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Abstract
Conformant planning can be formulated as a path-finding
problem in belief space where the two main challenges are
the heuristics to guide the search, and the representation and
update of beliefs. In the translation-based approach recently
introduced by Palacios and Geffner, the two aspects are han-
dled together by translating conformant problems into classi-
cal ones that are solved with classical planners. While com-
petitive with state-of-the-art methods, the translation-based
approach runs however into three difficulties. First, complete
translations are expensive for problems with high width; sec-
ond, incomplete translations can generate infinite heuristic
values for problems that are solvable; and third, aspects that
are specific to the conformant setting, such as the cardinality
of beliefs, are not accounted for.
In this work, we build on the translation-based approach but
not for solving conformant problems with a classical plan-
ner but for deriving heuristics and computing beliefs in the
context of a standard belief-space planner. For this, a novel
translation Ki

S is introduced that is always complete, but
which is sound for problems with width bounded by i. A
new conformant planner, called T1, builds then on this trans-
lation for i = 1, extending the heuristic that results with a
second heuristic obtained from invariant ‘oneof expressions’.
A number of experiments is performed to compare T1 with
state-of-the-art conformant planners.

Introduction
Conformant planning with deterministic actions is one the
simplest form of planning with uncertainty. A determin-
istic conformant problem is like a classical problem but
with many possible initial states instead of one, and a plan
is conformant when it works for each one of them. In
spite of its simplicity, the conformant planning problem is
harder than classical planning (Haslum and Jonsson 1999;
Turner 2002) and lies at the heart of recent methods for com-
puting contingent plans and deriving finite-state controllers
(Hoffmann and Brafman 2005; Bonet, Palacios, and Geffner
2009).

Conformant planning can be formulated as a path-finding
problem in belief space, where the computational chal-
lenges are the heuristics to guide the search, and the be-
lief representation and update (Bonet and Geffner 2000).
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This formulation is the basis of the most recent confor-
mant planners such as Conformant-FF, MBP, POND, and
CNF (Brafman and Hoffmann 2004; Bertoli et al. 2006;
Bryce, Kambhampati, and Smith 2006; To, Son, and Pontelli
2010). The exception is the planner T0 which is based on a
translation of conformant problems P into classical prob-
lems K(P ) that are solved by off-the-shelf classical plan-
ners (Palacios and Geffner 2009).

The translation-based approach is competitive with belief
search approaches, and is in fact an instance of them, with
beliefs over the conformant problem P encoded as states
over the translation K(P ), and heuristics over beliefs re-
duced to classical heuristics over states. In spite of its per-
formance, however, the translation-based approach runs into
three problems. The first is that complete translations, i.e.,
those in which every conformant plan for P appears as a
classical plan for K(P ), are size-exponential in the width of
P . The second, no less important, is that incomplete trans-
lations K(P ) cannot be used for heuristic guidance, as the
heuristic values that they generate can be infinite even when
the problem P is solvable. Last, aspects that are specific to
the conformant setting and that proved useful then, like the
cardinality of beliefs, seem to get lost in the translation.

In this work, we build on the translation-based approach
but not for solving conformant problems with a classical
planner but for deriving heuristics and computing beliefs in-
side a standard belief-space planner. The basis of the new
planner called T1 is a new translation Ki

S , that unlike the
translationKi considered by Palacios and Geffner, is always
tractable and complete, but not always sound. The transla-
tion Ki

S is sound however for problems P with conformant
width no greater than i. Palacios’ and Geffner’s Ki trans-
lation, on the other hand, is tractable and sound, but com-
plete for problems with width bounded by i. Thus, while Ki

gives up completeness for problems with width beyond i,
Ki

S gives up soundness then. For conformant planning this
means two things. First, that heuristics based on the new
translation Ki

S will produce infinite values only when the
problem is unsolvable. Second, that the belief literals result-
ing from this translation must be checked for validity in cer-
tain cases. The conformant planner T1 uses the translation
Ki

S for i = 1 to generate heuristic and candidate belief lit-
erals. The beliefs are then verified with a SAT engine in the
way it is done by conformant-FF (Brafman and Hoffmann
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2004). Moreover, the heuristic resulting from the translation
K1

S is extended with a second heuristic that is obtained from
invariant ‘oneof expressions’ derived from the problem. As
we will see, this second heuristic is related to both cardi-
nality heuristics (Bertoli and Cimatti 2002), and landmark
heuristics (Richter, Helmert, and Westphal 2008).

The paper is organized as follows. We start with a review
of conformant planning and the translation-based approach.
We then introduce the new translation and the conformant
planner that uses it. We finally present experimental results
and a brief discussion.

Conformant Planning
We consider deterministic conformant planning problems
P given by tuples of the form P = 〈F,O, I,G〉 where F
stands for the fluent symbols, O for a set of actions a, I for
the set of clauses over F defining the initial situation, and
G for the set of goal literals over F defining the goal. In
addition, every action a has a precondition given by a set of
fluent literals, and a set of conditional effects C → L where
C is a set of fluent literals and L is a literal. We refer to
the conditional effects C → L of an action a as the rules
associated with a, and sometimes write them as a : C → L,
where C may be empty. When L is a literal, we take ¬L to
denote the complement of L.

A state s is a truth assignment over the fluents F and a
possible initial state s of P is a state that satisfies the clauses
in I . For a state s, we write I(s) to refer to the set of atoms
(positive literals) that are true in s, and write P/s to refer
to the classical planning problem P/s = 〈F, I(s), O,G〉
which is like the conformant problem P except for the initial
state that is fixed to s.

An action sequence π = {a0, a1, . . . , an} is a classical
plan for P/s if the action sequence π is executable in the
state s and results in a goal state. Likewise, an action se-
quence π is a conformant plan for P iff π is a classical plan
for P/s for every possible initial state s of P .

The most common approach to conformant planning is
based on the belief state formulation (Bonet and Geffner
2000). A belief state b is the non-empty set of states that
are deemed possible in a given situation, and every action
a executable in b, maps b into a belief state ba. The con-
formant planning task becomes a path-finding problem in a
graph where the nodes are belief states b, the source node b0
is the belief state corresponding to the initial situation, and
the target belief states bG are those where the goals are true.

Translation into Classical Planning
The translation-based approach to conformant planning
maps deterministic conformant problems P into classical
problems K(P ) that can be solved by off-the-shelf planners
(Palacios and Geffner 2009). The approach is also closely
related to the notion planning at the knowledge level formu-
lated in (Petrick and Bacchus 2002), except that the epis-
temic encoding is derived automatically.

The simplest translation, calledK0, replaces the literals L
in P by literals KL and K¬L that aim at capturing whether
L is ‘known to be true’ and ‘known to be false’ respectively.

Definition 1 For a deterministic conformant problem P =
〈F, I,O,G〉, the translation K0(P ) = 〈F ′, I ′, O′, G′〉 is a
classical planning problem where
• F ′ = {KL,K¬L | L ∈ F},
• I ′ = {KL | L is a unit clause in I},
• G′ = {KL | L ∈ G}, and
• O′ = O with each precondition L for a ∈ O replaced

by KL, and each conditional effect C → L replaced by
KC → KL and ¬K¬C → ¬K¬L.

The expressions KC and ¬K¬C for C = L1, L2 . . . are
abbreviations for KL1,KL2, . . . and ¬K¬L1,¬K¬L2, . . .
respectively. The intuition behind the translation is simple:
first, the literal KL is true in I ′ if L is known to be true in
I; otherwise it is false. This removes all uncertainty from
K0(P ), making it a classical planning problem. In addition,
to preserve soundness, each rule a : C → L in P is mapped
into two rules: a support rule a : KC → KL, that ensures
that L is known to be true when the condition C is known to
be true, and a cancellation rule a : ¬K¬C → ¬K¬L that
guarantees that K¬L is deleted (prevented to persist) when
action a is applied and C is not known to be false.

The translation K0(P ) is sound as every classical plan
that solves K0(P ) is a conformant plan for P , but incom-
plete, as not all conformant plans for P are classical plans
for K0(P ).

The more general translation scheme KT,M builds on K0

using two parameters: a set T of tags t and a set M of
merges m. The tags and the merges are used to account
for conformant plans that reason by cases; indeed, the tags
are used to introduce assumptions about the initial situation
that are eliminated via the merges. The new literalsKL/t in
the translation express that L is known to be true if t is true
in the initial situation. A merge m is a non-empty collection
of tags t in T that stands for the Disjunctive Normal Form
(DNF) formula

∨
t∈m t. A merge m is valid when one of

the tags t ∈ m must be true in I . The translation KT,M is
sound as long as the merges in M are valid. A merge m for
a literal L in P translates into the ‘merge action’ with single
effect ∧

t∈m
KL/t → KL .

The set of ‘merge actions’ associated with the set of
merges M is referred to as OM . The translation KT,M (P )
is the basic translation K0(P ) ’conditioned’ with the tags t
in T and extended with the set OM of actions. The literals
KL are assumed to stand for the literalsKL/twhere t is the
‘empty tag’. The empty tag expresses no assumption about
the initial situation and is assumed implicitly in every set T .

Definition 2 Let P = 〈F, I,O,G〉 be a conformant prob-
lem, then KT,M (P ) = 〈F ′, I ′, O′, G′〉 is a classical plan-
ning problem where
• F ′ = {KL/t,K¬L/t | L ∈ F and t ∈ T},
• I ′ = {KL/t | I, t |= L},
• G′ = {KL | L ∈ G}, and
• O′ = OM ∪ O with each precondition L for a ∈ O

replaced by KL, and each conditional effect C → L re-
placed by KC/t→ KL/t and ¬K¬C/t→ ¬K¬L/t.
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The translation KT,M reduces to the basic translation K0

when M is empty and T contains only the empty tag. For
suitable choices of T and M , the translation KT,M is both
sound and complete: sound, meaning that the classical plans
for KT,M (P ) are all conformant plans for P once merge
actions are removed, and complete, meaning that all confor-
mant plans for P yield classical plans for KT,M (P ) once
merge actions are added.

One way to get a complete translation is by associating
the tags in T with the set S0 of possible initial states of P
(in addition to the empty tag). This translation is calledKS0 ,
which is the instance of the general translationKT,M that re-
sults from setting T to S0 and having one merge in M equal
to S0 for each precondition and goal literal. The translation
KS0

is complete but exponential in the worst case. On the
other hand, the translation Ki, for an integer i ≥ 0, is expo-
nential only in i, and complete for problems P with width
bounded by i. The width of a conformant problem is related
to the maximum number of variables whose values are ini-
tially unknown, such that all of them are relevant to a certain
precondition or goal (Palacios and Geffner 2009).

A New Translation
The main limitation of the translation-based approach is
that complete translations are not feasible for problems with
large width, while incomplete translations may end up map-
ping a solvable problem into an unsolvable one. In order to
benefit from tractable translations while avoiding this lim-
itation, we take a different approach: we formulate a new
translation that is tractable and complete, but which is not
always sound. The new translation can’t be used to solve
conformant problems with a classical planner, but is effec-
tive for deriving heuristics and computing beliefs inside a
belief-space planner. The key idea is to sample and use a
polynomial number of initial states, even when their total
number is exponential.

We start with the notion of basis (Palacios and Geffner
2009). For a conformant problem P and a set of states S ⊆
S0, where S0 is the set of possible initial states of P , let P [S]
stand for the conformant problem that is like P but with the
set of initial states restricted to S. P [S] is thus equal to P
when S = S0.

Definition 3 S is a basis for P iff any conformant plan for
P [S] is a conformant plan for P .

If S is a basis for P , all states in S0 \S can be ignored, as
the plans for P [S] are plans for P , while the plans for P are
always plans for P [S]. Bases S are computationally useful
when |S| is exponentially smaller than |S0|. Palacios and
Geffner show that

Theorem 4 Conformant problems P with width bounded by
i have bases of size exponential in i even if the size of S0 is
exponential in the number of fluents.

As an example, if the only uncertainty in P is due to a
clause x1 ∨ · · · ∨xn in I , and the xk’s are the only uncertain
literals in I that are relevant to a precondition or goal literal
L (i.e., their negations ¬xk are not relevant to a precondition
or goal), then S0 will have 2n possible initial states, but the

set of n states S that make just one of the xk literals true
forms a basis for P . The proof of the theorem relies on the
following result, where the expression rel(s, L) is used to
denote the set of literals in the state s that are relevant to a
literal L:

Theorem 5 S ⊆ S0 is a basis for P if for each precondition
or goal literal L, and each state s in S0, S contains a state
s′ such that rel(s′, L) ⊆ rel(s, L).

In the example, the set S0 contains states where multiple
xk’s are true, yet S above is a basis, as for any state s in S0,
there is state s′ in S where just one of those literals xk is
true.

The notion of relevance defined by Palacios and Geffner
depends on the conditional effects, and not on the action pre-
conditions that must be known for certainty and hence do not
‘propagate’ uncertainty. The proof of Theorem 5 that relates
relevance and bases, relies on the fact that an (applicable) ac-
tion sequence achieves a literal L from a state s if it achieves
L from a state s′ with less relevant fluents; namely such that
rel(s′, L) ⊆ rel(s, L).

We will extend these results to define a novel translation
that is the old KS0

translation but applied not to P but to
P [S] for a suitable subset S of S0. Let’s define first the
translation KS(P ) where S ⊆ S0:

Definition 6 KS is KS0
but applied to P [S] rather than to

P , i.e. KS(P ) is KS0
(P [S]).

From the above definitions and the properties of K0, it’s
easy to see that

Theorem 7 The translation KS(P ) is complete.

On the other hand, the soundness of the translation de-
pends on whether S is a basis for P :

Theorem 8 KS(P ) is sound if S is a basis for P .

It follows from this that if we can define S to be a basis
for P when the width of P is bounded by i, we will guaran-
tee that the KS translation will be sound for problems with
width no greater than i, and complete for all problems. We
will denote the set of samples needed for this as Si, and we
will define this set in terms of the samples Si(L) needed for
each precondition and goal literal L.

For a fluent formula C consistent with I , let sL(C) stand
for any state that satisfies I , C, and a minimum number of
literals relevant to L. If we refer to |rel(s, L)| as the L-
rank of s or simply the rank of s, then sL(C) stands for any
lowest-ranked state that satisfies I and C. There is always
one such state, although it is not necessarily unique.

For the example above, if C is xk, the states s that satisfy
xk and no other xj literal, will have rank 1, while the states
that satisfy xk and all other xj literals will have rank n. The
expression sL(C) will thus denote any of the former states.

Let now T i(L) stand for the set of tuples t of at most i lit-
erals L′ in P that are relevant to L, are initially unknown in
P , and such that t is jointly consistent with I . These tuples
play the role of the tags in the KT,M translation, represent-
ing consistent sets of assumptions about the initial situation
that are relevant to L. For i = 0, the only tuple in T i(L) is
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t = true. The set of samples Si for any conformant problem
P and any i ≥ 0 is then defined as:

Si def
=
⋃
L

Si(L)

where L ranges over the precondition and goal literals in P ,
and Si(L) is

Si(L)
def
=
{
sL(t) | t ∈ T i(L)

}
.

In words, Si is defined to contain, for each precondition and
goal literal L in P and each tuple of assumptions (tags) t ∈
T i(L), a sample s that satisfies t and a minimum number of
literals relevant to L. Since these states are not necessarily
unique, the set Si is not unique either. This definition yields
the samples from S0 that we want:
Theorem 9 Si is a basis for P if the width of P is bounded
by i.

The proof of this involves an alternative characterization
of the notion of width. For a tuple (tag) t in T i(L), let t∗
stand for the tuple that extends t with all the literals de-
ducible from t and I , and let mi(L) stand for the subset
of tuples t in T i(L) that admit states that do not make true
additional literals relevant to L; i.e.1

mi(L)
def
=
{
t | t ∈ T i(L) such that rel (sL(t), L) ⊆ t∗

}
.

If we take mi(L) to stand for the ‘merge’ or DNF formula∨
t∈mi(L)

∧
L′∈t

L′ ,

it turns that the width of a literal L is just the minimum value
of i that renders the merge valid in I:
Theorem 10 The width w(L) of literal L is the min i value
for which the DNF formula mi(L) is entailed by I .

Recall that the width of P , w(P ), is just maxL w(L)
where L ranges over the precondition and goal literals in P .
Theorem 10 thus imply that w(P ) is the min value of i for
which mi(L) is a valid merge for any precondition or goal
L. Palacios’ and Geffner’s Ki translation is an instance of
the KT,M translation that uses these merges along with the
tags in them. The translation Ki

S below is a variation of the
KS0 translation that uses min-ranked states sL(t) associated
with the tags instead.

For proving Theorem 9: if mi(L) is valid in I , every state
s that satisfies I must also satisfy a tag t in mi(L), but then
from the definition of mi(L), for any state s′ = sL(t), we
will have that rel(s′, L) ⊆ rel(s, L), and from Theorem 4,
that the set Si(L) of states sL(t) for t ∈ mi(L) forms a basis
for P , provided that L is the only precondition or goal. Else,
the union of all such sets Si(L) is required as expressed in
the definition of Si.

Defining finally the translationKi
S(P ) asKS(P ) for S =

Si, it’s direct to prove that
1Note that while the state denoted by sL(t) is not necessarily

unique as it may denote any initial state s that satisfies t and min-
imizes |rel(s, L)|, if the relation rel(s, L) ⊆ t∗ is true for one of
them, it will be true for any other.

Theorem 11 The translationKi
S(P ) has a size that is expo-

nential in i, is complete, and is sound for problems P with
width bounded by i.

For the example above, theKi
S(P ) translation for i = 1 is

like the KS0
(P ) translation, except that the possible initial

states that make more than one xk literal true are discarded.
Thus, in this case, the effect of the translation is to replace
the inclusive disjunction x1 ∨ · · · ∨ xn by the exclusive dis-
junction oneof(x1, . . . , xn). The result would be different,
however, if some negative literals ¬xk were relevant to a
precondition or goal.

While the T0 planner uses the K1(P ) translation that is
complete for problems with width bounded by 1 and is al-
ways sound, the new planner T1 uses the K1

S(P ) translation
that is sound for problems with width bounded by 1 and is
always complete. The set S1 of samples is obtained from
its definition by computing the lowest ranked states sL(L′)
that satisfy I ∪ {L′} for various literals L′. These states are
computed by compiling I into d-DNNF (Darwiche 2002),
a logical form that allows the computation of a number of
otherwise intractable operations, such as consistency, model
counting, and lowest ranked models, in time that is linear in
the size of the compilation (which is at worst exponential in
the number of variables, but not necessarily so).

The d-DNNF compilation is also used for selecting the
min-ranked states sL(t) when they are not unique so that the
sets Si(L) overlap as much as possible, and hence, the size
of their union Si is minimized. For example, if L and L′
are the only preconditions or goals in P , I is given by the
disjunctions x1 ∨ · · · ∨ xn and y1 ∨ · · · ∨ yn, and the only
uncertain literals relevant to L and L′ are the xk’s and yk’s
respectively, then arbitrary choices of the sets sL(xk) and
sL′(yk) may result in a sample set S1 with 2n states. On the
other hand, it is possible to choose the states sL(xk) to be
equal to the states sL(yk), e.g. by making all other x’s and
y’s false, so that the size of S1 is just n.

These optimizations are implemented by exploiting the
capabilities of the d-DNNF compilation. Other optimiza-
tions, like removing states sL(t) from Si(L), when the tag
t can be removed from the merge mi(L) without affecting
its validity, are accommodated as well. These optimizations
are aimed at minimizing the size of the sample set Si while
retaining its properties.

The T1 Planner
The conformant planner T1 uses the sample set S1 of the
K1

S(P ) translation for deriving heuristics and tentative be-
lief literals that are verified and used in the context of a
belief-space search algorithm. No verification however is
needed for problems with width 0 or 1. We present in order
the search graph, the heuristics, and the search algorithm.

Nodes and Beliefs
A node in the search graph represents a belief state and cor-
responds to a tuple n = 〈π, S,R〉, where π is the plan prefix
used to reach n from the root node of the search, S is the
sample set S1 progressed through π, and R is a set of lit-
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erals.2 The belief state bn represented by the node n corre-
sponds to the whole set S0 of initial states of P progressed
through π. This belief state is not computed explicitly but is
represented implicitly in the plan prefix π. The set of liter-
als in R are sound with respect to bn but are not necessarily
complete; i.e. R contains literals all of which are known
to be true in bn, but it does not contain in general all such
literals. Likewise, S is complete with respect to bn but not
necessarily sound; i.e., all literals true in bn are true in all
the states in S, but not the other way around; i.e.

Literals in R ⊆ Literals true in bn ⊆ Literals true in S

Still, if the problem has width bounded by 1, the set of true
precondition and goal literals coincide in bn and S, and such
literals are added to R.

The root node in the search is n0 = 〈π0, S1, R0〉, where
π0 is the empty plan, S1 is the approximation of the initial
belief set in the K1

S(P ) translation, and R0 is the set of lit-
erals known to be true in the initial situation.

The goal nodes are the nodes n = 〈π, S,R〉 where R
contains the goals of the problem.

The edges in the graph correspond to the applicable ac-
tions. An action is applicable in n = 〈π, S,R〉 when the
action preconditions are all in R. The node that results from
applying the action a is given by n′ = 〈π′, S′, R′〉 where
π′ is π with the action a appended, S′ is the result of pro-
gressing each of the states s ∈ S through a, and R′ is the set
of literals obtained by progressing the set of literals R in n
through the action a as follows: L ∈ R′ iff there is an effect
a : C → L such that C ⊆ R (L is added) or L ∈ R and
for every effect a : C ′ → ¬L, R contains the complement
of a literal in C ′ (L persists). The computation of R′ from
R corresponds to the application of the support and cancel-
lation rules in the translation K0(P ) that involves no tags,
which corresponds in turn with the 0-approximation seman-
tics (Baral and Son 1997).

While there is no need for the set of literals R in n =
〈π, S,R〉 to include all literals true in the belief state bn for
the planner to be complete,Rmust be complete with respect
to action preconditions and goals. That is, if a goal is true
in bn or an action is applicable in bn, then the goal and the
action preconditions must be in R. For problems with width
no larger than 1, this is guaranteed as the sample set S is not
only complete then but sound, and hence the literals true in
S can be added safely toR. For problems with higher width,
on the other hand, a verification operation is carried out after
the node has been generated by looking at the samples in S,
and if necessary, by using a SAT solver as in Conformant-
FF (Brafman and Hoffmann 2004). Basically, a precondition
or goal literal L is added to R when L is true in S, and this
belief is certified by calling a SAT solver over a suitable CNF
formula. The formula corresponds to the semantics of the
action sequence π, executed from the initial situation I: I is
encoded at time 0, the conditional effects of the i-th action in
the plan prefix π are encoded at each time slice [i, i+1], and
the negation of the literal L to be tested is encoded at time

2In the implementation, the set S of progressed samples is not
stored in the nodes; rather the progression is done when required.

|π|. The literal L is true in bn iff the resulting CNF formula
is unsatisfiable.

A last operation is performed in T1 to test whether two
nodes n and n′ represent the same belief state bn = bn′ . This
test is not needed for completeness, but for saving duplicate
work. When the problem width is 0 or 1, the two nodes
n = 〈π, S,R〉 and n′ = 〈π′, S′, R′〉 can be safely collapsed
when S = S′ and R = R′. For problems with higher width,
however, an additional test is needed. Basically, n and n′
are collapsed if in addition for each possible initial state s of
the problem, the plans π and π′ result in the same state s′.
This test which is sound is performed through a single SAT
call.3 Conformant-FF performs a similar test for the same
purpose.

Classical Heuristic
We have defined the nodes of the search graph, the initial and
goal nodes, and the directed edges. It is easy to show that
the paths that connect the initial and goal nodes in the graph,
encode the conformant plans for the problem. We now fo-
cus on the heuristics for efficiently finding one such path,
not necessarily optimal. The planner T1 uses two heuristics
in combination, that we call, the classical heuristic and the
certainty heuristic for reasons that will be clear below.

The classical heuristic hC(n) for a node n = 〈π, S,R〉 is
defined as the estimated cost of the classical planning prob-
lem KS(P ). For the root node, this is the estimated cost of
the translation K1

S(P ), as S is then S1.
The estimated cost of the classical problem KS(P ) is ob-

tained from the combination of the additive and relaxed plan
heuristics (Bonet and Geffner 2001; Hoffmann and Nebel
2001), as formulated in (Keyder and Geffner 2008), where
a relaxed plan is constructed backward from the goal, by
collecting the best supporters of the atoms in the goal, and
recursively, the best supporters of the preconditions of those
supporters. The estimated cost is the number of actions in
the relaxed plan, while the helpful actions (to be used in the
search), are as in FF, the applicable actions that add a pre-
condition or goal in the relaxed plan.

Certainty Heuristic
The certainty heuristic hK(n) is defined in terms of a set
of ’oneof invariants’ given explicitly in the problem or de-
rived from it. A given oneof invariant is an exclusive dis-
junction oneof(x1, . . . , xn) in the initial situation I that is
maintained by the actions in the problem. An action main-
tains a formula, if the formula is true after the action if it
was true when the action was applied. More precisely, a

3The SAT call is over two formulas like the one above for veri-
fying if L follows from a plan prefix π from I , except that now two
disjoint formulas are built, encoding the plan prefixes π and π′,
the first involving fluent variables xi for atoms x in the problem,
0 ≤ i ≤ |π|, and the second with primed variables x′k for atoms x
in the problem, 0 ≤ k ≤ |π′|. Then the two formulas are joined
along with two other formulas built as follows. The first, establish-
ing the equivalence between the x variables at the beginning of the
plans, ∧x(x0 ≡ x′0), the second postulating a non-equivalence at
the end of the plans, ∨x¬(x|π| ≡ x′|π′|), where x ranges in both
cases over the fluents of the problem.
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oneof(x1, . . . , xm) expression is invariant if all pairs xi,
xk in it are mutex for i 6= k, and every action a with an
effect C → ¬xi, has an effect C → xk, for 1 ≤ i, k ≤ m.
When a oneof(x1, . . . , xm) expression in I is not invari-
ant, an attempt is made to find a set of literals y1, . . . , yl
such that the expression oneof(x1, . . . , xn, y1, . . . , yl) is
true in I (i.e., that each yi is mutex with the other lit-
erals) and invariant. For example, a problem with an
object o in an unknown grid cell that can be picked up
by a robot and placed in a box, can be encoded with a
oneof(at(o, c1), . . . , at(o, cn)) expression in I that is not
invariant, but which can be completed into the invariant
oneof(at(o, c1), . . . , at(o, cn), hold(o), at(o, box)). The
computation of these completions is simple and follows
the computation of similar invariants in classical planning
(Helmert 2009).

The certainty heuristic hK(n) for a node n = 〈π, S,R〉 is
then defined as the number of literals xi in oneof invariants
with a literal in the goal, such that ¬xi is not in R. In other
words, if we take the literals xi in the invariants as represent-
ing the values X = Xi of some multivalued variable X that
is mentioned in the goal, hK(n) simply counts the possible
values of such variables that have not yet been knocked out
of the current belief. Indeed if xi is in the goal, then at the
end of any conformant plan xi must be known, and so must
the negation of the literals xk that are mutex with xi.

For example, in a 1× 10 corridor where a robot can move
either left or right, and 1 and 10 are the left and rightmost
positions, the oneof(x1, . . . , x10) expression is an invariant
encoding the different positions of the robot. If the initial
position is either 1 or 2 on the left, and the goal is to reach
position 5, then hK(n0) for the root node will be 2. The best
action according to the certainty heuristic would be to move
left, away from the goal, reducing the heuristic and the un-
certainty by 1. On the other hand, the best action according
to the classical heuristic would be to move right, towards the
goal, which however cannot be achieved if the uncertainty is
not first removed.

The certainty heuristic has relation to two heuristics used
in planning that appeared to be completely orthogonal up to
now. One is the cardinality heuristic that simply counts the
number of states in a belief state (Bertoli and Cimatti 2002).
The other is the landmark heuristic, popularized by the clas-
sical planner LAMA (Richter, Helmert, and Westphal 2008),
that counts the number of unachieved landmarks, where a
landmark is an atom that is made true by all plans (Hoff-
mann, Porteous, and Sebastia 2004). The relation to the car-
dinality heuristic is very direct in problems where all the un-
certainty comes from a set of multi-valued variables that ap-
pear in the goal and whose initial value is unknown. In such
cases, the target belief states have cardinality one, and hence
it makes sense to establish a preference for belief states with
lower cardinality. However, while the cardinality heuristic
takes the product of the cardinalities of the beliefs over the
variables, the certainty heuristic takes the sum. This sum
corresponds to the number of literals that must be achieved
in all the plans; namely, the goal literals xi, along with the
negation of all literals xk that are mutex with xi. These lit-
erals are like epistemic landmarks, meaning that any confor-

mant plan must achieve all these literals with certainty.4

Search Algorithm
The two heuristics hC(n) and hK(n) are used in the con-
text of a multi-queue best first search algorithm follow-
ing the classical planners FD and LAMA (Helmert 2006;
Richter, Helmert, and Westphal 2008). In T1, this is a best
first search with three open lists Q1, Q2, and Q3. Children
nodes obtained using helpful actions or actions that decrease
the value of the certainty heuristic are placed in the first two
queues; while those obtained with other actions are placed
in the last queue. The expansions of the first two queues al-
ternate, and every tenth iteration, the last queue is expanded.
Expanding a queue means picking up the best node in the
queue, checking if it is a goal node, and if not, producing
all of its children. Nodes in Q1 and Q3 are ordered with hC
while nodes in Q2 are ordered with hK . Ties are broken in
each of the queues using first the other heuristic, and then
the accumulated cost to the node.

Experimental Results
The conformant planner T1 involves five parts: pars-
ing, sampling (computing S1), search, computation of the
heuristics, and verification of beliefs (for widths greater than
1). The parser is implemented on top of CONFORMANT–FF
sources, the computation of the samples uses the CNF to
d–DNNF compiler c2d (Darwiche 2004), while the verifi-
cations are done with MINISAT-2.2. T1 is written in C++.

We compared T1 with DNF (To, Pontelli, and Son
2009) and T0 (Palacios and Geffner 2009). Conformant-
FF, POND (Bryce, Kambhampati, and Smith 2006), and
MBP (Bertoli et al. 2006) perform well on several domains
but have smaller coverage. We wanted to test also the re-
cent CNF planner (To, Son, and Pontelli 2010), but it was
not available yet from the authors. For DNF preprocessing
we used SWI PROLOG rather than the proprietary SICS-
TUS PROLOG used by the authors. T0 has been used with
FF (Hoffmann and Nebel 2001).

The results of the comparison are shown in Table 1. The
problems are from past IPC competitions and various plan-
ner’s distributions. For each of the 17 domains considered,
three instances are shown, from easy to hard, when at least
one planner solved them. The experiments have been exe-
cuted on a cluster of multi–core, multi–CPU machines with
a clock speed of 2.33GHz running Linux, with 2h and 2GB
for time and memory outs.

T1 solves 42 problems out of 47 (89%), while T0 solves
38, and DNF 35. In general, however, T0 is fastest, solving
most of the (translated problems) with the effective EHC
search in FF (such instances appear with a number of ex-
panded nodes x+ 0, meaning that x nodes where expanded
by EHC and 0 by the greedy best-first search). DNF does
comparatively best on the Corner versions of the Square and
Cube domains (Corners-Cube and Corners-Square), where

4The certainty heuristic as defined overestimates the true count
by the number of one-of invariants with a literal in the goal, yet this
difference is a constant that has no effect in the search.
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T0 DNF T1
Problem T L E T L E T L E |S1

0 | / |b0|
1-Dispose-8-1 79 1316 119+0 OM – – 150 560 3.6k 64/64

Blocks-1* U – 7+872 0.1 7 5 0.05 6 23 2/2
Blocks-2* 0.2 23 86+0 0.1 38 20 0.3 20 72 5/5
Blocks-3* 71 80 5.3k+0 4.9 307 125 TO – 6.3k 12/125

Bomb-b100-t10 7.8 290 4.4k+0 2.6 190 17k 4.8 190 190 101/2100

Bomb-b100-t60 3.5 140 1.1k+0 23 140 175k 21 140 140 101/2100

Bomb-b100-t100 7.0 100 201+0 50 100 348k OM – 42 101/2100

Coins-18 0.1 97 679+0 1.0 100 2.4k 2.8 191 528 38/2·106

Coins-17 0.1 96 382+0 1.0 110 3.1k 13 313 1k 43/2·106

Coins-21 OM – – OM – – OM – – 185/1·1016

Comm-20 0.3 278 1.1k+0 171.6 296 1.5k 3.0 295 616 2 / 220

Comm - 25 1.2 453 1.8k+0 1.8k 501 2.5k 13.1 478 1k 2/225

Comm-30 2 593 2.3k+0 OM – – 30 629 1.3k 2/230

Cube-67 33 294 7.6k+0 1895 2019 71k 11 303 308 67/673

Cube-91 OM – – 2200 2271 73k 33 408 408 91/913

Cube-139 OM – – TO – – 156 622 623 139/1393

Corners-Cube-15 0.6 147 5.8k+10k 0.7 117 1.4k 2.7 159 5.7k 2/8
Corners-Cube-20 2.2 258 13k+29k 1.8 217 2511 8.7 248 12k 2/8
Corners-Cube-55 OM – – 18.6 806 10k 768 1644 182k 2/8
Corners-Sqre-36 1.0 412 2.6k+16k 0.7 138 451 12 412 8.7k 2/4
Corners-Sqre-72 20 1474 10k+141k 12 615 3.3k 242 1474 44k 2/4

Corners-Sqre-120 190 3898 29k+681k 75 1870 10k 2754 4014 136k 2/4
Dispose-12-1 55 1274 267k+0 5590 330 13k 496 786 2.5k 144/144
Dispose-12-2 2037 1437 3922k+0 5810 567 18k 4800 1195 4.2k 230/1442

Dispose-12-3 OM – – 6305 1131 34k TO – 3.6k 316/1443

Logistics-4-3-3 0.01 24 53+0 7.48 160 16k 0.1 44 143 10/43

Logistics-2-10-10 0.4 84 414+0 OM – – 52 86 670 11/210

Logistics-4-10-10 0.7 125 774+0 OM – – 162 150 1.3k 24/410

Look-Grab-4-2-1* U – 3+16 OM – – 2 42 138 16/256
Look-Grab-8-1-1 59 242 6.4k+44 OM – – 15 106 377 64/64

Look-Grab-8-3-2* OM – – OM – – 3749 56 3.5k 20/643

Push-To-8-1 83 464 74k+0 134 163 3.9k 262 538 6.5k 64/64
Push-To-8-2 817 423 131k+0 195 162 124k 91 329 1.3k 101/642

Push-To-8-3 1213 597 132k+0 OM – – 141 335 1.3k 139/643

Raos-Keys-2* 0.02 16 22+0 0.5 22 70 0.7 21 130 2/4
Ring-10 0.1 55 530+0 1546 39 107 0.7 41 484 10/590k
Ring-20 2.0 95 2.3k+0 OM – – 28 91 3.2k 20/6·1010

Ring-30 24 121 8.1k+0 OM – – 385 133 119k 30/6·1015
Safe-30 0.06 30 30+0 0.2 30 465 0.15 30 30 30/30
Safe-70 0.5 70 70+0 2 70 2.5k 3 70 70 70/70

Safe-100 1.0 100 100+0 5 100 5k 12 100 100 100/100
Square-24 0.4 69 172+0 3 351 2.6k 0.2 70 70 24/242

Square-92 36 273 1413+0 1236 2444 36k 15 274 274 92/922

Square-120 OM – – 2376 2813 45k 38 358 358 120/1202

Uts-k 30 4.0 89 92+0 8.5 101 13k 10 112 690 30/230

Uts-k 40 13.4 119 122+0 26.5 136 31k 46 143 1.1k 40/240

Uts-k 50 33.8 149 152+0 63.9 171 61k OM – – 50/250

#Solved/#Total 38/47 35/47 42/47

Table 1: Performance of T0, DNF and T1 over 47 conformant
problems: T is total time, L is plan length, and E is number of
expanded nodes (for T0, number of expanded by EHC + number
expanded by GBFS). |S1

0 | is number of initial state samples, and
|b0| is total number of initial states. Numbers followed by k de-
note thousands. TO, OM, and U denote time out, out of memory,
and reported unsolvable (incorrectly). Problems with width > 1
marked with asterisk. Highlighted entries show fastest executions
and shortest plans. Last row shows overall coverage.

neither of the two heuristics used in T1 appears to be use-
ful (this can be seen in the number of expanded nodes). T0
doesn’t well either in this domain, as the heuristic used by
FF over the K1 translation is similar to one of the heuris-
tics used in T1 (the classical heuristic hC). DNF solves
these instances with much less expansions, meaning that
the heuristic it’s using is the most informative for these do-
mains. In most other domains, however, both T1 and T0
expand much less nodes than DNF, which nonetheless, ex-
pands nodes very fast. For example, in the second Bomb
problem, DNF expands 175k nodes in 23 secs, while T0
and T1 expand 1.1k nodes in 3.5 secs, and 140 nodes in 21
secs, respectively. This means, that in this instance, DNF,

hC hK T1
Domain I S T E L S T E L S T E L
Bomb 9 7 71 4k 101 7 11 773 101 8 2 100 101
Coins 9 8 1 888 78 8 8 7k 74 8 3 425 166
Comm 9 9 2 1k 176 9 21 30k 175 9 5 440 214

Square(Ctr) 10 4 18 5k 186 10 0.2 224 44 10 0.1 43 44
Square(Cor) 11 10 604 212k 659 11 51 81k 119 11 100 18k 661
Cube(Ctr) 12 6 84 32k 188 10 1 890 61 12 0.1 61 58
Cube(Cor) 11 8 92 219k 271 10 4 26k 88 11 12 15k 269

Dispose 11 7 664 8k 349 9 57 2k 190 8 134 1k 491
Logistics 4 2 0.2 546 30 2 544 1613k 30 4 0.1 554 78

Look-Grab 6 6 0.1 96 10 3 41 92k 7 6 0.1 20 11
Push-To 8 6 657 21k 247 6 238 12k 116 6 83 1k 237

Ring 7 6 1 1k 17 5 571 58k 17 8 0.2 214 31
Safe 5 5 0.05 40 10 1 5 10k 10 5 0.04 9 10

UTS-k 15 15 0.06 26 7 2 0.05 154 7 13 0.04 10 9

Coverage 127 99 93 119

Table 2: Comparison of T1 with one heuristic (either hC or hK )
and the two heuristics combined. I is number of instances, S is
number of instances solved; T, E, and L are avg. time, avg. num-
ber of expanded nodes, and avg plan length, respectively Averages
taken over instances solved by the three configurations.

T0, and T1 expand roughly 7k nodes per second, 300 nodes
per second, and 70 nodes per second respectively. In gen-
eral, T1 expands fewer nodes than T0, but not necessarily
faster. Part of the explanation for the slow node expansion
rate of T1 vs. T0 is what expansion means in each of the
two planners. In T0, while FF is running in EHC mode, an
expansion is the application of the helpful actions only. This
search is incomplete, but as it can be seen in the table, it’s
often quite effective. In T1, on the other hand, an expansion
is a full expansion: all the children nodes are generated, and
if ‘helpful’ they are placed in the right queue. This, how-
ever, is a problem in instances with high branching factors
where the number of nodes generated can be much larger
than the number of nodes expanded. This is the reason that
T1 runs out of memory in domains such as Bomb and Lo-
gistics, where it expands few nodes that lead however to the
generation of hundred of thousands of nodes. This prob-
lem could avoided by delaying the generation and evaluation
of such nodes. Such techniques are used in recent classical
planners such as FD and LAMA.

Table 2 compares the performance of T1 when restricted
to use just one heuristic, either the classical heuristic hC or
the certainty heuristic hK , as opposed to the two heuristics
combined. When running T1 with a single heuristic, the
‘helpful’ queue corresponding to the other heuristic is re-
moved. As it can be seen, there are some domains where
the classical heuristic is better than the certainty heuristic,
and other domains, where the opposite is true. At the same
time, the combination in T1 seems to get the best of both,
in certain cases solving instances that cannot be solved with
one of the heuristics alone. This doesn’t mean, however, that
the synergies between the two heuristics cannot be exploited
further.

Conclusions
The translation-based approach to conformant planning is
elegant and exhibits good performance in relation to ap-
proaches that explicitly search in belief space. The chal-
lenge in the latter is the belief representation and heuristic;
the limitation in the former is that complete translations may
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require exponential time and space, while incomplete trans-
lations may result in unsolvable problems. In this work, we
have tried to combine the benefits of the two approaches: the
flexibility of planners that search explicitly in belief space,
with the heuristics and beliefs that arise from translations.
For this, we have formulated a novel translation Ki

S that is
always tractable and complete, and sound for problems with
width bounded by i. The T1 planner uses the set of sam-
ples that results from the K1

S translation in the context of
a belief search planner. The flexibility of the belief search
planner is exploited in two manners: incorporating a second
heuristic derived from ‘oneof invariants’ in the problem that
is related to cardinality and landmark heuristics, and using
a multi-queue best first search algorithm patterned after the
classical planners FD and LAMA. The experimental results
show that T1 is competitive with state-of-the-art conformant
planners in number of problems solved and quality of so-
lutions. Additional progress on scalability seems feasible
by exploiting further the synergies between the two heuris-
tics, and by dealing in a more efficient manner with the huge
number of nodes that are generated in problems with large
branching factors. The individual width of precondition and
goal literals, as opposed to the width of the problem given
by the max such width, could also be used to avoid some
verifications and, in principle, to simplify the detection of
duplicate nodes. Conformant problems by themselves are
not too interesting, but as shown in recent years, they form
the basis of state-of-the-art methods for planning with sens-
ing, and for deriving finite-state controllers, and hence, their
scalability is critical.
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