
Dynamic State-Space Partitioning
in External-Memory Graph Search

Rong Zhou
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

rzhou@parc.com

Eric A. Hansen
Dept. of Computer Science and Eng.

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

The scalability of optimal sequential planning can be im-
proved by using external-memory graph search. State-of-the-
art external-memory graph search algorithms rely on a state-
space projection function, or hash function, that partitions the
stored nodes of the state-space search graph into groups of
nodes that are stored as separate files on disk. Search per-
formance depends on properties of the partition; whether the
number of unique nodes in a file always fits in RAM, the num-
ber of files into which the nodes of the state-space graph are
partitioned, and how well the partition captures local structure
in the graph. Previous work relies on a static partition of the
state space, but it can be difficult for a static partition to simul-
taneously satisfy all of these criteria. We introduce a method
for dynamic partitioning and show that it leads to improved
search performance in solving STRIPS planning problems.

Introduction

Recently-developed algorithms for external-memory graph
search, including structured duplicate detection (Zhou &
Hansen 2004; 2006b; 2007) and hash-based delayed dupli-
cate detection (Korf & Schultze 2005; Korf 2008), rely on a
hash function, or equivalently, a state-space projection func-
tion, that partitions the nodes of the state-space search graph
into buckets of nodes that are stored as separate files on disk.
For both structured duplicate detection and hash-based de-
layed duplicate detection, the state-space projection function
must satisfy similar criteria. First, the set of unique nodes in
each bucket must fit in RAM. In addition, for best perfor-
mance, nodes should be relatively evenly distributed among
buckets and buckets should be relatively full. Finally, search
efficiency depends on how well the state-space projection
function captures local structure in the graph, which takes
the following form; for any bucket of nodes, successor nodes
are found in only a small number of other buckets.

Finding a projection function that satisfies all of these
criteria to achieve the best search performance presents a
challenge. Korf relies on handcrafted projection functions
(which he calls hash functions) that are tailored to specific
search domains with well-understood structure. Zhou and
Hansen (2006b) describe how to automatically generate an
appropriate projection function by heuristic-guided greedy

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search through the space of possibilities. Both approaches
have relied on static projection functions that do not change
during the progress of the search, but this has drawbacks. It
is relatively easy to design a static partition that captures lo-
cal graph structure (assuming local structure is present), but
difficult to predict in advance the number of nodes that will
map to each bucket of such a partition; in practice, the distri-
bution of nodes to buckets can be very uneven. It is also easy
to use a randomized hash function to create a static partition
that evenly distributes nodes among buckets, but a random-
ized hash function does not capture any local structure, since
it allows nodes in one bucket to have successor nodes in any
other random bucket. In short, it can be difficult to design
a projection function that both captures local structure and
evenly distributes nodes among buckets.

In this paper, we describe an approach to improving the
performance of structured duplicate detection – and, by im-
plication, hash-based delayed duplicate detection – by dy-
namically adjusting the projection function in the course of
the search. This allows the search algorithm to monitor the
distribution of nodes in buckets at runtime, and modify the
projection function to improve search performance. In case
the set of nodes in a bucket does not fit in RAM, the algo-
rithm changes the partition so that the search can continue.
Dynamic adjustment of the state-space projection function
also can even out the distribution of nodes to buckets, while
still capturing local structure in the state-space search graph.
We show that the overhead for dynamically re-partitioning
the state space is modest, and, in practice, it is more than
compensated for by an improvement in the space and time
complexity of the search.

Motivation and background

To motivate an external-memory approach to heuristic-
search planning, we conducted experiments running state-
of-the-art sequential optimal planners including the Fast-
Downward planner (Helmert 2006) and the breadth-first
heuristic search planner (BFHSP) (Zhou & Hansen 2006a),
to see how fast these planners can expand and generate
search nodes. To simplify our experiments, we ran these
planners in brute-force search mode with h = 0 (the blind
heuristic, although technically it may return a value of 0 for
goal states and 1 for all other states), since results from the
most recent Planning Competition have indicated that unin-

290

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

formed breadth-first search is quite competitive, in terms of
the number of solved problems, against all the other sequen-
tial optimal planners equipped with state-of-the-art admissi-
ble heuristics (Helmert, Do, & Refanidis 2008).

Table 1 shows the brute-force search speed of these two
planners. Our results indicate that it only takes about 4 ∼ 8
minutes for FastDownward to use up 4 GB of RAM using
only one of the eight Intel Xeon 3.0GHz cores that our ma-
chine has. The speed of BFHSP is even faster, generating
states about 3 times faster than FastDownward on average,
also using a single core. In other words, both planners can
run out of RAM in just a few minutes without resorting to
parallelization. Of course, once planners begin to take ad-
vantage of multi-core processors, they may run out of RAM
even sooner.

To scale up heuristic-search planners, we need to develop
I/O-efficient search algorithms that can leverage the vast
storage capacity of magnetic as well as solid-state drives
that are increasingly popular. For background on disk-based
search, we review and compare hash-based delayed dupli-
cate detection and structured duplicate detection.

Both techniques use a state-space projection function to
partition the stored nodes of a state-space search graph into
buckets, where each bucket of nodes is stored in a sepa-
rate file. The projection function is a many-to-one mapping
from the original state space to an abstract state space, in
which each abstract state corresponds to a set of states in the
original state space; thus, an abstract state corresponds to a
bucket. A projection function can be defined by selecting a
subset of state variables; states that have the same values for
this subset of variables map to the same bucket. A projection
function captures local structure in a graph if for any bucket
of nodes, successor nodes are found in only a small number
of other buckets, called its neighbors. In other words, it cap-
tures local structure when the largest number of neighbors of
any bucket is small relative to the total number of buckets.

Given a state-space projection function, we can construct
an abstract state-space graph as follows: for any two abstract
nodes, there is a arc from one abstract node to the other if
and only if there is a node in the first with a successor node
in the second, under an action corresponding to the arc. A
projection function captures local structure in a graph if the
largest out-degree of any abstract node is small relative to
the total number of abstract nodes. This means that for any
bucket of nodes, successor nodes are found in only a small
number of other buckets.

Hash-based delayed duplicate detection

Korf introduced hash-based delayed duplicate detection
(DDD) to avoid the overhead of sorting-based DDD, which
relies on external sorting of files to detect and remove du-
plicate nodes. Hash-based DDD uses two hash functions,
where the first corresponds to what we call a state-space
projection function. As new states are generated they are
placed into separate files based on this first hash function.
This guarantees that all duplicate nodes end up in the same
file. To remove duplicates from a file, the file is read into a
hash table that fits in RAM; associated with this hash table
is the second hash function. Duplicate nodes that map to the

FastDownward BFHSP
Problem Exp Gen Sec Exp Gen Sec

logistics-9 23M 28M 400 30M 360M 111
depots-13 12M 193M 307 20M 329M 200
gripper-8 23M 106M 200 50M 229M 88
driverlog-14 18M 225M 205 11M 144M 107
blocks-10 22M 98M 237 36M 149M 76
satellite-5 10M 340M 449 7M 236M 89
freecell-5 11M 78M 264 37M 259M 1,007

Table 1: Brute-force search speed of sequential optimal
STRIPS planners. Columns show the number of nodes ex-
panded (Exp) and generated (Gen) in millions, and the CPU
seconds (Sec) for FastDownward and a breadth-first heuris-
tic search planner (BFHSP) that uses structured duplicate
detection.

same slot of this hash table are “merged.” Finally, the con-
tents of this hash table are written back to disk as a file of
unique nodes.

Consider a breadth-first search algorithm that expands one
level of the search space at a time. The files at the current
level of the search space contain no duplicate nodes, and
are called expansion files. As the nodes in each of these
files are expanded, their successor nodes are written to files
at the next depth of the search space, with the value of the
first hash function determining which file they are written
to. Since these files contain duplicate nodes that will be re-
moved in the merge phase of the algorithm, they are called
merge files. Because expanding all files at the current level
before merging any files at the next level could require a
large amount of extra disk space to store all of the dupli-
cate nodes, Korf (2005) proposes to interleave expansion
and merging. This is possible only if the projection func-
tion captures local structure in the state-space search graph;
that is, it depends on the nodes in each merge file being gen-
erated from only a small number of expansion files. As soon
as all the expansion files that have successors in a particular
merge file have been expanded, duplicates can be removed
from the merge file (by copying the file into a hash table
in RAM) even if all expansion files in the current level of
the search space have not yet been expanded. To save disk
space, merging duplicates in a file is given priority over ex-
panding another file.

Structured duplicate detection

Zhou and Hansen (2004) describe an alternative strategy
for external-memory graph search called structured dupli-
cate detection (SDD). To facilitate comparison of SDD to
hash-based DDD, we describe a form of SDD that uses a
technique called edge partitioning (Zhou & Hansen 2007).
This will help explain why the state-space projection func-
tion used by both approaches must satisfy similar criteria.

Like hash-based DDD, SDD uses two “hash functions.”
It partitions the nodes in each level of the search space into
separate files based on the first hash function, which is the
projection function. For each file, it expands the nodes con-
tained in the file and writes the successor nodes to files in the
next level of the search space. The key difference between

291

SDD and hash-based DDD is that SDD does not delay du-
plicate detection; all duplicate nodes are detected and elim-
inated as soon as they are generated, without writing any
duplicate node to disk. In its original form, SDD accom-
plishes this by copying the duplicate-detection scope of the
currently-expanding file into a hash table in RAM associ-
ated with the second hash function. The duplicate-detection
scope consists of all nodes in any of the neighbor files of
the expanding file. Since this requires the nodes in multiple
files to fit in RAM at once, this form of SDD has a larger
internal-memory requirement than hash-based DDD, if they
both use the same projection function. (Hash-based DDD
never requires more than one file of unique nodes to fit in
RAM at once.)

Edge partitioning reduces the internal-memory require-
ment of SDD in the following way. If the duplicate-detection
scope of an expansion file does not fit in RAM, then one or
more of the neighbor files of the current expansion file are
not copied into RAM. Instead, when expanding the nodes in
the expansion file, the successor nodes that map to one of
these neighbor files are simply not generated. After every
node in the expansion file is expanded, the ignored neighbor
file(s) are copied into RAM, replacing the neighbor files that
were previously in RAM, and the nodes in the same parent
file are expanded again. This time, the successor nodes that
mapped to one of the neighbor files that is no longer in RAM
are not generated, and only the successor nodes that map to
the neighbor file(s) in RAM are generated and saved, as long
as they are not duplicates. Thus, by incrementally expand-
ing the nodes in a file, the internal-memory requirements of
SDD can be reduced to the point where no more than one
(neighbor) file needs to be stored in RAM at once, the same
as for hash-based DDD. It is a classic time-space tradeoff;
the amount of RAM that is required is reduced in exchange
for the increased time complexity of node re-expansions.

If SDD with edge partitioning uses the same projection
function as hash-based DDD, it is clear they have the same
peak RAM requirement – the amount of RAM required to
store all the unique nodes in the largest file. But the two ap-
proaches offer different tradeoffs. Hash-based DDD incurs
extra time and space overhead for writing all duplicate nodes
to disk and removing them in a later merge step. SDD with
edge partitioning incurs the extra time overhead of having to
read the same expansion file multiple times, if a duplicate-
detection scope does not fit in RAM.

Comparison of approaches

As for disk storage, hash-based DDD always needs at least
as much disk space as SDD, since both approaches store
all unique nodes. In addition, hash-based DDD needs disk
space to store duplicate nodes. How much additional disk
storage it needs depends on how well the projection function
captures local structure in the state-space search graph. If lo-
cal structure is leveraged to allow interleaving of expansion
and merging, it may need very little additional disk space.
In the worst case, when merging of files must be postponed
until all files in the current layer are expanded, it could re-
quire much more disk storage than SDD, by a factor equal
to the ratio of duplicate nodes to unique nodes. Note that if

the projection function does not capture any local structure,
both the internal memory requirement and the disk storage
requirement of SDD with edge partitioning remain the same;
only its time complexity increases due to incremental node
expansions and multiple reads of the same expansion file.

Comparing the time complexity of hash-based DDD and
SDD is more challenging, but we can make some general
remarks about their relative advantages and disadvantages.
Both approaches perform extra work that is not performed
by the other approach, and that is what we compare. For
hash-based DDD, the extra work is writing all duplicate
nodes to disk and then eliminating them in a later merge
step that copies the nodes in each merge file back to RAM,
eliminates duplicates, and writes an expansion file of unique
nodes. For SDD with edge partitioning, the extra work con-
sists of incremental node expansions and reading the same
file from disk multiple times. The extra work performed
by hash-based DDD is proportional to the ratio of duplicate
nodes to unique nodes in the search space, which is problem-
dependent. The extra work performed by SDD depends on
how much local structure is captured by the projection func-
tion, since the number of times a file may need to be read
from disk is bounded above by the number of its neighbor
files.

Hash-based DDD may have an advantage in time com-
plexity when there are few duplicates relative to unique
nodes in the search space. (An example of such a prob-
lem would be the Rubik’s Cube search problem used a test
case by Korf (2008).) SDD may have an advantage when
the ratio of duplicates to unique nodes is large, and the pro-
jection function captures local structure in the state-space
search graph. If the projection function does not capture any
local structure, there may be a blowup in the time complex-
ity of SDD; but in this case, there could be a corresponding
blowup in the disk space requirements of hash-based DDD.
The best approach is likely to be problem-dependent. Our
concern in this paper is not to establish which approach is
better. The point of our comparison is to show that both ap-
proaches rely on a state-space projection function that must
satisfy the same criteria. It follows that the method for dy-
namic state-space partitioning introduced in this paper can
be effective for both approaches. Our experimental results
will demonstrate the effectiveness of dynamic partitioning
for SDD.

Criteria of a good projection function

As we have seen, the projection function used in external-
memory graph search should capture local structure in the
graph. For hash-based DDD, this allows interleaving of ex-
pansion and merging. For SDD with edge partitioning, it
limits the time overhead of incremental expansions.

In addition, and more critically, the projection function
should ensure that the set of unique nodes in each file fits
in a hash table in RAM. One way to ensure this is to use a
high-resolution projection function that partitions the nodes
of the state-space search graph into so many files that each
is guaranteed to fit in RAM. But partitioning the state space
into too many files can degrade search performance. Be-
sides decreasing the average size of a file, the typically un-

292

even distribution of nodes among files means that many files
could be empty or nearly empty. The search algorithm also
needs to maintain a table in RAM that keeps track of all files,
whether they are open or not, whether they have a write or
read buffer, their status as an expansion or merge file (in
hash-based DDD), a list of their neighbor files, etc., and the
size of this table can grow exponentially with the resolution
of the projection function. Refining the partition also tends
to increase the number of neighbors of a file. In hash-based
DDD, this means that more file buffers must be maintained
to allow generated nodes to be written to their corresponding
file. For SDD with edge partitioning, it could lead to more
incremental expansions. In general, increasing the resolu-
tion of the projection function reduces the peak RAM con-
sumption of the search algorithm in exchange for an increase
in its running time, for all of these reasons.

Thus, it is generally not enough to ensure that the set of
unique nodes in each file fits in RAM. It is also important
to use as coarse a partition as possible, so as not to degrade
search performance too much. Given an uneven distribu-
tion of nodes among files, however, a coarse partition in-
creases the risk that the set of unique nodes in a particular
file may not fit in RAM. This motivates the approach to dy-
namic state-space partitioning that is developed in this paper,
which will allow us to manage this tradeoff more effectively.
It will let us find the coarsest partition that still allows the
largest file to fit in RAM.

Although the issues we address are important for the per-
formance of hash-based DDD, we should clarify that they
do not arise for test cases for which Korf (2008) reports
experimental results. For Rubik’s Cube, he reports results
for (partial) breadth-first search that does not use a heuris-
tic. For search problems involving sliding-tile puzzles and
the four-peg Towers of Hanoi, Korf uses handcrafted hash
functions that are perfect and invertible, allowing the use
of direct-address tables in memory that just need to store a
few bits of information for each entry, instead of the entire
state description. This allows him to partition the nodes of
the state-space search graph into sufficiently many files (still
hundreds of millions of files) that the maximum number of
unique nodes in each file is guaranteed to fit in the direct-
address table in RAM. But in general, perfect and invertible
hash functions are not possible. In particular, they are not
feasible for either domain-independent planning or model
checking.

Edelkamp and Sulewski (2008) make this point about
model checking. An application of hash-based DDD to
model checking is described by Evangelista (2008). Instead,
the hash table must store the complete state description with
each entry, in order to resolve collisions. In this situation, it
is not possible to ensure that all the nodes in a bucket at any
point in the search will fit in RAM. Since it is usually un-
realistic for the projection function to partition the nodes of
the search graph into so many files that it is possible to guar-
antee that the set of all possible nodes that map to a bucket
can fit in RAM at once, an open-address hash table is used
instead that allows collisions. The hope is that the actual
nodes in a bucket at any point during the search will fit in
RAM. Since the number of nodes that will be generated and

stored in any file is not known until run time, it motivates a
dynamic approach to state-space partitioning.

Pathological state-space projection functions

Dynamic partitioning is useful when it is difficult to predict
the distribution of nodes in buckets, and the primary rea-
son it is difficult to predict the distribution is because it is
difficult to predict reachability. From different start states,
different sets of states may be reachable. In heuristic search,
the choice of heuristic also affects which states are reach-
able. In frontier search, which saves memory by only storing
nodes on the frontier of the search, the distribution of nodes
among buckets varies with the depth of the search, because
reachability varies with search depth.

To illustrate the effect of reachability on the distribution
of nodes among buckets in heuristic search, we use the 15-
Puzzle shown in Figure 1 as an example. Suppose the state-
space projection function hashes a node to a bucket based
on the position of tiles 3, 7, 11, 12, 13, 14, and 15 (shown as
gray tiles). Since there are 16!/9! = 57, 657, 600 differ-
ent combinations for the positions of these 7 gray tiles, each
bucket should get the fraction 57, 657, 600−1 = 1.73×10−8

of the total number of nodes generated, if the distribution of
nodes is perfectly balanced among buckets. However, for
the start state shown in Figure 1, all the gray tiles are al-
ready at their goal positions. Thus an optimal solution does
not need to move these gray tiles far away from their current
positions. In fact, the white tiles in Figure 1 form a solv-
able instance of (a variant of) the 8-Puzzle with an optimal
solution length of 20, which happens to be also the optimal
solution length of the entire 15-Puzzle instance. Thus, there
is at least one optimal solution that does not require moving
a single gray tile.

Since all states that share the same positions of these gray
tiles are mapped to the same bucket, the bucket with all the
gray tiles located at their goal positions would get the major-
ity of nodes. This is because the heuristic biases the search
to move the white but not the gray tiles. Unfortunately,
this means that almost every node generated is mapped to
the same bucket. We refer to projection functions that cre-
ate highly imbalanced buckets as pathological state-space
projection functions. In this example, an external-memory
search algorithm that uses either SDD or hash-based DDD
would not save any RAM, and could potentially use more
RAM, because the partition could have orders of magnitude
more buckets than the number of search nodes expanded in
solving the problem. This example also shows that increas-
ing the resolution of the state-space projection function is
not guaranteed to work in heuristic search. If the projec-
tion function used is pathological, then creating more buck-
ets does not necessarily reduce the size of the largest bucket,
which determines the peak RAM requirements, in both SDD
and hash-based DDD.

Note that the same state-space projection function would
have worked fine if it were used inside a brute-force breadth-
first search algorithm, because, in the absence of any search
bias, the search is just as likely to move the gray tiles as
it is to move the white tiles, resulting in a more balanced
distribution of nodes among buckets. However, in the exper-

293

Figure 1: Example of a pathological state-space projection
function for an instance of the 15-Puzzle. Only the positions
of the gray tiles are considered in the projection function.

imental results section, we will see that even in brute-force
breadth-first search, unreachability of states in the Sokoban
domain affects the performance of a static partition.

Dynamic state-space partitioning

Zhou and Hansen [2006b] describe an automatic state-space
partitioning algorithm for a domain-independent STRIPS
planner that uses external-memory graph search with SDD.
The projection function that partitions the state space is de-
fined by selecting a subset of state variables. Beginning
with the null set of variables, the algorithm performs greedy
search in the space of projection functions by selecting at
each step a multi-valued variable (or a related group of
Boolean variables) that maximizes the locality of the parti-
tion, where locality is defined as the largest number of neigh-
bors of any bucket divided by the total number of buckets.
This measure of locality is a good objective function for the
greedy search under the assumption that the projection func-
tion evenly partitions the stored nodes of the graph. But as
shown in our previous example (and our experiments will
show) this assumption is an over-idealization; in practice,
the distribution of nodes among buckets can be very uneven.

We can improve on this static approach by introducing a
dynamic partitioning algorithm that monitors the distribu-
tion of nodes among buckets in the course of the search and
modifies the projection function to adapt to the distribution.
The dynamic partitioning algorithm searches for a projec-
tion function that both captures local structure and keeps the
size of the largest bucket of nodes as small as possible – in
particular, small enough to fit in RAM. The algorithm we
describe is simple and could be improved in obvious ways,
but it is sufficient to show the effectiveness of the approach.

Like the static partitioning algorithm, the dynamic parti-
tioning algorithm is greedy and adds a new state variable to
the projection function each iteration. In the initial iteration,
no state variables have been selected and the partition con-
sists of a single bucket for all nodes. For each bucket in the
partition, it keeps a vector of counters, one for each state
variable that has not yet been selected. It scans all generated
nodes and computes values for the counters, as follows. As
it scans each node, it maps it to one of the buckets of the par-
tition created in the previous iteration. Then, for each state
variable that has not yet been selected and the correspond-
ing bucket in a refined partition, it determines whether the

Vars Values Nodes

{X} {X = 1} {a, b}
{X = 2} {c, d}
{X = 3} {e, f}

{Y } {Y = 4} {a, c, e}
{Y = 5} {b, d, f}

{Z} {Z = 6} {a, b, c, d}
{Z = 7} {e, f}

Table 2: First iteration of dynamic partitioning.

Vars Values Nodes

{X,Y } {X = 1, Y = 4} {a}
{X = 1, Y = 5} {b}
{X = 2, Y = 4} {c}
{X = 2, Y = 5} {d}
{X = 3, Y = 4} {e}
{X = 3, Y = 5} {f}

{X,Z} {X = 1, Z = 6} {a, b}
{X = 1, Z = 7} ∅
{X = 2, Z = 6} {c, d}
{X = 2, Z = 7} ∅
{X = 3, Z = 6} ∅
{X = 3, Z = 7} {e, f}

Table 3: Second iteration of dynamic partitioning.

node maps to this potential bucket. If so, it increments the
corresponding counter. At the end of the iteration, the algo-
rithm selects the state variable which results in the greatest
reduction in the size of the largest bucket (and also captures
locality in the state-space graph) and adds it to the projec-
tion function. This refines the partition. Then the process re-
peats, with new counters. The algorithm terminates when ei-
ther the size of the largest bucket is below a threshold or the
maximum number of buckets is reached. It checks whether
the partition found by the dynamic algorithm is significantly
better than the partition used to organize the current set of
files. If so, it creates a new set of files based on the new par-
tition and copies the nodes on disk to the new files. To save
disk space, a file that corresponds to an old bucket is deleted
immediately after all of its nodes are moved to their new
buckets. Thus, dynamically changing the partition barely
increases the peak disk space requirements of the search al-
gorithm; its effect is to reduce the peak RAM requirements.

Example An example illustrates how the greedy dynamic
partitioning algorithm works. Suppose a search problem
has three state variables: X ∈ {1, 2, 3}, Y ∈ {4, 5}, and
Z ∈ {6, 7}. The algorithm has generated and stored 6 states
(encoded in 〈X,Y, Z〉 format): a = 〈1, 4, 6〉, b = 〈1, 5, 6〉,
c = 〈2, 4, 6〉, d = 〈2, 5, 6〉, e = 〈3, 4, 7〉, and f = 〈3, 5, 7〉.
Tables 2 and 3 show the first two iterations of the algo-
rithm. In both tables, the “Vars” column shows the set of
state variables being considered for the projection function,
the “Values” column shows the assignment of values to the
state variables, and the “Nodes” column shows the set of
stored nodes whose state encoding matches the correspond-

294

ing “Values” column. In the first iteration, only three sin-
gleton state-variable sets, {X}, {Y }, and {Z}, are consid-
ered. The largest bucket size, as a result of using a single
state variable, is 2 for X , 3 for Y , and 4 for Z . Thus, at the
end of the first iteration, the state variable X is chosen for
the projection function. Since there are only two variables
Y and Z left, the second iteration only has two candidates –
the variable sets {X,Y } and {X,Z} – for the refined pro-
jection function. Clearly, the variable set {X,Y } should
be chosen, because it reduces the largest bucket size to one,
achieving a perfect balance across all buckets.

In our initial description of the algorithm, we assumed
that all nodes are stored on disk when the dynamic parti-
tioning algorithm is invoked. In fact, some nodes could be
stored only in RAM and we need to handle the case where
changing the partition requires moving nodes from RAM to
disk, or vice versa. The following four cases need to be han-
dled correctly: (1) moving a RAM node to a RAM bucket,
(2) moving a disk node to a disk bucket, (3) moving a RAM
node to a disk bucket, and (4) moving a disk node to a RAM
bucket. Furthermore, one or more RAM buckets may need
to be flushed to disk, if internal memory is exhausted in the
middle of moving nodes to their new buckets. Thus, in the
fourth case above, the algorithm needs to make sure there is
space in RAM to hold a node read from disk; if not, all the
nodes in the new bucket need to be written to disk. The pro-
cedure for handing the second case is then invoked, because
the new bucket is no longer in RAM. To save RAM, once
a bucket is flushed to disk, it is never read back into RAM
until the search resumes.

Excessive overhead for dynamic partitioning is avoided in
a couple of ways. First, since repartitioning the state space
involves the time-consuming process of moving nodes on
disk and creating new files, it is done only when the dy-
namic partitioning algorithm finds a significantly better par-
tition. (In our implementation, the reduction in the largest
bucket size must be greater than 10%.) Second, dynamic
partitioning is invoked only if there is a significant imbal-
ance in bucket sizes and the largest bucket consumes a sub-
stantial fraction of available RAM. (In our implementation,
the ratio of largest bucket size to average bucket size must be
greater than three and the largest bucket size must be greater
than half of available RAM; these choices could be tuned to
improve performance.) How often dynamic partitioning is
invoked is problem-dependent. If a good partition is found
early in the search, it may not need to be changed. This can
be viewed as choosing a partition based on a sampling of the
search space.

In each iteration, the algorithm sequentially scans the
buckets (for good I/O performance) and uses a set of coun-
ters to keep track of the number of stored nodes whose
state variable being considered (for inclusion in the abstrac-
tion) has a particular value. In progression (i.e., forward
state-space search) planning, the number of counters should
equal the number of possible legal values for the state vari-
able being considered; whereas in regression (i.e., backward
state-space search) planning there is a need for one more
counter, since the value of a state variable may not be de-

fined in regression search. Equivalently, one can compute
the value of this additional counter by subtracting the sum
of all “legal-value” counters from the total number of nodes
stored, which is easy to obtain in our system.

As the abstract search space is being refined, a vector of
counters is stored at every abstract node such that the size
of the largest bucket can be accurately computed without
actually moving the nodes to their new buckets. Of course,
once the refinement of the abstraction function is done, all
the nodes need to be moved to the new buckets where they
belong, but this is only performed in the end of the dynamic
partitioning algorithm.

A simplification of our approach is that we adopt a
uniform-resolution method of partitioning. This allows us
to reduce the size of the largest bucket and, in practice, it
also tends to even out the distribution of nodes among buck-
ets. But a variable-resolution partitioning scheme, in which
the inclusion of some state variables in the projection func-
tion depends on the values of other state variables, would
allow much more fine-grained control of the distribution of
nodes – and it would likely find a better partition that could
further reduce the time complexity of the external-memory
search.

Experimental results

We implemented dynamic state-space partitioning inside an
external-memory STRIPS planner that uses as its underly-
ing search algorithm breadth-first heuristic search (Zhou &
Hansen 2006a). Experiments were run on a Xeon 3.0 GHz
processor with 4 GB of RAM and 6 MB of L2 cache.No
parallel processing was used in the experiments.

Table 4 shows the performance of our external-memory
STRIPS planner on the 15-Puzzle. While domain-specific
solvers can find optimal solutions to randomly generated in-
stances of the 24-Puzzle, the 15-Puzzle remains a challenge
for domain-independent planners. With an accurate disjoint
pattern database heuristic, the best planner can solve only
93 of Korf’s 100 15-Puzzle instances (Haslum et al. 2007).
Here we show that with the equivalent of a basic pattern
database heuristic (same as Manhattan distance), our plan-
ner can solve the entire set. For reference, the most dif-
ficult instance (#88) can be solved by our planner in less
than an hour, storing about 350 thousand nodes in RAM
and 300 million nodes on disk. In our implementation,
each 15-Puzzle node takes 36 bytes to store. Thus, the
peak RAM consumption for storing the Open and Closed
lists is roughly 12.6 MB for solving instance #88. Without
external-memory search, it would take roughly 10.8 giga-
bytes of RAM just to store the nodes, even though the un-
derlying breadth-first heuristic search algorithm only stores
30% of the nodes expanded by A* (Zhou & Hansen 2006a).

For all instances in Table 4 and for both static and dy-
namic partitioning, the number of buckets in the partition is
3360. Dynamic partitioning uses a slight amount of extra
disk space for moving nodes on disk when the partition is
changed dynamically. Some of the extra time overhead for
dynamic partitioning is due to the partitioning algorithm it-
self. Most is due to extra disk I/O as a result of using less

295

Static partitioning Dynamic partitioning
Len RAM Disk Increm Exp Secs RAM Disk Increm Exp Secs

17 66 908,902 50,871,643 711,180,658 589 149,054 51,443,638 718,502,872 854
49 59 927,906 80,987,861 812,948,341 697 105,021 81,209,329 817,962,744 1,021
53 64 244,889 48,518,100 592,797,672 511 102,365 48,650,054 593,080,899 690
56 55 498,854 49,436,882 477,575,355 424 95,883 49,570,631 480,107,665 522
59 57 957,496 52,834,528 531,743,811 484 169,941 53,504,361 539,097,048 543
60 66 867,509 218,185,611 2,582,825,054 2,184 680,840 218,181,871 2,566,169,284 2,568
66 61 309,651 81,919,509 920,508,447 793 124,377 82,084,656 922,526,667 1,014
82 62 385,486 177,927,698 1,865,565,899 1,582 245,695 177,963,645 1,859,645,376 2,115
88 65 1,776,317 295,406,768 3,357,109,415 2,923 349,901 296,507,472 3,354,622,475 3,234
92 57 324,196 48,085,400 512,701,523 450 71,998 48,130,370 511,378,919 702

Table 4: Comparison of edge partitioning with and without dynamic state-space partitioning on the 10 hardest of Korf’s 100
15-Puzzle instances encoded as STRIPS planning problems. The number of buckets in the partition is the same for both static
and dynamic partitioning. Columns show solution length (Len), peak number of nodes stored in RAM (RAM), peak number of
nodes stored on disk (Disk), number of incremental node expansions (Exp), and running time in CPU seconds (Secs).

Static partitioning Dynamic partitioning
Problem Len Disk RAM Increm Exp Secs Buckets RAM Increm Exp Secs Buckets

blocks-14 38 381,319 37,129 10,763,944 21 2,660 8,637 13,738,732 40 2,644
gripper-7 47 2,792,790 13,000 177,532,311 506 3,726 14,999 169,318,244 298 2,568
freecell-3 18 4,279,315 151,546 107,699,115 284 1,764 35,247 101,070,199 327 1,764
depots-7 21 12,877,783 410,815 184,606,201 300 4,240 32,000 255,291,983 584 4,240
driverlog-11 19 15,780,803 89,999 233,976,409 305 3,848 75,000 299,947,271 414 2,752
gripper-8 53 14,099,800 59,999 894,274,064 1,427 4,212 50,000 857,433,260 1,210 3,210

depots-13 25 1,110,708 81,003 27,711,837 25 625 14,653 25,411,325 38 700
driverlog-14 28 26,356,967 911,288 664,087,448 775 784 472,011 544,381,999 810 616
logistics-10 42 81,728,366 8,505,120 1,434,271,308 3,267 2,744 448,343 1,961,380,522 3,959 2,940

Table 5: Comparison of edge partitioning with and without dynamic state-space partitioning on STRIPS planning domains.
Columns show solution length (Len), peak number of nodes stored on disk (Disk), peak number of nodes stored in RAM
(RAM), number of incremental node expansions (Exp), running time in CPU seconds (Secs), and the peak number of buckets.
For the first 6 problems, the planner used the max-pair heuristic; for the last 3, it used a more accurate pattern database heuristic.

RAM. The results in Table 4 show the effectiveness of dy-
namic state-space partitioning in reducing the peak RAM
requirements of the algorithm.

Figure 2 provides additional insight into why the ap-
proach is effective. With dynamic partitioning, the distribu-
tion of stored nodes among files is more concentrated around
the average file size than with static partitioning, which has
both larger files and empty files.

Table 5 shows the performance of the external-memory
planner on domains from the biennial Planning Competi-
tion. A couple interesting observations can be made. First,
peak RAM consumption for problems such as depots-7 and
logistics-10 is substantially reduced. Previously, the only
way to reduce peak RAM consumption was to use a more
fine-grained projection function that creates more buckets.
Yet in some cases, the reductions we achieved in peak RAM
consumption are a result of using a coarser partition with
fewer buckets. This shows that the resolution of the pro-
jection function, while important, is not the only factor that
determines the amount of RAM saved in external-memory
search. Our results show that there can be a large difference
in peak RAM consumption among projection functions that
have the same resolution. This illustrates the benefit of dy-
namic partitioning based on monitoring the actual distribu-
tion of nodes among buckets. The only problem instance for

which dynamic partitioning uses more RAM than static par-

Figure 2: Distribution of nodes among buckets using static
and dynamic partitioning for Korf’s 15-puzzle problem in-
stance #88. The x-axis is bucket size in number of nodes
and the y-axis is count of buckets that have a size that falls in
one of the following 7 ranges; [0, 10], (10, 102], (102, 103],
(103, 104], (104, 105], (105, 106], (106, 107].

296

Len Disk RAM Increm Exp Secs

106 205 189,096K 41,278K 46,595,322K 41,208
108 238 51,275K 28,665K 36,281,692K 24,009
137 177 51,183K 34,399K 15,178,194K 9,290

40 82 2,147,471K 13,824K 79,572,038K 102,516

Table 6: Performance of dynamic state-space partitioning
in STRIPS planning. The first 3 are Microban instances
(Haslum et al. 2007) solved with h = 0; the last is a 24-
Puzzle instance (Korf & Felner 2002). (1K = 1000 nodes)

titioning is gripper-7. In this case, we intentionally forced
the dynamic partitioning algorithm to use a coarser projec-
tion function in order to see if it could still find a good
partition. Note that with fewer buckets for gripper-7, the
external-memory search algorithm runs 70% faster in return
for a 15% increase in peak RAM consumption.

Table 6 shows the performance of dynamic partitioning on
four hard STRIPS problems. The first three are Microban
(“introductory” Sokoban) instances (Haslum et al. 2007).
To show the benefit of our approach when the heuristic is
weak, we used brute-force breadth-first search. Surprisingly,
dynamic partitioning with h = 0 not only solved #137, an
instance that needs the most number of node expansions ac-
cording to (Haslum et al. 2007), it also solved #108, a pre-
viously unsolved instance. Static partitioning works poorly
due to the abundance of unreachable states in the search
graph of Sokoban. Because it is generally intractable to
determine if states are unreachable (Zilles & Holte 2009),
static partitioning cannot take this into account, resulting in
an uneven distribution of nodes. The last row of Table 6 cor-
responds to a 24-Puzzle instance #40 (Korf & Felner 2002).
To our knowledge, this is the first time a graph-search al-
gorithm with full duplicate detection was able to solve a
non-trivial instance of the 24-Puzzle using the Manhattan
distance heuristic. This instance may even be a challenge
for a domain-specific graph-search algorithm to solve, since
it requires expanding tens of billions of unique nodes and
storing a frontier that consists of over two billion unique 24-
Puzzle states – in fact, we are unaware of a domain-specific
24-Puzzle solver that can solve the same instance with full
duplicate detection and the same heuristic. Finally, note that
both the first and the last instance in Table 6 could not be
solved using static partitioning, with available RAM.

The columns labeled “RAM” in Tables 4, 5 and 6, which
show the peak RAM nodes for structured duplicate detec-
tion, also show the peak RAM nodes for hash-based delayed
duplicate detection if it uses the same search algorithm and
state-space projection function. Thus, as far as reducing
peak RAM consumption is concerned, dynamic partitioning
improves SDD and hash-based DDD equally.

Conclusion

For state-of-the-art external-memory graph search algo-
rithms that partition the stored nodes of a state-space search
graph into buckets that are stored as separate files on disk,
we have introduced an approach to dynamic state-space par-
titioning in external-memory graph search that substantially

reduces peak RAM consumption in exchange for a modest
increase in running time. It can also reduce running time
while leaving peak RAM consumption roughly the same. In
some cases, it can even reduce both RAM consumption and
running time. It achieves improved performance and a more
favorable time-memory tradeoff than static partitioning be-
cause the partition is adapted to the actual distribution of
stored nodes. Although the timing results of our experiments
are for structured duplicate detection only, the approach can
also be used to reduce the peak RAM requirements of hash-
based delayed duplicate detection.

Although we have focused on external-memory search,
we expect a similar approach to be effective for parallel
graph search. For parallel search, dynamic partitioning lim-
its the size of the largest sub-problem(s) created, effectively
reducing the need for load balancing. As the number of
cores packaged in the same processor increases, the issue
of load balancing can become harder. The techniques de-
scribed here suggests a new way to attack the load balancing
problem in parallel graph search that does not increase the
synchronization overhead among multiple cores.

References
Edelkamp, S., and Sulewski, D. 2008. Model checking via delayed
duplicate detection on the GPU. Technical report, University of
Dortmund.

Evangelista, S. 2008. Dynamic delayed duplicate detection for
external memory model checking. In Proc. of the 15th Int. SPIN
workshop, 77–94.

Haslum, P.; Helmert, M.; Bonet, B.; Botea, A.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. of the 22nd Confer-
ence on Artificial Intelligence (AAAI-07), 1007–1012.

Helmert, M.; Do, M.; and Refanidis, I. 2008. IPC 2008:
Deterministic competition. http://ipc.informatik.

uni-freiburg.de/Results.

Helmert, M. 2006. The fast downward planning system. Journal
of Artificial Intelligence Research 26:191–246.

Korf, R., and Felner, A. 2002. Disjoint pattern database heuristics.
Artificial Intelligence 134(1–2):9–22.

Korf, R., and Schultze, P. 2005. Large-scale parallel breadth-first
search. In Proc. of the 20th National Conference on Artificial In-
telligence (AAAI-05), 1380–1385.

Korf, R. 2008. Linear-time disk-based implicit graph search. Jour-
nal of the ACM 35(6).

Zhou, R., and Hansen, E. 2004. Structured duplicate detection
in external-memory graph search. In Proc. of the 19th National
Conference on Artificial Intelligence (AAAI-04), 683–688.

Zhou, R., and Hansen, E. 2006a. Breadth-first heuristic search.
Artificial Intelligence 170(4-5):385–408.

Zhou, R., and Hansen, E. 2006b. Domain-independent structured
duplicate detection. In Proc. of the 21st National Conf. on Artificial
Intelligence (AAAI-06), 1082–1087.

Zhou, R., and Hansen, E. 2007. Edge partitioning in external-
memory graph search. In Proc. of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07), 2410–2416.

Zilles, S., and Holte, R. 2009. Downward path preserving state
space abstractions (extended abstract). In Proc. of the 8th Sympo-
sium on Abstraction, Reformulation, and Approximation (SARA-
09), 194–197.

297

