
An Effective Approach to Realizing Planning Programs∗

Alfonso E. Gerevini† and Fabio Patrizi‡ and Alessandro Saetti†

†Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy
{gerevini,saetti}@ing.unibs.it

‡Department of Computing, Imperial College London, UK
fpatrizi@imperial.ac.uk

Abstract

Planning programs are loose, high-level, declarative repre-
sentations of the behavior of agents acting in a domain and
following a path of goals to achieve. Such programs are spec-
ified through transition systems that can include cycles and
decisions to make at certain points. We investigate a new ef-
fective approach for solving the problem of realizing a plan-
ning program, i.e., informally, for finding and combining a
collection of plans that guarantee the planning program exe-
cutability. We focus on deterministic domains and propose a
general algorithm that solves the problem exploiting a plan-
ning technique handling goal constraints and preferences. A
preliminary experimental analysis indicates that our approach
dramatically outperforms the existing method based on for-
mal verification and synthesis techniques.

Introduction
Planning programs (p-programs, for short) are loose, high-
level, declarative representations of the behavior of agents
acting in a domain (De Giacomo, Patrizi, & Sardina 2010).
Technically, they are transition systems, with transitions la-
belled by goals over the domain, and states representing de-
cision points (the executor chooses the transition to execute).

Informally, in order for a p-program to be executable by
the involved agent(s), each labeling goal requires a plan
achieving it. These plans must be synchronized so that the
final world state generated by a plan is a suitable initial
state for the plans associated with the next possible goals
to achieve. When this is the case, the p-program is real-
ized. In general, however, computing a realization does not
just amount to associating transition goals with appropriate
plans. Indeed, as plans are executed, both p-program’s and
underlying domain’s states progress, so, in general, the p-
program can reach a state vmany times, possibly with differ-
ent domain states, say s′ �= s′′. Clearly, there is no guarantee
for the same plan to be executable in both s′ and s′′, and so
in particular for the plan labeling a same transition outgoing
from v. Therefore, a p-program is realized by a function,
called realization, taking in input a p-program transition and
a domain state, and returning an appropriate plan to execute.

∗Work partially supported by EU Programme FP7/2007-2013,
under grant agreement 257593 (ACSI).
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A solution technique to compute realizations was pro-
posed by De Giacomo, Patrizi, & Sardina (2010), based
on using TLV (Pnueli & Shahar 1996), a tool for synthe-
sis of LTL specifications (Pnueli & Rosner 1989). However,
our experiments show that this approach performs poorly in
practice.

Here, we address the problem of effectively constructing
p-program realizations with a new approach using (classical)
planning techniques. The main motivation is that realizing a
p-program involves constructing and synchronizing a set of
plans. Even more importantly, plan computation is a compu-
tationally hard problem that is crucial to address efficiently
in order to solve the realization problem effectively. There-
fore, efficient plan computation is a key issue for practical
effectiveness, and the use of automated planning systems is
a natural approach to address it. Preliminary experiments
indicate that our approach significantly outperforms the one
considered by De Giacomo, Patrizi, & Sardina (2010).

In this paper, we (i) propose the first, to the best of our
knowledge, algorithm for constructing p-program realiza-
tions, based on planning technology, using goal constraints
and preferences; (ii) provide experimental evidence of its ef-
fectiveness; and (iii) show the usefulness of using goal pref-
erences to improve performance.

P-programs can also be considered as complex routines,
typically including conditions and cycles, to carry on in the
domain. The idea of constructing routines on a domain is
not new to planning: Baier & McIlraith (2006) consider fi-
nite plans with trajectory constraints, that can be seen as
(finite) sequential routines; while previous work on plan-
ning with temporally extended goals addresses the problem
of building cyclic plans to satisfy LTL formulas, modeling
desired domain evolutions (Kabanza & Thiébaux 2005). A
relevant question concerns the possibility of adapting such
techniques to p-program realizations. Precisely, the point
is whether one can encode the p-program requirements into
a temporal formula ϕ such that a plan satisfying ϕ also
corresponds to a realization. To the best of our knowl-
edge, none of them applies in general: Baier & McIlraith
(2006) consider only finite plans, while the presence of cy-
cles in p-programs requires the ability to build potentially
infinite ones; Kabanza & Thiébaux (2005) only consider lin-
ear, though possibly cyclic, plans, which cannot cope with
executor decisions, that can introduce a sort of nondetermin-
ism and is a distinguishing feature in our problem.

323

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

v2v1

g0: (at P1 NY)

Initial state s0 = {(at P1 NY),(at A1 Bo)}

v0

g0: (at P1 NY)

g1: (at P1 Wa)

g2: (at P1 Bo) a1 : (fly A1 Bo NY)
a2 : (board P1 A1 NY)
a3 : (fly A1 NY Bo)
a4 : (debark P1 A1 Bo)
a5 : (fly A1 NY Wa)
a6 : (debark P1 A1 Wa)
a7 : (board P1 A1 Bo)
a8 : (debark P1 A1 NY)
a9 : (board P1 A1 Wa)

a10 : (fly A1 Wa NY)

Domain state Transition Plan
s0 = {(at P1 NY), (at A1 Bo)} 〈v0, g2, v2〉 〈a1, a2, a3, a4〉
s0 = {(at P1 NY), (at A1 Bo)} 〈v0, g1, v1〉 〈a1, a2, a5, a6〉
s1 = {(at P1 Bo), (at A1 Bo)} 〈v2, g0, v0〉 〈a7, a1, a8〉
s2 = {(at P1 Wa), (at A1 Wa)} 〈v1, g0, v0〉 〈a9, a10, a8〉
s3 = {(at P1 NY), (at A1 NY)} 〈v0, g2, v2〉 〈a2, a3, a4〉
s3 = {(at P1 NY), (at A1 NY)} 〈v0, g1, v1〉 〈a2, a5, a6〉

Figure 1: Graphical representation of a planning program for
ZenoTravel and a respective realization. Nodes are program
states; labelled edges are program transitions.

Planning Program Realization
We deal with a specialization of the planning program re-
alization problem (De Giacomo, Patrizi, & Sardina 2010)
by assuming a deterministic underlying planning domainD,
and all maintenance goals satisfied in every D’s state. A
deterministic planning domain is a tuple D = 〈P,A, τ〉,
where: P is the finite set of propositions; A is the finite set
of actions; and τ : 2P × A → 2P is the domain transition
function. Notations S ⊆ 2P , G ⊆ P , Π and Last(π(s))
respectively refer to: the set of domain (or D-) states; a set
of goals (also called goal situation); the set of all executable
plans forD from some s ∈ S; and the finalD-state obtained
upon executing plan π from s (written π(s)).

Formally, a planning program for a (deterministic) plan-
ning domain D is a tuple P = 〈V, v0,Γ, δ〉 where: V is
the finite set of program (or P-) states; v0 ∈ V is the
initial P-state; Γ ⊆ 2P is a set of goal situations; and
δ ⊆ V × Γ× V is the program transition relation. To intu-
itively understand how p-programs work, assume a program
P and a domain D in state v and s, respectively. The ex-
ecutor behaves as follows: firstly, it selects an arbitrary tran-
sition 〈v,G, v′〉 ∈ δ and executes a plan π such that π(s)
achieves G (i.e., G ⊆ Last(π(s))), thus leading D to state
s′ = Last(π(s)); secondly, it progresses the p-program to
state v′; and, finally, it starts a new iteration, if some edge
outgoing from v′ exists, while terminating otherwise.

Example 1 The sale representative P1 of a company, who
is responsible for Boston (Bo) and Washington (Wa), lives in
New York (NY), and needs to move by plane (A1) to/from Bo
and Wa, according to customer requests, which are known
only at execution time. Assuming for simplicity that once
out of NY, before moving to another city, the company re-
quires P1 to go back to NY. A graphical representation of
this behavior is provided in Fig. 1, where the transition sys-
tem represents a planning program for P1, defined on a sim-
plified version of domain ZenoTravel (Long & Fox 2003),
where only actions flight, board and debark are defined
(with obvious parameters and semantics). Transition selec-
tion takes place at execution time, based on customer and
company requests. From initial state v0, P1 can accept re-
quests for either Bo or Wa. For instance, if a request for Bo

arrives, transition 〈v0, g2, v2〉 is selected. When in Bo (resp.
Wa), however, P1 can accept only company’s request for go-
ing back to NY, i.e., transition 〈v2, g0, v0〉 (resp. 〈v1, g0, v0〉).
Executing a p-program P corresponds to bringing about a
plan π every time a new transition is selected, according to
P . The challenge is constructing an appropriate plan at each
step while guaranteeing realizability of all possible future
P-transitions, as formalized next by specializing the notions
of plan-based simulation relation and planning program re-
alization (De Giacomo, Patrizi, & Sardina 2010).

Given a planning domain D and a p-program P as above,
a plan-based simulation relation is a relation R ⊆ V × S,
such that 〈v, s〉 ∈ R implies that for every P-transition
〈v,G, v′〉 ∈ δ there exists a plan π over D such that: (i)
π(s) achieves G; and (ii) 〈v′,Last(π(s))〉 ∈ R.

A P-state v is plan-simulated by a D-state s, written
v 	P s, if there exists a plan-based simulation relation R
such that 〈v, s〉 ∈ R. Given D, P and a domain initial
state s0 ∈ S, we say that P is realizable in D from s0 if
v0 	P s0. When this is the case, a p-program realization
can be defined. Formally, a realization of P (in D from s0)
is a partial function ρ : S × δ → Π such that for every
〈v, s〉 ∈ 	P and every transition d = 〈v,G, v′〉 ∈ δ: (i)
ρ(s, d) achieves G from s; and (ii) v′ 	P Last(π(s)). Ob-
serve that ρ returns only plans that preserve the plan-based
simulation relation.

The Planning Program Realization problem requires to
build a realization of a p-program P for a planning domain
D, given an initial D-state s0 ∈ S.
Example 2 (Ex. 1 cont.) Incoming requests are fulfilled by
P1 by selecting the corresponding transition and then ex-
ecuting an appropriate plan for the current domain state.
A realization function for the planning program of Ex. 1 is
shown in the table of Fig. 1.

A Planning-based Algorithm
Fig. 2 shows RealizePlanProg, an algorithm for building p-
program realizations. Starting from an open (realization)
pair 〈s, v〉 (initially 〈s0, v0〉), for each transition d outgoing
from v, RealizePlanProg constructs a plan π realizing d, and
then progresses the states ofD and P (according to π(s) and
d, respectively), possibly generating a new open pair 〈s′, v′〉
to process similarly. Each plan π is associated with the re-
spective pair 〈s, v〉 by the realization function ρ(s, d). If the
algorithm generates an open pair 〈s, v〉 s.t. for some tran-
sition outgoing from v no realizing plan can be computed
from s, backtracking is required, i.e., the plans generating
〈s, v〉 need to be replaced in ρ. The algorithm terminates
when no more open pairs are left, or it becomes clear that no
realization can be found.

Function ρ implicitly defines the set of open pairs, also
called the (realization) frontier: it is obtained by simulat-
ing all possible planning program executions, starting from
〈s0, v0〉, using ρ to realize the transitions, and picking up all
pairs 〈s, v〉 such that for some transition d from v, ρ(s, d)
is currently undefined. This essentially corresponds to a
straightforward graph visit, and will be summarized by func-
tion Frontier(ρ, s0, v0), returning the set of open pairs for ρ.
RealizePlanProg maintains three auxiliary functions

State : V → 2S , Tabu : V → 2S and Source : S × V →

324

Algorithm: RealizePlanProg(P,D, s0)

Input: a planning program P = 〈V, v0,Γ, δ〉, a planning domain
D = 〈P,A, τ〉, and an initial D-state s0;

Output: a realization of P in D from s0, or failure.

1. ∀s, d · ρ(s, d) ← noPlan;
2. State(v0) ← {s0}; ∀v �= v0 · State(v) ← ∅;
3. ∀v · Tabu(v) ← ∅;
4. Open ← {〈s0, v0〉};
5. while Open is not empty do
6. extract an open pair 〈s, v〉 ∈ Open;
7. π ← noPlan;
8. foreach transition d = 〈v,G, v′〉 ∈ δ do
9. if ρ(s, d) = noPlan then
10. π ← Plan(s, A, G,State(v′),Tabu(v′));
11. if π is failure then break;
12. else
13. ρ(s, d) ← π;
14. if Last(π(s)) �∈State(v′) then
15. add 〈Last(π(s)), v′〉 to Open;
16. add Last(π(s)) to State(v′);
17. add 〈s, d〉 to Source(Last(π(s)), v′);
18. if π is failure then
19. if 〈s, v〉 = 〈s0, v0〉 then return failure;
20. else
21. add s to Tabu(v);
22. remove s from State(v);
23. foreach 〈s′′, d = 〈v′′, G, v〉〉 ∈ Source(s, v) do
24. ρ(s′′, d) ← noPlan;
25. Open = Frontier(ρ, s0, v0);
26. return ρ.

Figure 2: The algorithm RealizePlanProg.

2S×δ . Intuitively, State(v) records all D-states reached
when P is in v, for some P execution, according to current
(partial) ρ, Tabu(v) indicates the states of D that are for-
bidden when v is reached, and Source associates each open
pair 〈s′, v′〉 to those pairs 〈s, d〉 (d = 〈v,G, v′〉) such that,
for π = ρ(s, d), π(s) ends in s′. Essentially, Source(f) says
why an open pair was generated by (current) ρ.

Initially, ρ is undefined (special value noPlan), State
returns the empty set excepting for State(v0) = {s0},
Tabu returns the empty set, and the set Open contains only
〈s0, v0〉 (lines 1–4). At each iteration of the external loop
(lines 5–25), an arbitrary open pair 〈s, v〉 is extracted from
Open , and processed. Open pair processing involves: (i)
for each transition d = 〈v,G, v′〉 outgoing from v and not
processed yet, computing a plan π that achieves G from s
(lines 8–10); (ii) updating ρ, Open , and the auxiliary func-
tions (lines 11–25). The external loop terminates if Open is
empty, in which case ρ is returned (line 26).

Task (i) is actually performed by executing Plan, a proce-
dure that constructs a plan π, with end state s′ s.t. G ⊆ s′,
s′ �∈ Tabu(v′), and preferably s′ ∈ State(v′). That is, π
achieves G, its end state is not in Tabu(v′), and end states
in State(v′) are preferred. Intuitively, states in State(v′)
are used as preferences to minimize the number of gener-
ated open pairs, while states in Tabu(v′) are used to prevent
next iterations from generating unrealizable open pairs.

For task (ii), if a plan π is found, function ρ is updated
with π; if s′ = Last(π(s)) is not already in State(v′), the

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

Planning programs 1C[5..100] in BW with 2 blocksCPU seconds

Realization by formal synthesis (using TLV)
RealizePlanProg without using preferences
RealizePlanProg with using preferences

Figure 3: CPU time of RealizePlanProg and TLV for planning
programs with structures 1C[5..100] in domain Blocksworldwith
2 blocks. The x-axis refers to the number of program states.

set of open pairs is extended with 〈s′, v′〉, i.e., the open pair
obtained by realizing d with π from s, and progressing P
from v according to d; State(v′) is updated by adding s′;
and 〈s, d〉 is added to Source(s′, v′) (lines 13–17). If plan
computation is unsuccessful, i.e., for some P-transition out-
going from v, Plan is unable to find an appropriate plan
(from s), then open pair f = 〈s, v〉 cannot be realized. In
the special case that f = 〈s0, v0〉, no P-realization can be
built, and hence the procedure terminates, returning failure
(lines 18–19). Otherwise, backtracking is performed on ρ
(lines 21–25): s is added to Tabu(v); s is removed from
State(v), as clearly no longer preferred, being tabu; ρ is set
undefined on all f sources, as the corresponding plans need
to be recomputed in order to avoid generating f ; and, finally,
Frontier(ρ, s0, v0) defines the new set Open of open pairs.

Termination of RealizePlanProg is guaranteed because at
every iteration of the external loop (lines 5–25), an open pair
〈s, v〉 is extracted from Open (line 6), and every time a state
is removed from State(v), it is added to Tabu(v) (lines 21–
22), where it remains until the execution terminates; there-
fore, a same open pair 〈s, v〉 is never added to Open more
than once, either because s ∈ State(v) (lines 14-15) or be-
cause s cannot be achieved by the plan returned by Plan,
since s ∈ Tabu(v).

As for soundness, if a pair 〈s, v〉 is not in Open , either it
is not reached when executing P according to ρ, or all tran-
sitions d outgoing from v are correctly realized by ρ(s, d);
thereby, whenOpen = ∅, for each pair 〈s, v〉 s.t. v is reached
with D-state s, the latter holds, and ρ is indeed a realization.

Interestingly, our algorithm is parametric w.r.t. the spe-
cific planning procedure adopted, thus allowing us to gener-
ate algorithms based on different planning approaches and
heuristics, by simply replacing procedure Plan. W.r.t. this,
notice that RealizePlanProg is complete iff Plan does, since
all possible plans that realize a given transition are explored
only in such a case.

Experimental Results
We carried out preliminary experiments to evaluate: (i) the
effectiveness of our approach, and (ii) the impact of goal
preferences in minimizing the number of generated open
pairs. We executed two classes of experiments, both tak-
ing CPU time as evaluation metric: one is aimed at compar-
ing the performance of our algorithm against TLV (Pnueli &
Shahar 1996) – an engine for temporal specification synthe-
sis (Pnueli & Rosner 1989), used as suggested by De Gia-

325

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20 22 24

Planning programs 1C[6] in BlocksworldCPU seconds

Using preferences
Without using preferences

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20 22 24

Planning programs SC[4] in BlocksworldCPU seconds

Using preferences
Without using preferences

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18 20 22 24

Planning programs CD[3] in BlocksworldCPU seconds

Using preferences
Without using preferences

Figure 4: CPU time of RealizePlanProg with and without using goal preferences for planning programs with structures 1C[6], SC[4] and
CD[3] (s.t. |δ| = 6) in domain Blocksworld. The x-axis refers to the number of blocks.

como, Patrizi, & Sardina (2010); while the other is meant to
evaluate the impact of preferences on RealizePlanProg.

Our implementation of RealizePlanProg encodes pre-
ferred and tabu goal states by introducing dummy propo-
sitions, numerical fluents and actions, using a compilation
scheme inspired by Gerevini et al. (2009); procedure Plan
is replaced with planner LPG (Gerevini, Saetti, & Serina
2008), though, in principle, any PDDL2.1 planner handling
numerical fluents can be incorporated.

We considered, for domains Blocksworld, Storage,
and ZenoTravel, p-programs with 3 structures of δ, form-
ing a single cycle (1C), multiple binary cycles in sequence
(SC), and a complete directed graph (CD):
1C[n]: δ={〈vi, Gi, v((i+1) mod n)〉 | vi ∈ V, 1 ≤ i < n},
SC[n]: δ={〈vi, Gi, vi+1〉, 〈vi+1, Gi+n−1, vi〉|vi ∈ V, 1 ≤ i < n},
CD[n]: δ={〈vi, Gi·n+j , vj〉, 〈vj , Gj·n+i, vi〉|vi, vj ∈ V, 1 ≤ i ≤
n, 1 ≤ j ≤ n, i �= j}, with n = |V | and Gx the x-th set of goals.
We generated 20 planning programs with structures: 1C[6],
SC[4], CD[3], 1C[5..100], SC[26], and CD[8], with both the
initial state and the |δ| goal sets randomly chosen.

RealizePlanProg and TLV were compared on p-programs
with structure 1C[6], defined on a 2-block Blocksworld
domain. The corresponding performance gap is shown
in Fig. 3, which indicates that even on a toy problem
RealizePlanProg is up to two orders of magnitude faster.
Also, TLV was not able to realize, within a 30-minute
CPU-time threshold, any other p-program we considered on
Blocksworld, with more than 2 blocks. Though further ex-
periments are required, we expect a possibly increasing gap
on harder domains, due to the lack of heuristic-based search
(for plan construction) in TLV.

Fig. 4 and Tab. 1 show the performance gap of
RealizePlanProg with and without using preferences, on
several structures of δ, in domains Blocksworld, Storage
and ZenoTravel, in terms of: IPC6 speed score,1 number
of solved problems, and number of generated open pairs.
Procedure RealizePlanProg using goal preferences realizes
all the considered programs and is up to two orders of mag-
nitude faster than without using preferences. This is essen-
tially due to the significantly reduced number of open pairs
generated (and processed) when using preferences.

Conclusions and Future work
In this paper, we addressed the problem of effectively con-
structing planning program realizations. We proposed a

1Higher values indicate better performance. For details on IPC6
score, see http://ipc.informatik.uni-freiburg.de.

Planning program IPC6 score (#solved) Average #open pairs
Structure |δ| +pref. –pref. +pref. –pref.

Storage
1C[50] 50 20 (20) 6.13 (20) 51.4 107
SC[26] 50 20 (20) 0.17 (2) 81.7 2934
CD[8] 56 20 (20) 0.80 (4) 228.5 3081

ZenoTravel
1C[50] 50 20 (20) 6.81 (20) 51.3 63.7
SC[26] 50 20 (20) 1.31 (7) 88.5 2454
CD[8] 56 20 (20) 0.0 (0) 281 3040

Table 1: IPC score, number of solved problems (in parenthesis)
and average number of generated open pairs of RealizePlanProg
with and without using goal preferences for programs with struc-
tures 1C[50], SC[26] and CD[8] in Storage and ZenoTravel.

planning-based algorithm, using goal constraints and pref-
erences, and provided (preliminary) experimental evidence
of its effectiveness, by comparison with a previous approach
that uses techniques for synthesis of LTL specification.

Several research directions remain open. From a theo-
retical perspective, future work includes (i) the study of the
problem complexity for deterministic domains, while, from
a practical viewpoint, (ii) a larger experimental study using
other planners in place of LPG and considering more com-
plex domains and structures of program transition relation.

References
Baier, J. A., and McIlraith, S. 2006. Planning with temporally
extended goals using heuristic search. In Proc. of ICAPS-06.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2010. Agent program-
ming via planning programs. In Proc. of AAMAS-10.
Gerevini, A., E.; Haslum, P.; Long, D.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners.
Artificial Intelligence 173(5-6):619–668.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to effi-
cient planning with numerical fluents and multi-criteria plan qual-
ity. Artificial Intelligence 172(8-9):899–944.
Kabanza, F., and Thiébaux, S. 2005. Search control in planning
for temporally extended goals. In Proc. of ICAPS-05.
Long, D., and Fox, M. 2003. The 3rd international planning com-
petition: Results and analysis. JAIR 20:1–59.
Pnueli, A., and Rosner, R. 1989. On the Synthesis of a Reactive
Module. In Proc. of POPL-89.
Pnueli, A., and Shahar, E. 1996. A platform for combining deduc-
tive with algorithmic verification. In Proc. of CAV-96.

326

