
Distributed Control of Situated Assistance in Large Domains with Many Tasks

Jesse Hoey and Marek Grześ
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, CANADA N2L 3G1

Abstract
This paper tackles the problem of building situated prompt-
ing and assistance systems for guiding a human with a cog-
nitive disability through a large domain containing multiple
tasks. This problem is challenging because the target pop-
ulation has difficulty maintaining goals, recalling necessary
steps and recognizing objects and potential actions (affor-
dances), and therefore may not appear to be acting rationally.
Prompts or cues from an automated system can be very help-
ful in this regard, but the domain is inherently partially ob-
servable due to sensor noise and uncertain human behaviours,
making the task of selecting an appropriate prompt very chal-
lenging. Prior work has shown how such automated assis-
tance for a single task can be modeled as a partially observ-
able Markov decision process (POMDP). In this paper, we
generalise this to multiple tasks, and show how to build a
scalable, distributed and hierarchical controller. We demon-
strate the algorithm in a set of simulated domains and show it
can perform as well as the full model in many cases, and can
give solutions to large problems (over 1015 states and 109

observations) for which the full model fails to find a policy.

1 Introduction
Persons with dementia1 have difficulty completing activities
of daily living (ADL) due to a reduced capacity in working
(short-term) memory. They can lose track of what parts of
a task have been completed, and have increased difficulty in
recognising familiar objects. For example, in the kitchen, a
person with moderate dementia who is attempting to make a
cup of tea may forget that they have already put sugar in their
tea and proceed to put more in. Prompting systems, such as
the COACH (Hoey et al. 2010b), can help a person with de-
mentia to complete such tasks autonomously by monitoring
their progress, and providing audio or video prompts when
necessary. COACH uses a partially observable Markov de-
cision process, or POMDP, to monitor the person’s progress,
as well as elements of their affective state, and to decide on
appropriate prompts. However, the COACH system can only
deal with a single task (e.g. handwashing).

Smart home systems (Zhang et al. 2008; Singla, Cook,
and Schmitter-Edgecombe 2008; Brdiczka, Crowley, and

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this paper, we refer to our group of potential users as clients,
or as persons with dementia.

Reignier 2009) attempt to provide assistance to residents
across a wide range of tasks using an array of sensors in
the environment, algorithms for the analysis of human be-
haviour, and controllers for the provision of the assistance.
The tasks in which automated assistance are most important
are those in the kitchen (preparing meals, washing up), and
in the washroom (hygiene, dressing). In order to complete
complex tasks in these environments, a person must at least
maintain a goal stack that provides them with motivation and
direction for the task (Duke et al. 1998). For example, in the
kitchen, a goal stack might be

make breakfast→make tea→get teabag→open teabox.
Therefore, the person must have the ability to recall each of
these goals in order, and may need to have some further abil-
ities for recognizing objects, or for perceiving affordances of
the environment (Ryu and Monk 2009). Modelling the per-
son’s abilities is critical for building a situated prompting
system, as it cannot be assumed that a person with demen-
tia will be able to maintain a particular goal stack for any
reasonable period of time.

If we attempt to model an entire smart home system as a
POMDP in the style of the COACH assistance system, we
will soon run into computational problems. A simple solu-
tion to this problem is to distribute the model, and approach
each task independently. As in hierarchical approaches for
robotics (Theocharous, Murphy, and Kaelbling 2004), each
subtask can be solved independently, and the solutions con-
trolled sequentially. This approach does not work for a situ-
ated prompting system, however, for three reasons. (1) The
client may not be acting rationally, and so may switch tasks
suddenly, even to a dependent task that is not possible be-
fore the original task is complete, and may leave the original
task in a critical state (e.g. the stove left on) (Geib 2002);
(2) the control in the assistance domain are suggestions to a
client, and may not always be effective; (3) the system must
be as passive as possible, letting the client accomplish tasks
on their own if they can do so in order to maintain feelings of
independence and control. These three considerations com-
bine to make the subtasks non-independent, and render ap-
proaches to assistance in which the system shares the action
space with the client less effective (e.g. (Fern et al. 2007)).
In this case, it is not optimal for the system to “take over”
and do things for the client if they forget. Instead, the system
must remind the person as passively as possible what to do.

90

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

This paper describes a method for distribution of con-
trol in a smart-home system. The idea is to encode all tasks
that require assistance into a tree-shaped hierarchy, such that
each path from the root to a leaf describes a particular set of
abilities required to complete the task at the leaf. Each node
in the tree consists of a stand-alone controller (agent), en-
coded as a POMDP, that prompts the client for a subset of
abilities, but relies on its ancestors to prompt for any abil-
ities higher in the tree. The children of a node can be seen
as macro-behaviours that require the abilities controlled by
the parent. An initial, off-line phase computes policies for
each node in the tree. Subsequently, during interactions with
a client on-line, the control algorithm processes each new
observation in a two-pass distributed fashion. A bottom-up
traversal of the tree allows each node to compute its expected
value given each possible constraint placed by its parent and
each value reported by its children, and to report this ex-
pected value to the parent. Subsequently, a top-down traver-
sal reveals the optimal action to take at each level.

The problem we are approaching in this paper is similar
to the weakly coupled MDP approach presented in (Meuleau
et al. 1998). Similarly to (Meuleau et al. 1998), we assume
additive utility independence between subtasks, and we as-
sume the state and action spaces can be decomposed into
sets of features such that each feature is relevant only to one
subtask.2 However, our domains are inherently partially ob-
servable due to observations from sensors, and we cannot
assume that subtasks are independent given only an alloca-
tion of resources as in (Meuleau et al. 1998). Instead, as in a
cooperative multi-player game, the subtasks are “mixed” by
the uncertainty in the actions of the client.

The main contribution of this paper is to demonstrate a
simple and scalable method for distributed control of a large-
scale, partially observable, system for assistance for persons
with cognitive disabilities in a smart-home situation. Our
method is developed as a solution to a class of problems for
which a-priori information exists about the structure of the
domains, and we take advantage of this as fully as possible.
We implement a simple solution to the distributed planning
problem, but mainly focus is on the control problem. We
demonstrate performance in simulation using a set of large-
scale realistic problems, with state space sizes up to 1015

and significant partial observability, well beyond the reach
of any solution to the full problem.

2 POMDPs for Assistance
2.1 POMDPs
A discrete-time POMDP consists of: a finite set S of states;
a finite set A of actions; a stochastic transition model Pr :
S × A → ∆(S), with Pr(t|s, a) denoting the probability
of moving from state s to t when action a is taken; a fi-
nite observation set O; a stochastic observation model with
Pr(o|s) denoting the probability of making observation o
while the system is in state s; and a reward assigning reward
R(s, a, t) to state transition s to t induced by action a (Fig-
ure 1(a)). Since the system state is not known with certainty,

2although in the general case this is not strictly true in our do-
main, we make this assumption to simplify the problem at this stage

a policy, π, maps belief states (i.e., distributions over S) to
actions. A policy maximizes the expected discounted sum of
rewards,

∑
t γ

trt, where rt is the reward obtained at time t,
and γ ∈ [0, 1] is a discount factor.

(a)

tt−1

O O’

A R

S’S

t−1 t

A R

Y

(b)

B

T

V

Y’

B’

T’

V’

K’K

behavior

task

ability

Figure 1: Two time slices of (a) a general POMDP; (b) a
factored POMDP for modelling assistive technology;

2.2 Situated Assistance
The general purpose POMDP can be specialised to the as-
sistance domain as shown in Figure 1(b), in which the state,
S, has been factored into three sets of variables: task (T),
ability (Y) and behaviour (B). The task variables are a
characterisation of the domain in terms of a set of high-
level variables. For example, in the first step of tea mak-
ing, these include the teabox condition (open, closed) and
the cup contents (empty or with teabag). The task states are
changed by the client’s behaviour, B. For the first step in
tea making, these include opening/closing the box, moving
the teabag to the cup, and doing nothing or something un-
related. The client’s abilities are their cognitive state, and
model, e.g., the ability to recognise the tea box and the abil-
ity to perceive the affordance of moving the teabag to the
cup. Jointly, S = {T,B, Y } is known as the state, and we
let X = {B, T}. Note that the task state, T ′, is indepen-
dent of the ability, Y ′, given the behaviour, B′ (Hoey et al.
2010b).

The system actions are prompts that help the client regain
a lost ability. We define one system action for each neces-
sary ability in the task. The actions correspond to a prompt
or signal that will help the client with this particular ability,
if missing. The observations O = {K,V } are generated by
the task and behaviour variables. For example, in a kitchen
environment there may be sensors in the counter-tops to de-
tect if a cup is placed on them, sensors in the teabags to
detect if they are placed in the cup, and sensors in the kettle
to detect “pouring” motions (Hoey et al. 2010a).

2.3 Hierarchical Abilities: The Goal Stack
We assume that there are two different types of cognitive
abilities: goal-recall and behaviour-recall, and that a client’s
goals are organised in a stack. The goal-recall abilities are
those that affect only the mental state of the client and their
goal stack. These abilities allow a person to recall a sub-goal
that is necessary to complete during the task. For example,
if a person is making a coffee, and has put granules in the

91

cup, then they must recall that the next step is to boil the
water. This act of recall pushes a new goal onto their goal
stack, and has this effect only. The behaviour-recall abilities
are then required to accomplish the subtask of boiling water
(e.g. recognising the kettle), but these call for specific envi-
ronmental behaviours (e.g. filling the kettle). However, these
abilities will not be relevant if they client does not first have
the appropriate goal-recall ability. The goal-recall abilities
define a hierarchical breakdown, whilst the behaviour-recall
abilities define sequential steps within a level. We assume in
this paper that this hierarchy is defined and fixed using a task
analysis methods (e.g. (Hoey et al. 2010a)).

S

S

O

O

A

R

t−1 t−1

t−1

t−1t−1

O

S
t−1

O

S1 2 3

21 3

4

45

6

Y

Y

Figure 2: Example hierarchical model for task assistance.
The dashed lines represent connections from the previous
time step. Dotted and dashed lines are used only for clarity.
The shaded node has a ‘penalty’ state with a large cost.

Figure 2 shows an example for a hierarchical model in-
volving four subtasks with state spaces Si i = 1 . . . 4 (possi-
bly containing behaviour-recall abilities), with observation
sets (Oi i = 1 . . . 4), and two sets of goal-recall abilities Y5

and Y6. This figure is showing the same POMDP model as
in Figure 1, except we have factored the goal-recall abili-
ties C out of Y , and organised these factors graphically in
a tree structure for clarity. The tree structure shows that, to
perform subtask S1, a client will need to recall goals Y5 and
Y6, and to have abilities Y1 ⊂ S1 (in that order). For exam-
ple, if Y6 is the goal of making a breakfast of tea and toast,
then Y5 may be making the tea, which involves getting the
teabag out of the box and placing it in the cup (S1) and then
boiling water (S2) and adding it to the cup (S3), while S4

may be making the toast. The tree structure will be specific
to each individual and each environment, but can be elicited
from clients using task analysis methods such as (Hoey et
al. 2010a). In the example above, the task of making toast
involves no goal-recall abilities (other than the recall of the
goal of making breakfast). However, another client may for-
get that the toast is in the toaster and require an additional
level in the tree for a goal-recall ability for making toast.

The dynamics of the leaves are such that progress toward
the goal is only made if the entire path of goal-recall abilities
leading to the root of the tree are true (the client has these
goals on their stack), otherwise, progress will stall (as the
client will have forgotten what they are doing). The dynam-
ics can be further complicated by the fact that some subtasks
rely on other subtasks to be complete before they can begin

(e.g. the arrows S1 → S2 → S3 in Figure 2).
The action A is the controller’s prompt, and conditions

the dynamics throughout the tree. The controller has one
prompt for each goal-recall ability, and one prompt for each
behaviour-recall ability. Prompts affect the dynamics of the
abilities by making it more likely the relevant ability will
be gained. The rewards, R, are task dependent (the person
completes the task). Prompts are costly, as we are building
a passive system that allows a client to do things indepen-
dently whenever possible.

3 Distributed Monitoring and Control
The full model defined in the previous section will become
intractable for even a moderate number of subtasks. To han-
dle this complexity, we exploit hierarchical probabilistic in-
dependencies (Figure 2) in order to distribute the model into
a set of individual controllers. There is one controller for
each node in the tree, as shown in Figure 3(a) for a single
internal node (e.g. for node Y5 in Figure 2, with Nc = 3
children corresponding to the three tea-making steps). The
separation is defined by factoring the action space into ac-
tions relevant to each node, and adding two new sets of vari-
ables to each node. The first, C, is deterministically set by
the parent node, and represents some function of the set
of goal-recall abilities relevant to the child. The simplest
such function is a binary indicator for whether the complete
stack of goal-recall abilities along the path to that child are
present or not. However, this can be generalised to a com-
plete specification of the abilities, and can accommodate
multiple clients. In fact, the problem we are analysing can
be viewed as a type of resource allocation problem (Meuleau
et al. 1998) in which the resource is not fully under system
control.

We therefore refer to C as a resource allocated to a node
from its parent. We assume in this paper that C is binary (so
resource or control is either present or not). For example, in
Figure 2, the resource may be allocated by the root node by
giving a prompt to the user to recall they are making break-
fast. The sub-task of making tea (Y5) then has C = 1, and so
assumes the client knows they are trying to make breakfast.
The second variable added, X , describes the state of activ-
ity at each child subtask (X is not added to leaf nodes, but
instead is replaced with the usual states of X = {B, T} in
the full model). A subtask is defined as (i) active if it has
not reached its goal state and there has been client activity
in one of its child subtasks; (ii) complete if the goal state is
reached; and (iii) inactive otherwise. This is reported to the
parent through the additional observation Ox with the same
values (active, complete, inactive), and an observation func-
tion P (Ox|X) encapsulating the sensor noise at the leaves.
For example, in Figure 2, the internal node Y5 receives indi-
cations from each of its three children, and uses this to deter-
mine which node to allocate control to (or whether the entire
tea-making task is done, in which case this is reported to the
parent). Finally, we add additional rewards at each internal
node, rewarding the activity states being complete.

These additional variables at each node (C and X) also
have some dynamics associated with them (e.g. the proba-
bility that X is true at time t given its state at time t − 1).

92

O’
x x

O

C’C

Y’Y

X’X

C’C

Y’Y

X’X

O’O

A

N
A

c

b g

e

a

(b)

x

ga b

e

(a) (c)

Figure 3: (a) Parent node (top) with N c child nodes (in a
plate) as a distributed model. The dashed line shows a deter-
ministic setting of o′ in the parent node from the child node’s
state of x, and of c′ in the child node from the parent’s ac-
tion. (b) Type-I subtask shown as a state-space model. (c)
Type-II subtask with penalty state x.

These dynamics are important as they allow a parent node
to estimate how quickly a child will complete its task, and
allow a child node to determine how likely it is to get a re-
source at each time step. The dynamics can be computed
from the full model through simulation, but are set to fixed
a-priori values for simplicity in this paper. The action space
of each non-leaf node is augmented by the set of control al-
locations to its children, with c(a) denoting the control allo-
cation of action a. The addition of C and X turns each node
in the tree into a POMDP model as shown in Figure 1(b) if
we make the association of X with a macro-behaviour/task
(indicating which subtask is currently being pursued by the
client - behaviour - and which have been completed - task)
and of C with a macro-ability (indicating that the client has
all abilities higher up the tree to complete the subtask). This
elegant decomposition means that a single class of POMDP
model can be used at each node.

3.1 Control Algorithm - Fully Observable
We have a tree-structured hierarchy with each node corre-
sponding to a POMDP controller having a unique index j,
with children(j) being the child nodes of node j, and N c

j
is the number of children of node j. We let ci ∈ Ci be a re-
source (ability) allocation to child i. We will write a vector ~x
at node j to be a N c

j component vector {x1, . . . , xNc}, one
for each child of j. A vector with a resource superscript c,
~xc = {xc1

1 , x
c2
2 , . . . , x

cNc

Nc } denotes the quantity x in child
i if given resources ci. For notational convenience, we will
write the state space for node i as a product of ci (the re-
source allocation from the parent), si (the node’s state space)
and ~x (the activity of all the children). To simplify notation,
we include ~x and ci in si if not explicitly shown otherwise.
We write the full state space for all nodes as s.

We first derive the algorithm assuming a fully observable

state space, and then generalise to the partially observable
case. This computation makes use of the subtask’s average
model of how resources will be allocated over time, but does
not take into account any impact of a subtask’s future actions
on any other subtask (other than through the subtask par-
tial orderings). Therefore, we start by solving the POMDP
model at each node to find a value function V (s).

The computation must take into account that (1) some al-
locations, of resources are invalid (due to violations of the
partial order), (2) that the client may not, actually, have the
necessary resource after allocation and (3) that the client
may decide to switch subtasks on their own (and this is
something we do not want controllers to discourage, if the
client is not violating any validity constraints). We there-
fore define a binary function ξj(c, sj) that is 1 whenever the
resource allocation c to subtask i will be successful when
j = parent(i) is in state sj , and is 0 otherwise. In the as-
sistance domain, a resource allocation will be successfully if
the subtask is valid (according to the ordering constraints),
and if either the client is doing an on-task behaviour, or is
doing nothing but has the goal-recall ability that is relevant
(in which case, the subtask should have the necessary re-
sources to get the client to complete the task). The function
ξ allows subtask values to be “mixed” given the resources of
the parent. A resource allocation of c = 0 is always success-
ful.

We can now write the expected return at state s to a node
j at time t from one of its children i when it allocates c′i to
node i and ends up in state s′j (at t+ 1) as:

ψi
j(s′j ,s, c

′
i) = ξj(c′i, s

′
j)Q̃i(s, a

∗c′i
i , c′i)

+
[
1− ξj(c′i, s

′
j)
]
Q̃i(s, a

∗(1−c′i)
i , (1− c′i)). (1)

Where a∗c
′
i

i is the best action to take at node i if given re-
source c′i in state si: a

∗c′i
i = arg maxai

Q̃i(s, ai, c
′
i). Equa-

tion 1 says that if the allocation of resources ci to subtask
i is successful, then the expected return is simply the value
expected at the child node from the current state when re-
sources c′i are to be allocated and the optimal (greedy) policy
is followed (given by Q̃i(s, ai, c

′
i)). If, on the other hand, the

allocation is unsuccessful, then the expected return is that
without the resource.3

The expected value at node i of taking ai in state si and
being allocated c′i is given by

Q̃i(s, ai, c
′
i) = Qi(si, ai, c

′
i)

+γ
Nc

i∑
k=1

∑
s′i

[
ψk

i (s′i, s, c
′
k(ai))P (s′i|si, ai, c

′
i)
]
. (2)

The second term is the value expected from the N c
i children

of node i, and the first term is the expected return from i
itself if given resources c′i in the next time step:

Qi(si, ai, c
′
i) = r(si, ai) + γ

∑
s′i

P (s′i|si, ai, c
′
i)V (s′i) (3)

and V (s) is the expected value of state s, computed offline.
3assuming a binary resource. Multi-valued resources require an

expectation over all values.

93

3.2 Control Algorithm - Partially Observable
In the partially observable case, we replace states s in Equa-
tions 1–3 above with belief states b(s), and replace the sums
over states with sums of state-observation pairs, and write:

Qi(b(si), ai, c
′
i) =

∑
si

r(si, ai)b(si)

+ γ
∑
o′i,s
′
i

bc
′
io
′
iai(s′i)V (s′i)p

c′iai(o′i) (4)

where bc
′o′a(s′) is the belief state that results from ob-

serving o′ after action a was taken and resource c′

was assigned, bc
′o′a(s′) ∝

∑
s P (s′|s, a, c′)P (o′|s′)b(s),

and pc′a(o′) is the associated probability of observ-
ing o′, pc′a(o′) = p(o′|c′, a) = p(o′, c′|a)/p(c′|a)
and p(o′, c′|a) =

∑
s,s′ p(c

′|s′)p(o′|s′)p(s′|s, a)b(s), and
p(c′|a) =

∑
s,s′ p(c

′|s′)p(s′|s, a)b(s), where b(s) is the be-
lief at the previous time step.

We can then express Q̃ in a similar way as

Q̃i(b(s), ai, c
′
i) = Qi(b(si), ai, c

′
i)

+ γ

Nc
i∑

k=1

∑
o′i,s
′
i

[
bc
′
io
′
iai(s′i)ψ

k
i (s′i,b(s), c′k(ai))

]
pc′iai(o′i)

(5)

where ψk
i (s′i,b(s), c′k(ai)) is given by:

ψk
i (s′i,b(s), c′k) = ξi(c′k, s

′
i)Q̃k(b(s), a∗c

′
k

k , c′k)

+ [1− ξi(c′k, s′i)] Q̃k(b(s), a∗(1−c′k)
k , (1− c′k)) (6)

We combine Equations 4–6 in an online algorithm that
starts by computing the Q functions for each node in the hi-
erarchy (the off-line phase), then iterates between bottom-up
computation of values (function computeValue), top-down
action selection (function policyQuery), and belief updates
(function updateBelief) in the on-line phase.

The algorithm works by allowing a parent controller to
assess the expected values of each of its actions (and hence
each resource allocation) after an observation is received. It
does so in function computeValue by first requesting that
each subgoal compute an expected value (Q̃) for each pos-
sible resource allocation (line 3). The parent controller then
evaluates each of its possible actions, using the reported val-
ues from its children. It does this by first looking up the al-
location given by the action (line 5). It evaluates an action
by combining four elements: (i) the value it expects at the
next time step if a is taken, (ii) the value it expects from its
children at the next time step, (iii) the immediate reward it
will gather, and (iv) the immediate rewards reported by the
children. Note that each belief update bc

poa used to weight
the child contributions in the calculation of W on line 7 are
only test updates, used to evaluate the relative value from the
children if a particular resource allocation is made.

A second function policyQuery then does a top-down
traversal of the tree, picking the best action to take (accord-
ing to a∗cp computed at line 9 of computeValue) and recur-
sively choosing actions in the children according to the re-
sources allocated by a∗cp . Finally, the function updateBelief

Function Q̃ = computeValue(pomdp, cp)

Input: POMDPNode pomdp, resource allocation from
parent cp

Output: Q̃ expected values at current belief given cp
foreach subgoal i ∈ pomdp.children do // none if a leaf1

foreach ci ∈ Ci do // valid resources for subgoal i2

Q̃ci
i ←computeValue(pomdp.child[i], ci)3

foreach action a ∈ pomdp.A do4
~c← c(a) // the resource allocation of a to children5

ψ(s′,~c)←
Nc∑
i=1

[
Q̃ci

i ξi(ci, s
′)+Q̃1−ci

i (1−ξi(ci, s′))
]

6

W a←
∑

o

[∑
s′ψ(s′,~c)bc

poa(s′)+V (bc
poa)

]
pcpa(o)7

Q̃a ← γW a +
∑

s r(s, a)b(s)8

a∗c
p ← argmaxaQ̃

a // save best action for cp9

return Q̃a∗c
p

10

does a second top-down traversal, and updates the beliefs
of each node given the observations from the children, the
resources from the parent, and the selected actions. Obser-
vations are passed up through the tree by computing the
activity of the resulting belief states at each node.

The policyQuery in the assistance domain can only return
one prompt at a time, so parent nodes can veto the actions
in their descendants. This veto must also be taken into ac-
count in computeValue since only those actions respect the
parent’s veto can be considered in the loop on lines 4-8.

Note that the algorithm combines top-down and bottom-
up control, allowing the hierarchy to be responsive to the
person switching sub-goals: if the person is busy making
coffee and the TV remote is picked up, it means they’ve
switched to a different task (possibly due to losing track
of the coffee-making task). If the coffee-making task is not
in a critical state, then redirecting resources will be most
valuable at the parent level, as the sum of ψ values for the
new subtask resource allocation will be greater. On the other
hand, if the coffee making task is left in a critical state (e.g.
the stove was left on), then this value will be negated by the
ψ reported from the neglected subtask (if given no resource),
and the parent controller may veto the TV task and prompt
the person to return to complete the coffee making task.

4 Experiments
We present results of the distributed controller and the full
POMDP model on a set of assistance tasks generated using
the task analysis method presented in (Hoey et al. 2010a).
These domains are designed to capture some of the key is-
sues with assistance for persons with dementia. We used four
domains with a hierarchical structure of varying complexity.
The leaf nodes in all four domains are of two types, that we
have found across a wide range of assistance tasks. Type-I
leaves are simple 3 − state chain models, as shown in Fig-
ure 3(b), with two behaviour-recall abilities corresponding
to the state transitions a → b and b → g. The initial state
is a, and a reward of +25 is given at g, which then transi-

94

tions to an absorbing end state (e). An example Type-I task
is getting a teabag into the cup, where a → b = removing
teabag from box, and b → g = putting the teabag in the
cup. Type-II leaves (shown shaded in Figure 2) are 4−state
models, as shown in Figure 3(c), also with two behaviour-
recall abilities, but this time with a penalty state (x) that is
entered into with probability 0.1 from the second state in the
chain (b), and carries a penalty of −5. The same behaviour-
recall ability is necessary to transition from x → g as for
b → g. In tea-making, a Type-II task is one where the stove
gets turned on (a → b) and then turned off (b → g), when
e.g. boiling the water. The transition from b → x happens
if the water boils out. Transitions between the states in both
types of model occur with probability 0.01 when the corre-
sponding ability is lacking, and with probability 0.9 when it
is present. Observations have 1% noise for d = {0, 1, 2, 4}
and 5% noise for d = {5, 7}. Prompts cost 1.0.

Domain d = 0 is the simplest possible domain, consisting
of only two type-I leaf nodes with a common parent (3072
states, 64 observations). Domain d = 5 is as shown in Fig-
ure 2 with one type-II leaf (shaded) and three type-I leaves
(3.2 million states, 8192 observations). Domain d = 4 is
just the left sub-tree of the root node of d = 5 (81920 states,
1024 observations) and domain d = 2 is like d = 5 but with-
out the type-I leaf S3 and with no constraint between S1 and
S2 (163840 states, 1024 observations). Domain d = 7 is a
realistic recipe/packaging task in which the assistant helps a
person with a cognitive disability prepare a simple cake, in-
cluding mixing, cooking, icing, packaging and sending. This
domain has three levels in the hierarchy, 9 leaf nodes (4 of
them type-II) and 5 internal nodes, and has 3.4× 1015 states
and 2.2×109 observations. The discount factor is γ = 0.95
in the full model. However, in the distributed version, we do
not want to penalise subtask controllers for doing nothing if
they are not in control. We therefore use a discount factor of
γ = 1.0 in these nodes, but doing nothing costs 1.0 if the
node has control, and 0.0 otherwise.

The default dynamics of the goal-recall abilities (without
a prompt) are governed by three key parameters that were
varied in the experiments. The probability that a client will
gain an ability with/without any prompting are denoted gp

and gr, respectively, while the probability the client will
lose an ability if not prompted is denoted lr. Thus, large
values of lr indicate a person who requires more prompt-
ing, while large values of gr indicate a person who is more
likely to start a new goal, and gp indicates the responsive-
ness of the client. The easiest clients to prompt are those
with small lr and large gr (they tend to keep abilities once
gained and will spontaneously start new subtasks once com-
plete), while intermediate clients have both small, and the
more challenging clients to prompt have both large (they
tend to lose goals quickly and switch goals often). Clients
with large gp are easier as well. The most extreme example
is lr = 0.0 and gr = 1.0, representing a client who can al-
ways perfectly complete the task. The mean reward for this
case gives an upper bound for all other settings and policies.
Initial states for both simulator and models have all mass on
the initial plansteps, but were distributed across the abilities
(with p(ability=yes)=0.8), except for the upper bound simu-

lators that started with all abilities set to ’yes’ (indicating the
client knew what to do to begin with).

Domains were simulated for 20 runs in which the full
POMDP is used as a simulator (map from actions to observa-
tions). The simulations are run until the simulator enters the
terminal state or until a maximum of 60 steps. We tested our
distributed control algorithm versus the full POMDP policy
and versus five heuristic policies: (i) null (always does noth-
ing) (ii) ξ = 1.0 so parents assume children will always be
successful (iii) ψ = 0 so each node operates independently
and ignores its children and (iv) without any additional re-
wards at the internal nodes.

All POMDP policies were generated with symbolic
Perseus.4 It implements a factored, structured point-based
approximate solution technique based on the Perseus algo-
rithm (Spaan and Vlassis 2005). We used 100 α vectors and
two rounds, with belief states generated using the QMDP
policy in the first round, followed by the first round POMDP
policy in the second round, mixed with random actions.
The distributed nodes were solved using 1500 belief states,
while the full POMDP models were solved using 3000 be-
lief states. Policy generation for the full model for d > 3
were not possible within 30Gb of memory5 except for the
simplest case with lr = 0.0 and gr = 1.0 for d = 5. Domain
d = 7 is too large to even run the full model in simulation,
and so we demonstrate with a simple manual simulation.

Figure 4 shows the results for a range of user models (set-
tings of lr and gr), plotted as the mean value returned by
each method as a function of the mean value returned by the
full POMDP policy (the best we could expect for the given
setting of lr, gr). gp = 0.80 for all experiments. Our dis-
tributed method consistently performs better than any of the
heuristic methods, across a large range of user models. Most
of the policies perform fairly well on the user models where
lr and gr are both large. In these cases, the client easily
loses and gains abilities, making any prompting strategy in-
effectual since the necessary sequences of prompts has little
chance of maintaining the person’s abilities for long enough
to effectuate an appropriate behaviour. In these cases, it is
just as valuable to do nothing as it is to prompt according
to any other policy. Method (ii) with ξ = 1.0 works poorly
in most cases, as its assumption that the resource allocation
will always work is not valid in many situations. Method (iv)
with no value at internal nodes performs well on any domain
in which there are no temporal constraints between nodes, as
there is no incentive for the parent to do any proper sequenc-
ing of the children. In domain d = 4 and d = 5, this method
performs more poorly due to its inability to sequence.

Perhaps the most interesting method is (iii) in which
ψ = 0. In this case, each node uses its own average (generic)
model of the dynamics of its children (ofX) and of its parent
(of C). This works well in many situations, but fails when
something goes wrong (e.g. a person leaves a subtask in a
critical state). For example, in domain d = 2 and d = 5 this
method results in a number of trials with very negative re-

4www.cs.uwaterloo.ca/∼ppoupart/software. Results generated
on a 3.2GHz AMD PhenomIIX61090T CPU 8Gb of RAM.

5a 64 CPU Intel Itanium with 32Gb of RAM for each process.

95

0

10

20

30

40

50

28 30 32 34 36 38 40 42

si
m

ul
at

ed
 v

al
ue

full value

domain 0

full POMDP
our method

(i) null
(ii) ξ=1

(iii) ψ=0
(iv) r=0

48
9 67 5

2 3

1

-10

0

10

20

30

40

50

60

30 35 40 45 50 55 60

si
m

ul
at

ed
 v

al
ue

full value

domain 2

full POMDP
our method

(i) null
(ii) ξ=1

(iii) ψ=0
(iv) r=0

67
859

4
32

1

0

10

20

30

40

50

60

70

35 40 45 50 55 60

si
m

ul
at

ed
 v

al
ue

full value

domain 4

full POMDP
our method

(i) null
(ii) ξ=1

(iii) ψ=0
(iv) r=0

79
86

5 4
23

1

(d=0) (d=2) (d=4)

0

20

40

60

80

20 30 40 50 60 70

si
m

ul
at

ed
 v

al
ue

simulated value

domain 5

our method
(ii) ξ=1

(iii) ψ=0
(iv) r=0

6 7
598

4
32

1 no prompt observe

eggs mix milk boil cook box

1 recall sendcake no eggs no mix no milk stove off stove off box empty
2 recall makecake no eggs no mix no milk stove off stove off box empty
3 recall mixeggs no eggs no mix no milk stove off stove off box empty
4 recon eggs eggs no mix no milk stove off stove off box empty
5 aff sinksoap clean no mix no milk stove off stove off box empty
6 recon mix * mix no milk stove off stove off box empty
7-9 recall mixeggs (3x) * mix no milk stove off stove off box empty
10 aff pour * mix bowl no milk stove on stove off box empty
11 nothing * * no milk stove off stove on box empty
12 recon milk * * no milk stove off stove off box full
13 recall sendcake * * no milk stove off stove off box empty
14 recall makecake * * no milk stove off stove off box empty
15 recon milk * * milk stove off stove off box empty
16 aff pour * * milk bowl stove off stove off box empty

(d=5) (d=7)

Figure 4: Results for different domains. Indices 1 − 9 along the top line refer to the user model settings in order as follows:
lr/gr = 1 : 0/1; 2 : 0.05/0.005; 3 : 0.1/0.05; 4 : 0.2/0.05; 5 : 0.3/0.1; 6 : 0.4/0.1; 7 : 0.5/0.2; 8 : 0.4/0.3; 9 : 0.5/0.3.

turn (indicating the client remaining in a critical state for a
significant period of time), whereas our method avoids this
by focusing effort on the critical subtask.

The distributed algorithm requires about 8 seconds per
time step for domain d = 5 to compute values, select ac-
tions and update beliefs. However, the recursive compu-
tation is implemented sequentially, and a parallel version
would make the algorithm scale with the depth of the tree.

Figure 4 shows the actions taken by the system for domain
d = 7 in a simulated run, and the observations entered man-
ually for each of 9 subtasks, shaded meaning type-II sub-
tasks, unshaded are type-I. In the simulation, the client is
unresponsive for the first three time steps, and is prompted
down a branch of the tree from node recall send cake at the
root, through node recall make cake and recall mix eggs,
and then prompted at the leaf to perform the first action (re-
con eggs - the client needs to recognise the eggs). The client
follows this prompt and the next (aff sink soap - the client
needs to clean hands after breaking eggs, a critical step) and
finishes the first subtask. The controller then starts prompt-
ing for the second subtask (recon mix - the client needs to
find the cake mix) which the client follows, but then gets
stuck from steps 7-9. The controller tries some higher level
prompts (rl mix eggs), and then again tries to get the client
to complete the second subtask (using recon mix), which
works (step 10). There are two sensor mis-fires (in bold):
stove on/box full in subtask boil/box at time 10/12 that are

ignored by the controller. The controller then waits, allow-
ing the client to act, but the client starts the cook task out of
sequence, and is prompted return to the milk subtask.

5 Discussion and Related Work
Our work is related to four major strands of research:
POMDP-based assistance systems (Hoey et al. 2010b;
2010a), plan recognition (Geib 2002), decision-theoretic
assistance (Fern et al. 2007), and hierarchical reinforce-
ment learning (Dietterich 2000) and MDP decomposi-
tion (Meuleau et al. 1998). The domain we are investigating
is that of building assistance systems for smart homes. The
problem of assistance is discussed in (Fern et al. 2007), and
a relational context is built for a range of assistance tasks, in-
cluding those in the home, allowing different tasks to share
computational resources. However, their model assumes (i)
full observability, (ii) a rational client and (iii) a system that
shares the action space with the client (is not passive). Our
model is partially observable, explicitly models the dynam-
ics of a person behaving irrationally, and only has actions
that advise, rather than actively interfere with, the client. Al-
though it is possible to include shared actions in our model,
these are not desirable for clients with dementia, where in-
dependence is a key factor in quality of life.

POMDP-based approaches for assistance of cognitively
disabled persons (Hoey et al. 2010b; 2010a) only handle a
single task. Multiple, interleaved and abandoned tasks are

96

discussed by Geib (Geib 2002). While our method deals
with action recognition at a basic level, we also aim for con-
trol (system actions), and deal with partial observability.

Meuleau et al. (1998) showed that weakly coupled re-
source allocation tasks (in which subtasks are independent
given resources) can be successfully tackled with an approx-
imate, greedy algorithm for solving MDPs. In a similar ap-
proach, Dolgov (2006) focuses on global resources, and as-
sumes one-shot allocations. We have an unlimited global re-
source and an instantaneous, dynamic allocation problem.

There are many examples of approaches to distributed
control in which the problem is inherently serial, such
as in robot navigation (Theocharous, Murphy, and Kael-
bling 2004; Pineau, Roy, and Thrun 2001), and hierarchi-
cal RL (Sutton, Precup, and Singh 1999; Dietterich 2000).
Guestrin and Gordon propose a method for distributed con-
trol in factored MDPs that deals with parallel and coupled
tasks by incrementally solving a set of approximate linear
programs for each node in a hierarchy (Guestrin and Gor-
don 2002). Their method relies on full observability, but
their reward shaping ideas could be used to find better ap-
proximate Q-values in our method, effectively learning the
a-priori success function ξ in our method, along with the
necessary dynamics of c and X . Generalising our method to
learn value functions for a more globally optimal solution is
subject of our future work, but partial observability poses a
significant unsolved hurdle in this area.

The literature on Dec-POMDPs (Seuken and Zilberstein
2007) investigates theoretical properties (e.g., due to coordi-
nation) of standard Dec-POMDPs(Boutilier 1999), whereas
we use fairly detailed a-priori domain knowledge to con-
struct specific solution methods that work for the large do-
mains we are working on. For example, the JESP algo-
rithm (Nair et al. 2003) seeks a Nash Equilibrium (NE), but
in our case the NE is enforced by the hierarchical struc-
ture. Specific classes of DEC-POMDPs have been devel-
oped (Varakantham et al. 2009), but rely on having “highly”
autonomous agents that interact only in certain locales. Our
method, on the other hand, has very dependent agents (they
share resources), but imposes a structure that can be ex-
ploited for policy construction using a greedy approach.

6 Conclusions
We have presented a hierarchical and distributed algorithm
for control in very large assistance domains, with a specific
focus on assistance for persons with a cognitive disability.
We argued that this problem can be viewed as a resource al-
location problem in which the person in need of assistance
(the client) is the resource, and the allocation is a collabora-
tive task between the client and the controller. We developed
a POMDP formulation of this problem, and showed how it
can be neatly decomposed into a distributed POMDP model.
We developed a distributed control algorithm for this model,
and showed results on a challenging set of problems contain-
ing the major difficulties in the assistance domain. We have
also generated controllers for three real assistance tasks us-
ing the methodology in (Hoey et al. 2010a), and we plan
to implement these controllers in real systems in the near
future. Acknowledgement: This research was sponsored by

American Alzheimers Association grant numbers ETAC-08-
89008 and ETAC-07-58793.

References
Boutilier, C. 1999. Sequential optimality and coordination in mul-
tiagent systems. In Proc. IJCAI, 478–485.
Brdiczka, O.; Crowley, J. L.; and Reignier, P. 2009. Learning
situation models in a smart home. IEEE Trans. on Systems, Man
and Cybernetics - Part B: Cybernetics 39(1).
Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the MAXQ value function decomposition. JAIR 13:227–303.
Dolgov, D. A., and Durfee, E. H. 2006. Resource allocation among
agents with MDP-induced preferences. JAIR 27:505–549.
Duke, D.; Barnard, P.; Duce, D.; and May, J. 1998. Syndetic mod-
elling. Human-Computer Interaction 13(4):337.
Fern, A.; Natarajan, S.; Judah, K.; and Tadepalli, P. 2007. A
decision-theoretic model of assistance. In Proc. IJCAI.
Geib, C. W. 2002. Problems with intent recognition for elder care.
In Proc. of AAAI Wrkshp. on Automation as Caregiver.
Guestrin, C., and Gordon, G. 2002. Distributed planning in hierar-
chical factored MDPs. In Proc. UAI, 197–206.
Hoey, J.; Plötz, T.; Jackson, D.; Monk, A.; Pham, C.; and Olivier, P.
2010a. Rapid specification and automated generation of prompting
systems to assist people with dementia. to appear in Pervasive and
Mobile Computing. doi:10.1016/j.pmcj.2010.11.007.
Hoey, J.; Poupart, P.; von Bertoldi, A.; Craig, T.; Boutilier, C.; and
Mihailidis, A. 2010b. Automated handwashing assistance for per-
sons with dementia using video and a partially observable markov
decision process. CVIU 114(5):503–519.
Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.; Kaelbling,
L. P.; Dean, T.; and Boutilier, C. 1998. Solving very large weakly
coupled Markov decision processes. In Proc. AAAI, 165–172.
Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and Marsella, S.
2003. Taming decentralized POMDPs: Towards efficient policy
computation for multiagent settings. In Proc. IJCAI.
Pineau, J.; Roy, N.; and Thrun, S. 2001. A hierarchical approach to
POMDP planning and execution. In ICML Workshop on Hierarchy
and Memory in Reinforcement Learning.
Ryu, H., and Monk, A. F. 2009. Interaction unit analysis: A
new interaction design framework. Human-Computer Interaction
24(4):367–407.
Seuken, S., and Zilberstein, S. 2007. Improved memory-bounded
dynamic programming for decentralized POMDPs. In Proc. UAI.
Singla, G.; Cook, D. J.; and Schmitter-Edgecombe, M. 2008. In-
corporating temporal reasoning into activity recognition for smart
home residents. In AAAI Wrkshp. Spatial and Temporal Reasoning.
Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. JAIR 24:195–220.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112:181–211.
Theocharous, G.; Murphy, K.; and Kaelbling, L. 2004. Represent-
ing hierarchical POMDPs as DBNs for multi-scale robot localiza-
tion. In Proc. Intl. Conf. on Robotics and Automation.
Varakantham, P.; young Kwak, J.; Taylor, M.; Marecki, J.; Scerri,
P.; and Tambe, M. 2009. Exploiting coordination locales in dis-
tributed POMDPs via social model shaping. In Proc. ICAPS.
Zhang, S.; McClean, S.; Scotney, B.; and Nugent, C. 2008. Learn-
ing under uncertainty in smart home environments. In Proc. IEEE
EMBS Conference.

97

