
Trade-Offs in Sampling-Based Adversarial Planning

Raghuram Ramanujan and Bart Selman
Department of Computer Science

Cornell University
Ithaca NY 14853-7501, U.S.A.

{raghu,selman}@cs.cornell.edu

Abstract

The Upper Confidence bounds for Trees (UCT) algorithm has
in recent years captured the attention of the planning and
game-playing community due to its notable success in the
game of Go. However, attempts to reproduce similar levels
of performance in domains that are the forté of Minimax-
style algorithms have been largely unsuccessful, making any
comparative studies of the two hard. In this paper, we study
UCT in the game of Mancala, which to our knowledge is the
first domain where both search algorithms perform quite well
with minimal enhancement. We focus on the three key com-
ponents of the UCT algorithm in its purest form — targeted
node expansion, state value estimation via playouts and aver-
aging backups — and look at their contributions to the over-
all performance of the algorithm. We study the trade-offs in-
volved in using alternate ways to perform these steps. Finally,
we demonstrate a novel hybrid approach to enhancing UCT,
that exploits its superior decision accuracy in regions of the
search space with few terminal nodes.

Introduction
Minimax search with alpha-beta pruning has been one of
the most effective strategies in game tree search for many
decades. It’s notable successes are in traditional complete
information games, such as Chess and Checkers. The game
of Go was the one significant exception, due to its large
branching factor and the lack of a sufficiently effective board
evaluation function. In 2007, the work on MoGo (Gelly
and Silver 2007) demonstrated the surprising effectiveness
of the UCT algorithm, an adversarial search technique based
on a selective, sampling-based exploration of the search
space. MoGo led to a significant interest in the potential of
sampling-based tree search methods for adversarial reason-
ing. One key question is how UCT compares to traditional
Minimax search with alpha-beta pruning and what aspects
of UCT make it perform well and on what types of domains.

One difficulty in comparing UCT with Minimax search is
that in most domains, either UCT is too ineffective to obtain
reasonable play, such as in Chess, or Minimax is too weak
to compete with UCT, as in Go. In this paper, we study a
board game called Mancala, in which both UCT and Mini-
max search with alpha-beta pruning lead to a good level of

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

play. We can therefore study the various components of the
UCT approach and make a detailed comparison to the rela-
tively well-understood Minimax player in this domain.

We examine the three key components of UCT search. In
UCT, the game tree is explored using a strategy motivated by
algorithms for the multi-armed bandit problem. The search
strategy involves a trade-off between exploration and ex-
ploitation. Exploitation leads to following certain lines of
play deep into the search tree, while exploration leads to a
more full-width style search down to a uniform depth level.
We will show that there is a well-defined optimal setting for
the amount of exploration versus exploitation. Moreover,
the tree explored by UCT is quite different from that exam-
ined by traditional full-width Minimax search, and, for the
same number of nodes explored, UCT provides better move
decisions.

Instead of a board evaluation heuristic, UCT typically re-
lies on so-called playouts to determine the quality of a leaf
node. In a playout, each player moves randomly (or based
on a basic but fast move strategy), leading to an eventual
win, loss, or draw, which is used as a utility estimate for the
leaf node. Even though random or pseudo-random playouts
proceed very differently than actual games, we will see that
there is real information in the playout signal. We also study
the trade-off in terms of making more playouts per leaf node
versus exploring more nodes in the search space. Somewhat
surprisingly, we will show that the most effective UCT strat-
egy uses a single playout while exploring as many nodes as
possible. This is consistent with observations in the domain
of Go.

Although the playouts contain real information, having
even a basic board evaluation function is often much more
effective. In particular, when a reasonable board evaluation
function is known, Minimax search using the heuristic will
strongly dominate UCT with playout information. This sug-
gests that one should incorporate the board evaluation func-
tion into UCT, replacing the playout information. We show
that such an approach does indeed boost the performance of
UCT.

A third component of UCT concerns the way in which
it propagates information from the playouts (or heuristics)
at the leaf nodes back up to the root of the search tree. In
the original UCT formulation, the information is averaged
over multiple lines of play. This strategy is quite effec-

202

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling



tive for random playout information. However, as we will
demonstrate, when a board evaluation heuristic is available,
it is much better to propagate information backwards using
a Minimax style update rule. We refer to our final player
as UCTMAXH , i.e., a UCT player that incorporates a board
evaluation function and uses Minimaxing to backup infor-
mation. We will show that this player outperforms both a
Minimax style player with alpha-beta pruning and the orig-
inal UCT algorithm (with playouts and averaging). So, a
careful study of the various trade-offs in the UCT frame-
work can lead to the design of a superior adversarial search
strategy.

Background
The standard approach to planning in adversarial domains
involves performing a Minimax search (typically combined
with alpha-beta pruning) to some fixed depth cutoff, at
which point a static evaluation function is used to estimate
the strength of the states reached. This technique was used to
great effect in the high-profile match-up between Deep Blue
and Gary Kasparov (Campbell, Hoane, and Hsu 2002), in
which a computer defeated the reigning human Chess cham-
pion for the first time.

More recently, Monte-Carlo tree search methods such as
UCT have caught the eye of the research community, due to
their impressive performance in domains that could not be
tamed by Minimax-style approaches. The interest in UCT
was spurred by the initial success of MoGo, the first program
to achieve master level play in 9x9 Go (Gelly and Silver
2007; 2008). Since then, UCT has been successfully applied
to other domains such as Kriegspiel (Ciancarini and Favini
2009), real-time tactical assault planning (Balla and Fern
2009) and general game-playing (Finnsson and Björnsson
2008).

Upper Confidence bounds applied to Trees (UCT)
The UCT algorithm (Kocsis and Szepesvári 2006) builds on
UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), an algorithm
designed to optimally trade-off exploration and exploitation
in multi-armed bandit problems. UCT builds a search tree
from a given state by iterating over the following steps:

• Selection: At a state s, the algorithm selects an action a
that maximizes an upper confidence bound on the utility
of the action value according to:

π(s) = argmax
a

(
Q(T (s,a))+ c ·

√
logn(s)

n(T (s,a))

)
Here, T (s,a) is the transition function that returns the
state reached by taking action a in state s, Q(s) is the
current estimate of the utility of state s and n(s) is the
number of previous visits to state s. If n(T (s,a)) = 0 for
an action a, then it is selected before any other actions are
re-sampled. The constant c is tuned empirically to strike
a good balance between exploring under-sampled moves
and exploiting known good moves. Note that at states
where the opposing player is on move, the action that min-
imizes a symmetric lower confidence bound is picked, i.e.,

Figure 1: A sample Mancala game state

the selection operator is:

π
′(s) = argmin

a

(
Q(T (s,a))− c ·

√
logn(s)

n(T (s,a))

)

• Estimation: Starting at the root node, the selection pro-
cedure outlined above is repeatedly applied until either a
previously unvisited node, or a terminal node, is reached.
If the state is non-terminal, a state evaluation heuristic is
applied to obtain a valuation R of this state’s utility (in
the case of terminal nodes, this is a value from the set
{−1,0,+1} based on the outcome of the game). This
heuristic may either take the form of random playouts, or
a static position evaluator if one is available. The newly-
visited node is then added to the seach tree. Under this
scheme, the size of the tree grows by one node every iter-
ation.

• Value Back-up: The reward R from the current UCT
episode is used to update the utility estimate of each state
s on the path from the leaf node to the root as follows:

n(s)← n(s)+1

Q(s)← Q(s)+
(R−Q(s))

n(s)

This update assigns to each state the average reward ac-
crued from every episode that passed through it.

The above steps are repeated until search time expires, at
which point the action leading to the state with the highest
mean utility is executed.

The Game of Mancala
Mancala is a deterministic, 2-player game that is thousands
of years old and popular in many parts of the world. It is
played on a rectangular board like the one depicted in fig-
ure 1. Initially, the six pits on each side of the board contain
4 stones each (though variants with different numbers of pits
and stones exist). The two larger pits at the ends (termed the
“stores”) hold any stones that the players capture.

A move consists of a player picking up all the stones from
a pit on his side and placing them one at a time in each of the
following pits, in a counter-clockwise order. The player’s
own store is included in this “sowing” process, but the op-
ponent’s store is skipped. A stone that lands in a store is

203



deemed captured and is permanently removed from circula-
tion. The game is not strictly turn-taking — depending on
where the last stone is placed, one of three things may hap-
pen:

1. If the last stone lands in the player’s own store, then he
goes again.

2. If the last stone lands in an empty pit on the player’s own
side, then a capture occurs — the single stone is immedi-
ately moved to the player’s store, as are any stones in the
pit directly across from the empty pit (on the opponent’s
side).

3. Otherwise, the turn ends.
Figure 1 shows the state of the game after player A has made
the first move of the game, A3. After this move, player
A would go again, since his last stone landed in his store.
The game ends when either side has no legal moves left.
At this point, the player with the emptied pits captures any
stones on the opponent’s side of the board. The winner is
the player with the greater number of stones in his store at
the game’s end. Mancala has previously received some at-
tention from the AI community. Most notably, the game has
been weakly solved for a variety of starting configurations
(Irving, Donkers, and Uiterwijk 2000).

A pertinent question at this point is: Why Mancala? Min-
imax reigns supreme in games with strong tactical compo-
nents and many “trap states”, such as Chess, and attempts
to reach similar levels of performance in these domains us-
ing UCT have failed (Ramanujan, Sabharwal, and Selman
2010a; 2010b). UCT’s notable successes so far have been
in domains where Minimax-based approaches have fallen
short. These are typically games with large branching fac-
tors such as Go or Hex (Arneson, Hayward, and Henderson
2010) and/or for which good heuristics are unavailable. One
exception here is the game Lines of Action, a domain pre-
viously dominated by Minimax, where UCT with a signif-
icant amount of knowledge engineering is now competitive
(Winands and Björnsson 2009). But by and large, the set of
domains where Minimax and UCT both produce competent
players is disjoint. To our knowledge, Mancala is the first
domain where UCT and Minimax both produce players that
are competitive with nearly no enhancements to the basic al-
gorithms. This latter feature is particularly important since it
allows us to study these two algorithms side-by-side in their
purest form.

In the remainder of this paper, we will take a closer look at
the three steps that comprise an iteration of UCT — targeted
expansion of nodes in the search tree, the use of random
playouts to evaluate leaf node positions and the propagation
of information from the leaves to the internal nodes through
averaging. For each step, we will look at how it contributes
to UCT’s decision making process and consider the trade-
offs involved in applying alternate approaches. In the fi-
nal section, we present a partial-game setting that highlights
a major strength of UCT-style approaches — the ability to
make good decisions in regions of the search space that have
few terminal nodes. This offers a potential mechanism for
explaining UCT’s success in Go, while laying the ground-
work for future hybrid approaches to adversarial planning

that combine the strengths of UCT and Minimax.

Experimental Methodology
In the sections that follow, we present data that averages the
outcome of thousands of Mancala games between different
search algorithms. Here, we outline some of the methodol-
ogy that was used to run and score those games.

Since Mancala is deterministic, we need a way to intro-
duce variance between individual games. We accomplish
this by generating random initial configurations as follows:
starting with an empty board, we place a stone uniformly at
random in one of the pits (excluding the stores), until there
are no stones left. This may however generate positions that
are heavily biased in favor of one player. To combat this, we
play duplicate games. Given a starting position, two games
are played, with the players’ sides swapped after the first
game. Player A is deemed to have won if he beats player
B’s result while playing from one side, while at least match-
ing player B’s result when the sides are switched. Other-
wise, we disregard the entire board. For example, if player
A wins the first game, and draws the second, he is the win-
ner on that board; if player A were to lose the second game,
then the board would be deemed too skewed to be useful.
We report the win-rates for the different algorithms — this
is simply the ratio of the number of duplicate games won to
the total number of non-skewed boards that were used.

The other important variable we control for in compar-
isons between a Minimax agent and a UCT agent is the
amount of search effort. We measure this in terms of the
number nodes expanded by the algorithm. In all compar-
isons involving a UCT player and a Minimax player, the
former is allowed to expand at most the number of nodes its
opponent would expand at the given position in the game,
unless stated otherwise. This is important given the wide
variation in the branching factor of the tree as the game pro-
gresses. Also, our Minimax player always uses alpha-beta
pruning.

Full-Width Search vs Selective Search
In many applications, it has been observed that the value of
the exploration bias parameter c in the selection step of UCT
has a large role in the overall performance of the algorithm
(for example, see Lorentz 2008). We concretely illustrate
this phenomenon in Mancala. Figure 2 depicts the nodes ex-
panded by a depth 8 Minimax player (MM-8) on a typical
Mancala position. The graph layout, which was generated
using GraphViz (Gansner and North 2000), places nodes at
the same depth from the root (denoted by the blue square)
at the same radius. The board evaluation heuristic applied
at the leaf nodes is the difference of the stone counts in the
stores of the two players. This simple heuristic is neverthe-
less quite effective and difficult to improve upon with addi-
tional features such as mobility (Gifford et al. 2008).

We now consider the search trees that are created by a
variant of UCT that uses the same leaf evaluation heuristic,
rather than random playouts (henceforth, UCTH ). Figure 3
shows the trees that are built by UCTH for different values of
c, for the same board that was used in figure 2. With c = 0,

204



Figure 2: Search tree expanded by MM-8 with alpha-beta
pruning

the tree reaches some very deep positions, but is sparse at
any given level. With too much exploration (c = 20), the
tree becomes more regular and “Minimax-like”. At c = 2.5,
the best-performing value for this domain, we obtain a tree
that strikes a balance between the two extremes; it is dense
at shallow depths, but more sparse and focused at deeper
levels.

This has important implications for the performance of
the UCT player. In figure 4, we plot the win rate of UCTH
against a fixed Minimax opponent (MM-8), while varying
the value of c. Each data-point is the average of several hun-
dred games.

0 1 2 3 4 5 6 7 80.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Value of Exploration Bias Parameter (c)

W
in

 R
at

e 
of

 U
CT

H a
ga

in
st

 M
M

−8

Figure 4: Win rate of UCT against an MM-8 opponent,
while varying the exploration bias parameter (c)

The trend is unmistakable — for small values of c, UCT
misses too many moves and does poorly. With too large

a c, UCT is not sufficiently focused and the action util-
ities do not converge quickly enough to produce compe-
tent play. There is a clear optimal setting for the value
of c. This establishes that Mancala is a challenging do-
main for a planning agent, and any algorithm that tries to
balance exploration-exploitation must do so carefully. Fur-
thermore, as we will show in later sections, a variant of
UCT that builds trees similar to that shown in the middle
panel of figure 3 outperforms Minimax search in this do-
main. This is striking — traditional wisdom in the game-
playing community is that search methods that employ for-
ward pruning techniques generally perform much worse
than their full-width search counterparts (Biermann 1978;
Truscott 1981). Yet, here we have a domain where an algo-
rithm that performs unsafe pruning outperforms a full-width
search.

Playouts vs Nodes Expanded
In its original incarnation, the UCT algorithm uses a random
playout to estimate the utility of leaf nodes in the search tree.
This is particularly useful in games where good heuristics to
statically evaluate positions are not known, since playouts
offer a domain-independent solution to this problem. While
any number of playouts may be performed from a node to es-
timate its utility, typically only a single playout is performed
due to run-time considerations. In this section, we address
the question: Given a fixed budget, what is the best way to
allocate the playouts? Should we expand fewer nodes in the
search tree while evaluating each one carefully, or should we
look at more nodes without being overly worried about the
accuracy of their evaluation?

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of playouts per leaf node

W
in

 R
at

e 
of

 U
CT

 a
ga

in
st

 M
M

−8

Figure 5: Win Rate of UCT against MM-8, while varying
the size of the UCT search tree

In our first experiment, we play a UCT agent using ran-
dom playouts against a fixed opponent (an MM-8 search us-
ing the hand-engineered heuristic) in a series of games. We
vary the number of random playouts that are averaged to
produce the leaf utility estimates for UCT, holding all other
parameters constant. The results are presented in Figure 5.

205



Figure 3: From left to right: search trees expanded by UCTH with c = 0, c = 2.5 and c = 20 respectively

In a second experiment, we fix the number of random play-
outs at 1, while varying the number of iterations for which
we run UCT. The results of this experiment are shown in
Figure 6.

0 1 2 3 4 5
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes expanded

W
in

 R
at

e 
of

 U
CT

 a
ga

in
st

 M
M

−8

Figure 6: Win Rate of UCT against MM-8, while varying
the size of the UCT search tree

The two plots taken together highlight an interesting phe-
nomenon. Increasing the number of playouts per leaf only
has a modest impact on the playing strength of the agent
(quickly leveling off), while increasing the number of UCT
iterations (i.e. nodes expanded) yields a much more substan-
tial improvement. This suggests that given a fixed computa-
tional budget (in a domain where heuristics are unavailable),
it is far better to run more iterations of UCT with fewer play-
outs per leaf, than to run fewer iterations with more playouts.

This is illustrated concretely in figure 7: against MM-8, we
give UCT a fixed total playout budget and vary the number
of random playouts per leaf. For example, with 2 playouts
per leaf, we run UCT for 10,000 iterations, with 4 playouts
per leaf, we run UCT for 5000 iterations and so on. Note that
in this experiment, we are not concerned with normalizing
the number of nodes expanded by the two algorithms. We
are only interested in the impact that different allocations
of the playout budget has on the playing strength of UCT,
against a fixed opponent.

These findings are consistent with past observations that
random playouts do contain some information but the qual-
ity of their feedback is limited (Ramanujan, Sabharwal, and
Selman 2010b). Thus, increasing the number of playouts
per leaf only helps to some extent. Why does UCT perform
better with fewer playouts, but more iterations? The answer
lies in the fact that as UCT builds up its search tree, it begins
to “freeze” into a principal variation in the higher reaches of
the tree, which introduces a progressive bias in subsequent
random playouts. Put another way, as the search advances,
random playouts are carried out starting from nodes deeper
in the tree which increases their predictive accuracy.

Averaging vs Minimaxing
UCT’s tree-building and information-propagation steps are
interleaved. The building process is guided by a Minimax-
ing descent through the existing tree, that determines which
section of the tree will be sampled next. The new informa-
tion discovered on the current iteration is propagated up by
an averaging operator, which informs the future growth of
the tree. While the Minimaxing descent is justified by the-
oretical results for bandit-algorithms (Auer, Cesa-Bianchi,
and Fischer 2002), it is not clear that averaging is the best
way to propagate information up the tree. In the limit, the

206



0 5 10 15 200.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of playouts per leaf node

W
in

 R
at

e 
of

 U
CT

 a
ga

in
st

 M
M

−8

 

 

20k Playout Budget
40k Playout Budget
80k Playout Budget

Figure 7: Win Rate of UCT against MM-8, with fixed total
playout budget, while varying number of playouts per leaf
node

action utilities computed by UCT are guaranteed to converge
to the true Minimax values (Kocsis and Szepesvári 2006),
but the time to convergence may be super-exponential (Co-
quelin and Munos 2007).

0 0.5 1 1.5 2 2.5
x 104

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

Number of nodes expanded

W
in

−r
at

e 
of

 U
CT

M
AX

H a
ga

in
st

 U
CT

H

Figure 8: Win Rate of UCTMAXH against UCTH on com-
plete Mancala games vs the number of iterations

Coulom empirically showed that when using random
playouts with UCT, averaging is the superior back-up oper-
ator when a node has been visited few times, whereas Mini-
maxing is better when node visit counts are higher (Coulom
2006). Our results confirm that when using playouts, this
phenomenon occurs in Mancala as well. However, while
good heuristics are not known for Go, we do have a heuris-
tic available for our domain. Thus, in Mancala, even a single
visit to a node may yield a reasonably good estimate of its
utility. Given this, can Minimaxing do a better job as a back-
up operator, than the standard averaging approach?

In our first experiment, we play games between a

UCTH agent and a UCT agent that uses Minimax back-
ups as defined below with the same heuristic (henceforth,
UCTMAXH ).

n(s)← n(s)+1

Q(s)←


n(s) · max

s′∈succ(s)
Q(s′) if s is a maximizing node

n(s) · min
s′∈succ(s)

Q(s′) if s is a minimizing node

Figure 8 shows the win rate of UCTMAXH , as we vary
the number of iterations that both players are given (all
other parameters are fixed to the same values for both play-
ers). Note that even with just 500 iterations (nodes ex-
panded), UCTMAXH is already on-par with UCTH . This
suggests that in domains where good heuristics are available,
UCT can be significantly boosted by replacing the averaging
back-up operator with Minimaxing even on small trees. In-
creasing the number of iterations increases the performance
gap between the two approaches.

0 0.5 1 1.5 2 2.5
x 104

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Number of nodes expanded

W
in

−r
at

e 
of

 U
CT

M
AX

H a
ga

in
st

 U
CT

H

Figure 9: Win Rate of UCTMAXH against UCTH on partial
Mancala games vs the number of iterations

One possible cause for why UCTMAXH outperforms
UCTH could be that the former propagates information
from terminal nodes much more efficiently than the lat-
ter. To test this hypothesis, we ran “partial”-games between
UCTMAXH and UCTH as follows: for the first 14 plys of
a game, we play UCTMAXH against UCTH , and play two
MM-16 players against each other thereafter. This lets us
evaluate the relative strengths of the two algorithms in parts
of the search space with few terminal nodes. Figure 9 plots
the win rate of UCTMAXH in this set-up, as we vary the
number of iterations. Once again, we observe an upward
trend as the number of iterations is increased. With limited
compute time, UCTMAXH makes decisions that are about
as good (or marginally worse) than UCTH in regions of the
search space where terminal nodes are absent. However, this
is compensated by UCTMAXH ’s ability to efficiently han-
dle terminal nodes when they do appear (as evidenced by its
higher win rate in complete games, with the same parameter
settings). With more compute time, UCTMAXH makes bet-
ter decisions, even in regions that have few terminal nodes.

207



Hybrid Strategies
In the previous section, we introduced the idea of a partial
game so we could isolate the effects of the visibility of ter-
minal nodes on the overall strength of a game-playing algo-
rithm. Here we return to that idea.

In domains like Chess, “search-traps” or early terminal
nodes appear at all levels of the search tree and present prob-
lems for sampling-based approaches such as UCT (Ramanu-
jan, Sabharwal, and Selman 2010a). Minimax, being a full-
width search, does not miss such trap states, so long as they
occur within the horizon of the search (including search ex-
tensions). In Go, trap states do not occur until the later
stages of the game. A possible reason why UCT has been
such a success in Go could be that it is a fundamentally bet-
ter decision-making algorithm than Minimax, so long as the
search space it is exploring does not contain too many ter-
minal positions. If this is indeed the case, it is plausible that
UCT builds up a sufficient positional advantage in the early
stages of the game (where methods like Minimax have poor
visibility) that its opponents cannot overcome later on. Min-
imax handles terminal nodes in an optimal fashion which we
cannot expect to improve upon — so the question is whether
UCT can outperform Minimax when no terminal positions
occur within the search horizon.

To answer this, we ran partial games pitting UCTMAXH
against Minimax in which the two algorithms are played
against each other, until the ratio of terminal to non-terminal
nodes in the search tree expanded by the Minimax player
first exceeds 0.003. Thereafter, the game is completed by
two MM-16 players. We do this for a range of Minimax op-
ponents with different lookahead depths. We also repeated
the experiment on a larger Mancala board, with 8 pits and 6
stones per pit (denoted (8,6)). The results are presented in
figures 10 and 11. For comparison, we also include win-rate
data for UCTMAXH on complete games between the two
players.

6 8 10 12 140.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Search depth (k) of Minimax Player

W
in

−r
at

e 
of

 U
CT

M
AX

H a
ga

in
st

 M
M

−k

 

 

Partial
Complete

Figure 10: Win-rate of UCTMAXH against MM-k on partial
and complete games of size (6,4)

The key observation here is that, in both board sizes, and

6 8 10 120.6

0.62

0.64

0.66

0.68

0.7

0.72

Search depth (k) of Minimax Player

W
in

−r
at

e 
of

 U
CT

M
AX

H a
ga

in
st

 M
M

−k

 

 

Partial
Complete

Figure 11: Win-rate of UCTMAXH against MM-k on partial
and complete games of size (8,6)

independent of the lookahead depth of the Minimax player,
UCTMAXH always does better in the hybrid games than
the complete games. We have found that this trend holds
(though not as pronounced) even when the standard UCT
implementation, with averaging back-ups, is used. This sup-
ports our hypothesis that UCT is a better predictor of good
moves in regions of the search space in which terminal nodes
are largely absent.

Another trend that is apparent from figures 10 and 11
is that the win-rate of UCTMAXH declines in the partial
games with increasing k. There are two reasons for this. As
we increase k, the terminal node ratio threshold of 0.003
is reached faster by the Minimax player. For example,
in (6,4)-size games between UCTMAXH and MM-6, the
switch-over to the MM-16 playout phase occurs 21 plys
into the game on average. In contrast, against MM-14, the
threshold is exceeded after only 8 plys, which hardly gives
UCT sufficient opportunity to steer the game decisively in
it’s favor. Secondly, even when terminal nodes are not di-
rectly visible, they make their presence felt more strongly
to deeper searching players by influencing the heuristic es-
timates of nearby positions. This effect is diluted when the
depth of the lookahead is smaller.

Related Work
It is generally believed that searching deeper is beneficial
in adversarial planning domains; indeed, advances in al-
gorithms and hardware that enabled one to search deeper
within the same time constraints were one of the key rea-
sons behind the success of Deep Blue. However, this
phenomenon is not universally true. Notably, there are
families of so-called pathological games where increased
look-ahead leads to worse decision-making (Beal 1980;
Nau 1982). One reason that is cited to explain the lack of
pathological behavior in real games is the presence of early
terminal nodes in the search tree that can be evaluated per-
fectly (Pearl 1983).

208



Given the comparatively poor performance of Minimax in
regions of the Mancala search space with low terminal node
density, it is natural to wonder if this indicates the presence
of look-ahead pathology in the initial stages of the game.
We have found that this is not the case. In particular, in par-
tial games between MM-k and MM-(k+n) players (n≥ 2),
we have found that the deeper searching agent always plays
significantly better. This trend persists for a wide range of
values of k, n and board sizes.

Intriguingly, recent work by Nau et al. suggests that
closely related variants of Mancala are pathological (Nau
et al. 2010). In their work, some changes are made to the
rules to make the game tree more regular. Also, the game is
terminated after 8 plys and the player with the stone advan-
tage at that point is declared the winner. The heuristic value
of a node is defined to be it’s true backed-up minimax value
that has been corrupted with Gaussian noise. In experiments,
they found that an MM-1 search produces higher quality de-
cisions than an MM-5 search. While we were able to repro-
duce their results, we also discovered that the pathological
behavior was quite brittle. In particular, if the heuristic val-
ues were made more accurate at nodes deeper in the tree (by
reducing the variance of the Gaussian noise), the pathology
disappeared. Nevertheless, it suggests that localized near-
pathological behavior may occur even in real games.

Conclusions

This work was a study of the UCT algorithm in the game
of Mancala, a domain where Minimax-style search meth-
ods have traditionally performed well. We demonstrated that
UCT, with a minimal amount of knowledge engineering can
be competetive in this domain. To our knowledge, this is the
first domain where this has been possible. We carried out
a dissection of the algorithm and showed that: (a) selective
search can outperform full-width tree searches in some ad-
versarial domains, (b) given a fixed computational budget, it
is more prudent to build larger trees with just a few random
playouts per leaf node, and (c) when a reasonable heuristic
function is known for a domain, using a Minimaxing backup
operator can offer a significant performance boost over the
traditional averaging operator. Finally, in partial game set-
tings, we demonstrated that the quality of decisions made
by UCTMAXH , a variant of standard UCT, can be superior
to those of Minimax search in regions of the search space
where terminal nodes are rare. This offers up the intriguing
possibility of hybrid adversarial search algorithms that can
exploit the strengths of both UCT and Minimax to produce
stronger game-playing agents.

Acknowledgements

This work was supported by NSF Expeditions in Comput-
ing award for Computational Sustainability, 0832782; NSF
IIS grant 0514429; and IISI, Cornell Univ. (AFOSR grant
FA9550-04-1-0151). We would like to thank Nikhil Gupta,
Sajeev Krishnan and Ashish Sabharwal for stimulating dis-
cussions and useful insights about Mancala and UCT.

References
Arneson, B.; Hayward, R. B.; and Henderson, P. 2010. Monte
Carlo tree search in hex. Computational Intelligence and AI in
Games, IEEE Transactions on 2(4):251–258.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time anal-
ysis of the multiarmed bandit problem. Machine Learning 47(2-
3):235–256.
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault plan-
ning in real-time strategy games. In Proceedings of the 21st in-
ternational joint conference on Artifical intelligence, 40–45. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Beal, D. 1980. An analysis of minimax. In M.R.B., C., ed.,
Advances in Computer Chess 2, 103–109. Edinburgh University
Press.
Biermann, A. W. 1978. Theoretical issues related to computer
game playing programs. Personal Computing 86–88.
Campbell, M.; Hoane, Jr., A. J.; and Hsu, F.-h. 2002. Deep Blue.
Artif. Intell. 134:57–83.
Ciancarini, P., and Favini, G. P. 2009. Monte Carlo tree search
techniques in the game of Kriegspiel. In IJCAI-09.
Coquelin, P.-A., and Munos, R. 2007. Bandit algorithms for tree
search. CoRR abs/cs/0703062.
Coulom, R. 2006. Efficient selectivity and backup operators in
Monte-Carlo tree search. In Computers and Games, 72–83.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based approach
to general game playing. In AAAI-08, 259–264. AAAI Press.
Gansner, E. R., and North, S. C. 2000. An open graph visualization
system and its applications to software engineering. Software -
Practice and Experience 30(11):1203–1233.
Gelly, S., and Silver, D. 2007. Combining online and offline knowl-
edge in UCT. In 24th ICML, 273–280.
Gelly, S., and Silver, D. 2008. Achieving master level play in 9×9
computer Go. In 23rd AAAI, 1537–1540.
Gifford, C.; Bley, J.; Ajayi, D.; and Thompson, Z. 2008. Search-
ing and game playing: An artificial intelligence approach to Man-
cala. Technical Report ITTC-FY2009-TR-03050-03, Information
Telecommunication and Technology Center, University of Kansas,
Lawrence, KS.
Irving, G.; Donkers, J.; and Uiterwijk, J. 2000. Solving Kalah.
ICGA Journal 23(3):139–148.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In 17th ECML, volume 4212 of LNCS, 282–293.
Lorentz, R. J. 2008. Amazons discover Monte-Carlo. In Computers
and Games, 13–24.
Nau, D. S.; Luštrek, M.; Parker, A.; Bratko, I.; and Gams, M. 2010.
When is it better not to look ahead? Artif. Intell. 174:1323–1338.
Nau, D. S. 1982. An investigation of the causes of pathology in
games. Artif. Intell. 19:257–278.
Pearl, J. 1983. On the nature of pathology in game searching. Artif.
Intell. 20(4):427–453.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2010a. On adver-
sarial search spaces and sampling-based planning. In 20th ICAPS,
242–245.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2010b. Under-
standing sampling style adversarial search methods. In 26th UAI.
Truscott, T. R. 1981. Techniques used in minimax game-playing
programs. Master’s thesis, Duke University, Durham, NC.
Winands, M. H. M., and Björnsson, Y. 2009. Evaluation function
based Monte-Carlo LOA. In ACG, 33–44.

209




