2)] | ((s1, s2), l, (s′1, s

′
2)) ∈

T} = {[(t′1, t′2)] | ((t1, t2), l, (t′1, t
′
2)) ∈ T}. This follows

directly by definition of Θ1⊗Θ2 and the prerequisites {[s′i] |
(si, l, s

′
i) ∈ Ti} = {[t′i] | (ti, l, t′i) ∈ Ti}.

2Note the slight abuse of notation here: αi is a function on Θi,
not on Θ1⊗Θ2; the precise claim is that α1⊗α2 is a bisimulation
for Θ1 ⊗ Θ2, where α1(s1, s2) := α1(s1) and α2(s1, s2) :=
α2(s2). We omit this distinction to avoid notational clutter.

In other words, if we combine bisimulations for two
transition systems, then we obtain a bisimulation for the
synchronization of these systems. Due to this invariance
property, bisimulation gets preserved throughout M&S: if
we build an M&S abstraction α over the entire variable
set V = {v1, . . . , vn}, and we always shrink by coarsest
bisimulation, then the abstraction will be a bisimulation for
Θπv1 ⊗ · · · ⊗ Θπvn . The latter is isomorphic to the global
state space (Helmert, Haslum, and Hoffmann 2007), thus α
is a bisimulation for the global state space. Since bisimula-
tion preserves transition paths exactly, this implies that hα is
a perfect heuristic (see the proof of Lemma 2 below).

As previously discussed, bisimulations are exponentially
big even in trivial examples. A key point for improving on
this is that, in contrast to verification where bisimulation is
traditionally being used, we need to preserve not the solu-
tions but only their cost. Nissim et al. (2011a) define a label
reduction technique to this end, the details of which are not
important here (we do use it in our implementation). What
is important is that, even with the label reduction, in most
benchmarks the resulting abstractions are still huge. The
way out we employ here is to relax Definition 1 by applying
constraint (2) to only a subset of the transitions in T – by
catching this transition subset, as we will say from now on.
We will show that this can be done while still computing a
perfect heuristic, provided we catch the right transitions.

Nissim et al. already mentioned an approach – “greedy
bisimulation”– catching a transition subset. The approach
preserves h∗ locally (in the current abstraction), but not
globally. We next revisit it, then we introduce new tech-
niques that preserve h∗ globally.

Greedy Bisimulation
Nissim et al. propose greedy bisimulation as a more ap-
proximate shrinking strategy in practice, accepting its lack
of global foresight. They introduce the concept informally
only; formally, it is defined as follows:

Definition 2 (Nissim, Hoffmann, and Helmert 2011a) Let
Θ = (S,L, T, s0, S?) be a transition system. An equiv-
alence relation ∼ on S is a greedy bisimulation for Θ if
it is a bisimulation for the system (S,L, TG, s0, S?) where
TG = {(s, l, s′) | (s, l, s′) ∈ T, h∗(s′) ≤ h∗(s)}.

In other words, greedy bisimulation differs from bisim-
ulation in that it catches only the transitions not increasing
remaining cost. Since a greedy bisimulation is a bisimu-
lation on a modified transition system, it is obvious that a
unique coarsest greedy bisimulation still exists and can be
computed efficiently. More interestingly, greedy bisimula-
tion still preserves (local) remaining cost:

Lemma 2 Let Θ be a transition system, and let α be a
greedy bisimulation for Θ. Then hα is perfect.

Proof sketch: We first show that any full bisimulation yields
perfect heuristics. Say that (A, l, A′) starts a cheapest ab-
stract solution for [s] = A. By definition of the abstract tran-
sition system, there exists a transition (t, l, t′) ∈ T where
[t] = A and [t′] = A′. By Definition 1 (2), we have a tran-
sition (s, l, s′) in Θ so that s′ ∈ [t′] = A′. Thus the abstract

103

plan step has a real correspondence in the state s at hand.
Iterating the argument yields, with Definition 1 (1), a real
solution path with the same cost.

Next we show that h∗ = hG, where hG denotes remaining
cost in ΘG = (S,L, TG, s0, S?). Removing transitions can
only increase the remaining cost, so h∗ ≤ hG. On the other
hand, any optimal solution path in T is a solution path in
TG, thus h∗ ≥ hG as desired.

Now, let h′ be the heuristic function defined as optimal
solution cost in the quotient system ΘG/α. Since α is a
bisimulation of ΘG, with the above we have h′ = hG. It
thus suffices to show that hα = h′. That is the case because
hα can be obtained by adding, to ΘG/α, all abstract transi-
tions corresponding to T \ TG: by construction, each added
transition leads towards an abstract state with strictly greater
abstract cost, so these costs remain the same.

The bad news, as indicated, is that remaining costs are not
preserved at the global level. Say our shrinking strategy
is to reduce, in any application of rule (ii), Θβ to a coars-
est greedy bisimulation of itself. Then, in difference to full
bisimulation as per Definition 1, the final abstraction is not
guaranteed to be a greedy bisimulation for the global state
space. That is because greedy bisimulation is not invariant
over merging steps, i. e., there is no equivalent of Lemma 1:
a greedy bisimulation for Θ1 does not catch transitions t that
increase (local) remaining cost in Θ1, however such t may
decrease (global) remaining cost in Θ1 ⊗ Θ2. A simple ex-
ample is that where Θ1 is a truck, Θ2 is a package, and t
drives the truck away from its own goal – which globally is
a good idea in order to transport the package.

Not being invariant across M&S does not, by itself, im-
ply that greedy bisimulation cannot result in useful heuristic
functions in practice. Still, its unpredictable global effect
is undesirable. And anyhow, greedy bisimulation actually
catches more transitions than needed to preserve local re-
maining cost. We now introduce techniques addressing both.

Catching Relevant Labels
Instead of catching individual transitions with a criterion lo-
cal to the current abstraction, we now devise techniques that
catch them based on a label subset that we fix, with a global
criterion, at the very beginning. Throughout the M&S pro-
cess, we catch a transition iff its label is inside this subset.3

We next show that such label-catching bisimulations are
invariant in M&S. We then define a subset of labels catching
which guarantees a perfect heuristic. Subsequently, we show
how this label subset can be further diminished, while still
guaranteeing that A∗ will terminate without any search.

Catching Label Subsets
Definition 3 Let Θ = (S,L, T, s0, S?) be a transition sys-
tem, and let K be a set of labels. An equivalence re-
lation ∼ on S is a K-catching bisimulation for Θ if it
is a bisimulation for the system (S,K, TK , s0, S?) where
TK = {(s, l, s′) | (s, l, s′) ∈ T, l ∈ K}.

3There is an interaction between “catching” labels, and “reduc-
ing” them as proposed by Nissim et al. (2011a). We do not reduce
l and l′ to the same label if l is caught but l′ is not.

As indicated, K-catching bisimulation is invariant over
M&S rule (iii), i. e., we can generalize Lemma 1 as follows:
Lemma 3 Let Θ1 and Θ2 be transition systems, let K be a
set of labels, and let α1 and α2 be abstractions for Θ1 and
Θ2 respectively. If α1 is a K-catching bisimulation for Θ1,
and α2 is a K-catching bisimulation for Θ2, then α1 ⊗ α2

is a K-catching bisimulation for Θ1 ⊗Θ2.
Proof sketch: For all (s1, s2) ∼α1⊗α2 (t1, t2), we need
{[(s′1, s′2)] | ((s1, s2), l, (s′1, s

′
2)) ∈ T, l ∈ K} =

{[(t′1, t′2)] | ((t1, t2), l, (t′1, t
′
2)) ∈ T, l ∈ K}. As in

Lemma 1, this follows by definition and prerequisites.

Thus we get invariance over the entire M&S process:
Lemma 4 Let Π be a planning task with variables V and
state space Θ, and let K be a set of labels. Let α be an
M&S abstraction over V where, in any application of rule
(ii), γ is a K-catching bisimulation for Θβ . Then α is a
K-catching bisimulation for Θ.
Proof: Follows from Lemma 3 and the simple observations
that the atomic M&S abstractions as per rule (i) are K-
catching bisimulations, and that K-catching bisimulation is
invariant over nested applications of rule (ii).

Catching a smaller label set can only decrease abstraction
size, and can only increase the error made by the heuristic:
Lemma 5 Let Θ be a transition system, and let K ′ ⊆ K be
sets of labels. Then the coarsestK ′-catching bisimulation is
coarser than the coarsest K-catching bisimulation.
Proof: Denoting the coarsest K ′-catching (K-catching)
bisimulation with ∼K′ (∼K), we need that s ∼K t im-
plies s ∼K′ t. This holds because {[s′i] | (si, l, s

′
i) ∈

T, l ∈ K} = {[t′i] | (ti, l, t
′
i) ∈ T, l ∈ K} implies {[s′i] |

(si, l, s
′
i) ∈ T, l ∈ K ′} = {[t′i] | (ti, l, t′i) ∈ T, l ∈ K ′}.

Globally Relevant Labels
We now employ an idea similar to that of Nissim et al.’s
greedy bisimulation, except that we select the transitions
based on a global view, and a little more carefully:4

Definition 4 Let Π be a planning task with state space Θ =
(S,L, T, s0, S?). A label l ∈ L is globally relevant if there
exists (s, l, s′) ∈ T such that h∗(s′) + c(l) = h∗(s).
The transitions caught by this definition differ from those
of Definition 2 in that (A) we identify them via their labels,
rather than individually; (B) they refer to the global state
space, not to the local abstraction; and (C) we do not catch
transitions whose own cost exceeds the reduction in h∗. (A)
is important to obtain invariance in M&S, as just discussed.
(B) is needed because the global state space is what we wish
to approximate. (C) suffices to obtain a perfect heuristic:

4In this definition, S and T (as defined in the background) in-
clude states not reachable from s0. This is because, during M&S,
reachability is over-approximated. If we do not catch the respec-
tive labels, then the abstraction is done on a transition system larger
than that based on which we collected the labels, which may result
in an imperfect heuristic even on reachable states. Our TR contains
an example illustrating this phenomenon.

104

Lemma 6 Let Π be a planning task with state space Θ, let
G be the globally relevant labels, and let K ⊇ G. Let α be
a K-catching bisimulation for Θ. Then hα is perfect.
Proof sketch: Due to Lemma 5, it suffices to consider the
case K = G. The proof of Lemma 2 remains valid except
in two details. When proving that h∗ = hG, we now rely
on h∗(s′) + c(l) > h∗(s) to show that transitions not in TG
do not take part in optimal solution paths. Similarly when
proving that h′ = hα.

Combining Lemmas 4 and 6, we get the desired result:
Theorem 1 Let Π be a planning task with variables V and
state space Θ, let G be the globally relevant labels, and let
K ⊇ G. Let α be an M&S abstraction over V where, in any
application of rule (ii), γ is a K-catching bisimulation for
Θβ . Then hα is perfect.
If there are no 0-cost operators, then with perfect hα A∗ does
not need to search. Precisely, A∗ finds an optimal plan af-
ter expanding a number of nodes linear in the plan’s length,
provided we break ties in A∗ based on smaller hα. That is, if
g(s)+hα(s) = g(s′)+hα(s′) and hα(s) < hα(s′), then we
expand s prior to s′. Given this, we know that (I) any state s′
not on an optimal plan has g(s′)+hα(s′) > g(s0)+hα(s0);
and (II) along the states on any optimal plan, hα decreases
strictly monotonically. Due to (I), we do not expand any sub-
optimal states. Due to (II), within the set of optimal states
(which may be large), the tie-breaking leads directly to the
goal in depth-first manner.

In the presence of 0-cost operators, (II) is no longer true,
and in general there is no way to guarantee avoiding search
(e. g., if all costs are 0 and h∗ is devoid of information).

Bounded-Radius Relevant Labels
To avoid search in A∗, it is not necessary for the heuristic to
be perfect everywhere. It suffices to guarantee the conditions
(I) and (II) above. We show that, to accomplish this, we can
consider a radius R around the goal:
Definition 5 Let Π be a planning task with state space Θ =
(S,L, T, s0, S?), and let R ∈ R+

0 . A label l ∈ L is R-
relevant if there exists (s, l, s′) ∈ T such that h∗(s′)+c(l) =
h∗(s) ≤ R.
This “radius” in terms of a label subset translates into a ra-
dius guaranteeing heuristic quality:
Lemma 7 Let Π be a planning task with state space Θ, let
R ∈ R+

0 , let G be the R-relevant labels, and let K ⊇ G.
Let α be a K-catching bisimulation for Θ. Then, for every
s ∈ S with h∗(s) ≤ R, we have hα(s) = h∗(s); and for
s ∈ S with h∗(s) > R, we have hα(s) > R.
Proof sketch: By a minor extension of the proof to
Lemma 6. For transitions (s, l, s′) with h∗(s) ≤ R the claim
holds exactly as in Lemma 6. For transitions (s, l, s′) with
h∗(s) > R, if h′([s′]) ≤ R, then h′([s′]) = h∗(s′), giving
us h′([s′]) + c(l) ≥ h∗(s) > R; if h′([s′]) > R, then adding
(s, l, s′) could never decrease h′([s]) below R.

Combining this with Lemma 4 we get that, if we fix a label
subsetK catching allR-relevant labels, and if we implement

the shrinking step as coarsest K-catching bisimulation, then
the resulting heuristic hα will have the claimed quality on
the global state space. Thus, in the absence of 0-cost opera-
tors and when setting R to optimal plan cost, conditions (I)
and (II) still hold, and A∗ is efficient:
Theorem 2 Let Π be a planning task all of whose operators
have non-0 cost. Let V be the variables of Π, let Θ be the
state space of Π, let G be the h∗(s0)-relevant labels, and
let K ⊇ G. Let α be an M&S abstraction over V where, in
any application of rule (ii), γ is a K-catching bisimulation
for Θβ . Then A∗ with hα, breaking ties in favor of smaller
heuristic values, expands a number of states linear in the
length of the plan returned.

Results Using Exact Label Sets
The label subsets introduced in the previous section cannot
be computed efficiently, so they must be approximated in
practice. We will do so in the next section. Here, we as-
sess the power of our techniques from a principled perspec-
tive, ignoring this source of complication. We consider what
would happen if we did use the exact label sets as defined.

Theoretical Results with Exact Labels
Catching globally relevant labels matches full bisimulation
in that it yields a perfect heuristic (cf. Theorem 1); greedy
bisimulation does not give that guarantee. Compared to both
full bisimulation and greedy bisimulation, catching globally
relevant labels is potentially better because it makes less dis-
tinctions. This can yield an exponential advantage:
Proposition 1 There exist families of planning tasks {Πn},
with variable subsets {Vn} and globally relevant labels
{Gn}, so that M&S abstractions over Vn are exponen-
tially smaller with the shrinking strategy using Gn-catching
bisimulation, than with the shrinking strategies using either
of bisimulation or greedy bisimulation.
Our example showing this introduces exponentially many
distinctions in (greedy) bisimulation by operators that, al-
though they can be used to construct a solution, are not used
in any optimal solution and are thus not globally relevant.

Likewise, imposing a radius on the caught labels can have
an exponential advantage (while still guaranteeing A∗ to be
efficient, cf. Theorem 2):
Proposition 2 There exist families of planning tasks {Πn},
with variable subsets {Vn}, globally relevant labels {Gn},
and h∗(s0)-relevant labels {Rn}, so that M&S abstractions
over Vn are exponentially smaller with the shrinking strat-
egy using Rn-catching bisimulation, than with the shrinking
strategies using either of Gn-catching bisimulation, bisimu-
lation, or greedy bisimulation.
This situation can arise from operators that do participate in
optimal solutions, but only within an irrelevant region of the
state space (reached by making a bad action choice).

Propositions 1 and 2 hold regardless whether or not Nis-
sim et al.’s label reduction technique is used. Note that the
situations underlying the proofs are quite natural. In partic-
ular, as we will see in the next sub-section, most IPC bench-
marks contain at least some operators as described. This

105

notwithstanding, to our knowledge none of the benchmarks
actually contains a family as claimed in Propositions 1 and 2.
Intuitively, the described situations do occur, but to a lesser
extent. An exception is Dining-Philosophers in a direct
finite-domain planning encoding, for which Nissim et al.
showed that greedy bisimulation yields perfect heuristics
with polynomial effort. The same is true when catching
globally or h∗(s0)-relevant labels.

Empirical Results with Exact Labels
We ran M&S with no shrinking and no reachability pruning
(no removal of non-reachable abstract states during M&S)
to compute the full state space, and thus the exact label sets;
Table 1 shows results on the 172 IPC benchmark instances
where this process did not run out of memory. We show,
summed-up per instance, the label set size and the size of the
largest abstractions generated during M&S, when catching
all labels (“All”) vs. the globally relevant labels (“Global”)
vs. the h∗(s0)-relevant labels (“h∗(s0)”).

Σ number of labels Σ maximal abstraction size
domain All Global h∗(s0) All Global h∗(s0)

blocks 462 459 453 5338545 5338437 5337835
depots 72 48 48 26928 12402 12402
driverlog 448 383 383 1046925 1046925 1046925
gripper 232 176 176 712 712 712
logistics00 672 366 364 1314376 1314376 1314376
logistics98 278 173 173 4157536 4157536 4157536
miconic 5700 4070 4069 1314030 1314660 1314660
mystery 154 126 94 41408 39600 33768
nomystery11 5198 4501 4501 9688 8464 8464
openstack08 400 383 383 21396 21396 21396
openstack11 575 515 515 9048 9048 9048
parcprint08 158 115 103 359 374 392
parcprint11 59 39 39 241 257 257
pathways 61 30 30 97 97 97
pegsol08 166 166 128 180720 180720 94305
psr 1993 1753 1745 106780 103596 103596
rovers 161 100 100 8886 1920 1920
satellite 456 326 326 11302 8488 8488
scanaly08 2724 1224 1224 40320 40320 40320
scanaly11 1168 668 668 20192 20192 20192
tpp 38 38 38 276 276 276
transport08 1400 1232 1192 279850 279733 280883
transport11 424 400 400 160000 160000 160000
trucks 597 203 203 8175 8423 8423
zeno 2246 1581 1512 4689384 4689384 4689056
Σ 26112 19345 19137 18787174 18757336 18665327

Table 1: Summed-up sizes of exact label sets (all vs. globally
relevant vs. h∗(s0)-relevant), and of maximum abstraction
sizes during M&S for bisimulation catching these.

A quick look at the left-hand side of the table confirms
that there tend to be quite some labels that can be ignored
without sacrificing heuristic quality. The single domain with
no irrelevant labels at all is TPP. Often, only about two thirds
of the labels are h∗(s0)-relevant; in Trucks, only one third
are. At the same time, a look at the right-hand side of the
table shows that the reduced label sets are not very effective
in reducing abstraction size. In only 10 out of 24 domains
with reduced labels, the maximal abstraction size is reduced
as well. The reduction is typically small, except in a few do-
mains like PegSol (factor 1.92) and Rovers (factor 4.63). In

two cases (ParcPrinter and Trucks), the size actually grows.5
The present data should be treated with caution as the in-

stances considered are very small; the abstraction size re-
ductions might be more significant in larger instances. This
notwithstanding, in practice it may be advisable to approx-
imate the label subsets aggressively, catching less labels in
the hope to reduce abstraction size more, while not losing
too much information. We consider such methods next.

Results Using Approximate Label Sets
We describe our label-subset approximation techniques,
then run experiments on the standard IPC benchmarks.

Approximation Techniques
The word “relevant” in the names of the label sets identi-
fied in Definitions 4 and 5 was chosen because the intu-
ition behind these – subsets of operators used in optimal
plans – is very close to previous notions of relevance (e. g.,
(Nebel, Dimopoulos, and Koehler 1997; Brafman 2001;
Hoffmann and Nebel 2001)). This creates a potential for
synergy. We implemented one method inspired by this, and
one method that integrates particularly well with M&S:
• Backward h1. This is a variant of backward-chaining rel-

evance detection, using a straightforward backwards ver-
sion of the equations defining h1 (Haslum and Geffner
2000). We collect all operators that appear within the ra-
dius R given by the product of (forward) h1(s0) and a
parameter β ∈ [0, 1]. Note that, for hm with large m, the
selected labels would be exactly the h∗(s0)-relevant ones.
Setting β allows to select less labels, controlling the trade-
off between abstraction size and accuracy. For β = 0, we
use the smallest β yielding a non-empty label set.
• Intermediate Abstraction (IntAbs). We run full bisim-

ulation until abstraction size has reached a parameter M .
The labels are then collected by applying either of Defini-
tion 4 or 5 to the present abstraction, and M&S continues
with bisimulation catching that label subset. With very
large M (and when not removing non-reachable abstract
states), the label set would be exact. Small M results in
smaller labels sets because non-0 cost operators on vari-
ables not yet merged will not be considered relevant.

Neither technique guarantees, in general, to catch all glob-
ally relevant/h∗(s0)-relevant labels. They are practical ap-
proximations whose merits we now evaluate experimentally.

Experiments
Our techniques are implemented in Fast Downward, and
all results we report use the same A∗ implementation. We
ran a total of 32 M&S configurations, plus two competing
heuristics, on 1396 instances from 44 IPC benchmark do-
main suites. To make these 47464 runs feasible, the runtime
for each was limited to 5 minutes. The memory limit was

5The discrepancy with Lemma 5 is due to removal of non-
reachable abstract states, done in our code, but not in the lemma.
In rare cases, the coarser abstraction (catching less labels) may
produce more reachable abstract states when merged with another
variable. Our TR contains an example illustrating this.

106

Approach IntAbs Global Backward h1 strict-greedy bisimulation Nissim et al.
BJOLP LM-cutN 10K 100K ∞ ∞ 10K ∞ 10K 100K ∞ ∞ 10K 100K ∞ ∞

M /β/Nissim et al. variant 10K 10K 10K 100K 0.25 0.5 1 0 0.25 0.5 0.75 1 10K 10K 10K 100K full s-greedy full s-greedy
airport *22 *22 *22 *22 19 19 19 *22 3 1 1 1 *22 *22 *22 *22 19 16 1 *22 28 25
barman-opt11-strips 4 4 4 4 4 4 4 4 0 0 0 0 4 4 4 4 4 4 0 4 4 0
blocks *21 *21 *21 18 *21 *21 *21 18 14 9 9 9 *21 *21 *21 *21 *21 *21 9 *21 26 28
depot 7 7 7 6 6 6 6 6 6 1 1 1 7 7 7 7 6 7 1 7 7 7
driverlog 12 12 12 12 12 12 12 *13 *13 6 5 5 12 12 12 12 12 12 5 12 14 13
elevators-opt11-strips 9 9 10 *12 9 9 9 9 0 0 0 0 9 9 9 9 9 9 0 9 12 15
floortile-opt11-strips 2 3 3 7 2 3 3 2 3 6 6 6 2 2 2 2 3 3 6 2 2 6
freecell *15 *15 *15 6 *15 *15 *15 *15 13 6 2 1 *15 *15 *15 *15 *15 7 1 *15 53 9
grid 1 1 1 0 2 2 2 2 2 0 0 0 2 2 2 2 2 1 0 2 2 1
gripper 7 10 10 20 7 7 11 7 7 7 7 20 7 7 7 7 11 7 20 7 7 6
logistics00 16 16 16 16 18 20 20 18 18 10 10 10 16 16 16 16 20 16 10 16 20 20
logistics98 4 4 4 *5 4 4 4 *5 *5 3 2 2 4 4 4 4 4 4 2 4 6 6
miconic 51 52 52 55 51 51 *57 51 51 51 55 50 50 50 50 50 *57 55 51 50 141 140
mprime 22 22 22 13 23 23 19 22 22 16 2 1 22 22 22 22 19 10 1 22 20 20
mystery 15 15 15 14 15 14 13 13 13 11 4 3 15 15 15 15 13 10 3 15 15 15
nomystery-opt11-strips 12 15 15 19 16 18 18 16 16 9 12 12 12 12 12 12 18 15 12 12 18 13
openstacks-opt11-strips 14 14 14 12 14 14 14 14 14 14 14 1 14 14 14 14 14 14 1 14 10 11
openstacks-strips 7
parcprinter-opt11-strips *12 *12 *12 *12 11 11 *12 11 9 9 8 8 11 11 11 11 *12 *12 8 11 9 13
parking-opt11-strips 5 4 4 0 2 2 3 0 0 0 0 0 5 5 5 5 3 0 0 5 1 1
pathways-noneg *4 *4 *4 *4 *4 *4 *4 *4 *4 3 *4 *4 *4 *4 *4 *4 *4 *4 *4 *4 4 5
pegsol-opt11-strips 19 19 19 19 17 17 18 17 17 8 8 0 17 17 17 17 19 18 0 17 17 17
pipesworld-notankage 15 15 15 15 *16 15 15 3 3 2 1 2 15 15 15 15 15 11 2 15 17 15
pipesworld-tankage 12 12 12 10 14 14 14 2 2 2 1 2 16 16 16 15 14 13 2 16 11 8
psr-small 49 49 49 49 49 49 49 49 49 49 49 44 49 50 50 50 49 50 44 50 49 48
rovers 6 6 6 6 6 6 6 6 6 6 4 4 6 6 6 6 6 7 4 6 7 7
satellite 6 6 6 6 7 7 6 8 8 8 6 6 6 6 6 6 6 6 6 6 7 7
scanalyzer-opt11-strips 10 10 10 8 9 9 9 3 3 3 3 3 10 10 10 6 9 9 3 3 3 10
sokoban-opt11-strips 19 19 19 18 19 19 19 16 11 5 3 1 19 19 19 19 19 20 0 19 18 19
tidybot-opt11-strips 12 11 11 0 8 1 1 14 4 1 1 1 13 12 12 12 4 0 0 12 14 11
tpp 6 6 6 7 6 6 6 6 6 5 5 5 6 6 6 6 6 7 5 6 6 6
transport-opt11-strips 6 6 6 8 6 6 6 6 1 1 1 1 6 6 6 6 6 6 1 6 6 6
trucks-strips 5 5 5 5 6 *7 5 6 6 6 4 4 5 5 5 5 6 6 4 5 7 9
visitall-opt11-strips 9 9 9 10 9 9 9 8 8 8 8 8 12 12 12 12 9 9 8 12 9 10
woodworking-opt11-strips 6 6 6 7 4 6 6 5 2 1 1 1 7 *9 *9 *9 6 *9 2 *9 7 10
zenotravel 9 9 9 11 12 12 11 12 12 12 7 7 9 9 9 9 11 9 7 9 10 11
Σ 585 591 *593 575 578 579 585 538 449 358 320 270 588 *593 *593 584 591 547 270 579 715 698
Σ w/o miconic & freecell 519 524 526 514 512 513 513 472 385 301 263 219 523 *528 *528 519 519 485 218 514 521 549
Σ M&S built 1383 1341 1336 1049 1236 1196 1178 989 687 501 352 270 *1385 1357 1347 1290 1174 1018 270 1264

Table 2: Selected coverage data in IPC benchmarks. Best results overall (of all M&S heuristics) are highlighted in bold (with a
“*”). “Σ M&S built”: number of tasks for which computing the M&S abstraction did not exceed the available time/memory.

2 GB. The runs were conducted on machines equipped with
two quad-core CPUs (AMD Opteron 2384). Coverage data
is shown in Table 2. To save space, we omit domains from
IPC’08 that were run also in IPC’11.

We run BJOLP (Domshlak et al. 2011) and LM-cut
(Helmert and Domshlak 2009) because they were the two
non-M&S components in Fast Downward Stone Soup, the
portfolio winning the 1st prize in the track for optimal plan-
ners at IPC’11. We ran 9 M&S configurations from the
work by Nissim et al., setting N ∈ {10K, 100K,∞} and
using either full bisimulation, or greedy bisimulation, or
strict-greedy bisimulation (s-greedy). The latter is the
variant of Definition 2 catching all transitions (s, l, s′) ∈
T where h∗(s′) < h∗(s), rather than h∗(s′) ≤ h∗(s).
This variant is not mentioned by Nissim et al., but actu-
ally is what is run in their experiments and in the IPC.
As for the parameter N , in all M&S variants, this is a
bound on abstraction size reaching which forces the shrink-
ing strategy to aggregate more states, dropping any bisim-
ulation guarantees (Helmert, Haslum, and Hoffmann 2007;
Nissim, Hoffmann, and Helmert 2011a). For N = ∞, the
bisimulation guarantee is always held up (and the abstrac-
tion might run out of memory). Given the limited space in
Table 2, we show data for 4 of the 9 Nissim et al. config-
urations: N = 10K with full bisimulation, the one with
highest overall coverage; N = ∞ with full bisimulation,
for reference (in difference to all other M&S configurations
here, this guarantees the heuristic to be perfect); and the two
configurations taking part in Fast Downward Stone Soup,

N = 100K and N =∞ with strict-greedy bisimulation.6
We also run 4 new M&S variants using strict-greedy

bisimulation, with the parameter M of our Intermediate Ab-
straction (IntAbs) label approximation. These configura-
tions start with full bisimulation, then switch to s-greedy
bisimulation once abstraction size M is reached. This al-
lows for a very direct comparison with our IntAbs configu-
rations: the only difference to these lies in their use of label-
catching bisimulation, rather than s-greedy bisimulation, af-
ter M is reached. We do not show data for IntAbs with Def-
inition 5 (h∗(s0)-relevant labels), because these configura-
tions are dominated by the ones using Definition 4 (glob-
ally relevant labels). Compared to the variants orginally de-
signed by Nissim et al, the new s-greedy variants have a sig-
nificant adavantage in total coverage. They also have a small
such advantage vs. the IntAbs variants. However, the former
have the edge in a larger number of individual domains. The
respective configuration with best coverage is strictly better
for IntAbs in 15 domains, is equally good in 23 domains,
and is worse only in 6 domains. An interesting observation
within IntAbs is that, as expected, smaller M yields more
greedy abstractions. For N = ∞, M = 10K completes
1336 abstractions, vs. 1049 completed by M = 100K.

We finally run 11 M&S variants with the Backward h1

label-catching strategy: N = 10K with 4 values of β
(β = 0.75 not shown because it is always dominated by
one of the others); and N = ∞ with 7 values of β. For

6Actually, N = 200K was used in the IPC; the performance
for N = 100K is almost identical to that.

107

|P | 2 4 6 2 4 6

Design BL FDSS BL+O BL+N BL+ON FDSS+N BL+O BL+N BL+ON O N ON O N ON O N ON
|C| 0 0 13 13 26 13 13 13 26 13 13 26 13 13 26 13 13 26

Upper bound 770 805 825 823 833 830 825 823 833 658 649 673 658 649 673 658 649 673

Best P 770 805 825 819 827 830 825 823 833 656 630 656 658 647 671 658 649 673

Table 3: Portfolios. “|P |”: number of components within portfolio. “Design”: portfolio design space (see text). “|C|”: number
of components to choose from. “Upper bound”: solved by any possible component. “Best P ”: best coverage of any portfolio.

N = 10K, β has hardly any effect since enforcing the bound
makes the abstraction very greedy anyhow. By contrast, for
N = ∞, smaller β decreases computational effort drasti-
cally (consider the bottom row in Table 2). In effect, in 35
of the 44 domains, coverage increases monotonically as we
decrease β. Note also that, for β = 1.0, performance is
almost identical to that of full bisimulation with N = ∞.
Indeed, the number of labels caught (not shown here) is typ-
ically close to the total number of labels.

Comparing the per-domain perfomance of the Backward
h1 configurations with the IntAbs configurations, the latter
have a slight edge. The configuration with best coverage
is strictly better for Backward h1 in 11 domains, is equally
good in 18 domains, and is worse in 15. Comparing the new
M&S variants (IntAbs and Backward h1) with all “old” ones
(including the novel s-greedy variants), the best-coverage
configuration is better for new M&S in 10 domains, equally
good in 23, and worse in 11. Comparing the new M&S vari-
ants against all other planners, the best-coverage configura-
tion is better for new M&S in 5 domains, equally good in 16,
and worse in 23. Altogether, the new heuristics are certainly
not a breakthrough in coverage of cost-optimal planners, but
they can contribute. We reconfirm this below by considering
portfolios built from different subsets of configurations.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

0.0 0.1 0.25 0.5 0.75 1.0
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

n
u

m
b

e
r

o
f

in
s
ta

n
c
e

s

n
u

m
b

e
r

o
f

s
ta

te
s

M&S built
Coverage

Average Expansions 0.05
Average Expansions 0.1

Average Expansions 0.25
Average Expansions 0.5

Average Expansions 0.75
Average Expansions 1.0

Figure 1: Scaling β in Backward h1 with N =∞.
Figure 1 examines more closely how β trades off ab-

straction effort against accuracy. The coverage and “M&S
built” data (left y-axis) are as in Table 2. “Expansions X”
(right y-axis) shows the average number of expanded states
in the subset of instances solved by all configurations where
β ≤ X . That subset contains much larger instances for
smaller β, hence the average expansions grow. Note how-
ever that there is a consistent pattern within each of these
curves. Expansions increase a lot as we step from β = 0.75
to β = 0.5 (e. g., from 64976 to 212362 for “Expansions
1.0”), but remain almost constant at both sides of this step.

This suggests a kind of phase transition, where for β ≥ 0.75
the heuristic is close to perfect, whereas for β going below
0.5 it is quite bad, and does not get a lot worse while still
dramatically reducing abstraction effort. The latter does a
lot to help coverage, and one could try to catch even less la-
bels when β = 0. One could also try to add complementary
label selection techniques, in the hope to push the “phase
transition” to smaller β. Both are topics for future work.

Different M&S heuristics often have complementary
strengths. Table 3 examines this in detail, listing the best
performance any sequential portfolio of a given size |P | ∈
{2, 4, 6} can obtain, when selecting its components from
particular subsets of configurations. Comparisons should
be made only within groups of portfolios with same |P |, as
each component uses 5 minutes and thus |P | determines the
computational resources used. In the “Design” row, “BL” is
BJOLP+LM-cut, and “FDSS” has the same configurations
as Fast Downward Stone Soup (cf. above). By “X+Y ” we
denote portfolios P in which the components X are fixed
and only the remaining |P | − |X| components are selected
from Y . “O” (“Old”) refers to the 13 “old” M&S configu-
rations we run here. “N” (“New”) refers to 13 of the IntAbs
and Backward h1 configurations (to obtain groups “O” and
“N” of same size, we omitted Backward h1 with N = ∞
and β > 0). “BL” is included only for reference. The data
for |P | = 4 and “BL+Y ” design shows that, in our setting
here, different M&S variants than in “FDSS” yield better
coverage; the data for |P | = 6 and “BL+Y ” design shows
that adding even more M&S configurations still improves
the outcome. Generally, portfolios of only “O” M&S con-
figurations are better than those of only “N” ones, but the
best option is to combine the two.

Conclusion
Label-catching bisimulation is very appealing in principle:
it is invariant over M&S, guarantees a perfect heuristic if
we catch all relevant labels, may be exponentially smaller
than full bisimulation even in this case, and allows a fine-
grained effort/accuracy trade-off by plugging in approxima-
tions of relevance. At the same time, our empirical results
are a bit disappointing, performance being improved only in
few domains. As indicated, one could try to design different
relevance approximations. The authors’ speculation is that
there is more potential in combining M&S heuristics, i. e.,
automatically constructing sets of heuristics specifically de-
signed to be complementary, for a given planning task.

Acknowledgments. Work performed while Michael Katz
and Jörg Hoffmann were employed by INRIA, Nancy,
France. Michael Katz was supported by the French National
Research Agency (ANR), project ANR-10-CEXC-003-01.

108

References
Brafman, R. 2001. On reachability, relevance, and reso-
lution in the planning as satisfiability approach. Journal of
Artificial Intelligence Research 14:1–28.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The big joint optimal landmarks planner. IPC 2011 planner
abstracts.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN
Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. IPC 2011 planner abstracts.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Hoffmann, J., and Nebel, B. 2001. RIFO revisited: De-
tecting relaxed irrelevance. In Cesta, A., and Borrajo, D.,
eds., Pre-proceedings of the Sixth European Conference on
Planning (ECP 2001), 325–336.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to relax
a bisimulation? Technical Report 7901, INRIA. Available
at http://hal.inria.fr/hal-00677299.
Milner, R. 1990. Operational and algebraic semantics of
concurrent processes. In van Leeuwen, J., ed., Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Sematics. Elsevier and MIT Press. 1201–1242.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Steel,
S., and Alami, R., eds., Recent Advances in AI Planning.
4th European Conference on Planning (ECP 1997), volume
1348 of Lecture Notes in Artificial Intelligence, 338–350.
Springer-Verlag.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011a. Com-
puting perfect heuristics in polynomial time: On bisim-
ulation and merge-and-shrink abstraction in optimal plan-
ning. In Walsh, T., ed., Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’11),
1983–1990. AAAI Press/IJCAI.

Nissim, R.; Hoffmann, J.; and Helmert, M. 2011b. The
Merge-and-Shrink planner: Bisimulation-based abstraction
for optimal planning. IPC 2011 planner abstracts.

109

