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Abstract

POMDP algorithms have made significant progress in re-
cent years by allowing practitioners to find good solutions
to increasingly large problems. Most approaches (including
point-based and policy iteration techniques) operate by refin-
ing a lower bound of the optimal value function. Several ap-
proaches (e.g., HSVI2, SARSOP, grid-based approaches and
online forward search) also refine an upper bound. However,
approximating the optimal value function by an upper bound
is computationally expensive and therefore tightness is often
sacrificed to improve efficiency (e.g., sawtooth approxima-
tion). In this paper, we describe a new approach to efficiently
compute tighter bounds by i) conducting a prioritized breadth
first search over the reachable beliefs, ii) propagating upper
bound improvements with an augmented POMDP and iii) us-
ing exact linear programming (instead of the sawtooth ap-
proximation) for upper bound interpolation. As a result, we
can represent the bounds more compactly and significantly
reduce the gap between upper and lower bounds on several
benchmark problems.

1 Introduction

Recent years have seen impressive improvements in the scal-
ability of POMDP solvers. However the optimal policy
of most problems is still unknown. Since the computa-
tional complexity of finite horizon flat POMDPs is PSPACE-
Complete (Papadimitriou and Tsitsiklis 1987), it is generally
agreed that finding an optimal policy is most likely out of
reach for all but tiny problems. As a result, most of the ad-
vances have focused on the development of scalable approx-
imate algorithms. On that front, approximate algorithms
routinely find good policies for many large problems (Hoey
et al. 2010; Thomson and Young 2010). However, how
good the policies are is a delicate question. Most policies
can be evaluated in simulation, meaning that the expected
value of the policy is only known up to some confidence
interval that holds only with some probability. Some al-
gorithms (including most point-based value iteration tech-
niques) actually compute a lower bound on the value, which
provides a guarantee. However, even if the value of the pol-
icy is known, it is not always clear how far from optimal it
may be. To that effect some algorithms (e.g., HSVI2 (Smith
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and Simmons 2005), SARSOP (Kurniawati, Hsu, and Lee
2008), grid-based techniques (Lovejoy 1991; Brafman 1997;
Hauskrecht 2000; Zhou and Hansen 2001) and some online
search techniques (Ross et al. 2008)) also compute an upper
bound on the value, but since this tends to be computation-
ally expensive, tightness is often sacrificed for efficiency.

In practice, there is a need for explicit performance guar-
antees. A common approach to tackle sequential decision
making problems consists of going through several rounds
of modelling, policy optimization and policy simulation. Af-
ter a while, domain experts involved in the modeling step
will typically inquire about the optimality of the solution al-
gorithm since a lack of optimality could explain question-
able choices of actions and perhaps there is no need to fur-
ther tweak the model. In general, many people outside of
computer science do not trust computers and therefore will
be more inclined to question the solution algorithm instead
of the model, especially when the model is (partly) specified
by a human. Furthermore, before deploying a computer gen-
erated policy into an industrial application, decision mak-
ers will often demand some kind of guarantee regarding the
quality of the policy.

In this paper we describe a new algorithm called GapMin
that minimizes the gap between upper and lower bounds by
efficiently computing tighter bounds. Although our long-
term goal is to compute bounds for factored problems, we
restrict ourselves to flat problems in this paper. Note that flat
problems are still interesting since the optimal value func-
tion of many benchmark problems on Cassandra’s POMDP
website1 (some of which have served as benchmarks for
more than 15 years) is unknown. Our approach is related to
point-based value iteration techniques that perform a heuris-
tic search (e.g., HSVI2 and SARSOP). GapMin differs from
its predecessors in three important ways: i) a prioritized
breadth first search is performed instead of a depth first
search, ii) improvements to the upper bound are efficiently
propagated with an augmented POMDP and iii) upper bound
interpolation is performed exactly by linear programming
instead of using the sawtooth relaxation. Here, i) leads to
much more compact representations for the bounds and ii)
is a technique borrowed from (Hauskrecht 2000) that re-
duces the number of upper bound interpolations, which al-

1http://www.pomdp.org
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lows us to use linear programming at a negligible cost while
obtaining tighter upper bounds. We tested the approach on
64 benchmark problems from Cassandra’s POMDP web-
site. GapMin finds a near optimal solution (gap smaller
than one unit at the 3rd significant digit) for 46 problems
in less than 1000 seconds (in comparison to 32 problems for
HSVI2 and 31 for SARSOP). GapMin also finds lower and
upper bound representations that require significantly fewer
α-vectors and belief-bound pairs than HSVI2 and SARSOP.

The paper is structured as follows. Sec. 2 reviews ex-
isting techniques to compute lower and upper bounds for
POMDPs. Sec. 3 describes our new algorithm GapMin.
Sec. 4 reports the results of the experiments on the suite
of benchmark problems from Cassandra’s POMDP web-
site. Finally, Sec. 5 concludes and discusses potential future
work.

2 Background

In this section, we introduce some notation for partially ob-
servable Markov decision processes (POMDPs) and quickly
review previous work to compute lower and upper bounds
on the optimal value function.

2.1 Partially Observable Markov Decision
Processes

Consider a POMDP P specified by a tuple
〈S,A,O, T, Z,R, γ, b0〉 where S is the set of states s,
A is the set of actions a, O is the set of observations
o, T is the transition function indicating the probability
of reaching some state s′ when executing an action a
in state s (i.e., T (s′, s, a) = Pr(s′|s, a)), Z is the ob-
servation function indicating the probability of making
an observation o after executing action a and reaching
state s′ (i.e., Z(o, s′, a) = Pr(o|s′, a)), R is the reward
function indicating the utility of executing action a in
state s (i.e., Ra(s) ∈ ℜ), γ ∈ (0, 1) is the discount
factor indicating by how much future rewards should
be scaled at each step in the future and b0 is the initial
distribution over states (i.e., b0(s) = Pr0(s)). Alternatively,
we can also specify a POMDP 〈S,A,O, TZ, R, γ, b0〉
by combining T and Z into a single function
TZ(s′, o, s, a) = T (s′, s, a)Z(o, s′, a) = Pr(s′, o|s, a)
that indicates the joint probability of state-observation
pairs given previous state-action pairs. This alternative
formulation will be useful in Sec. 3 when we specify
an augmented POMDP. Since T and Z appear only as a
product in the fast informed bound algorithm described in
Sec. 2.3, it is sufficient to specify TZ.

Given a POMDP P , the goal is to find a policy π that
maximizes the expected total rewards. Since the states are
not observable, policies are mappings from histories of past
actions and observations to the next action. However, this
is not convenient since histories grow with the planning
horizon. Alternatively, distributions over the hidden states,
called beliefs, can be used as a substitute for histories since
they are a finite-length sufficient statistic. The belief b at
each time step can be updated based on the action a exe-
cuted and the observation o received to obtain the belief bao

at the next time step according to Bayes’ theorem:

bao(s
′) ∝

∑

s

b(s) Pr(s′|s, a) Pr(o|s′, a)

In this paper, we will assume that policies π : B → A
are mappings from beliefs to actions. The value V π(b) of
executing a policy π from a belief b is the expected sum of
the rewards earned, which can be expressed recursively by:

V π(b) = Rπ(b)(b) + γ
∑

o

Pr(o|b, π(b))V π(bπ(b)o)

Here Rπ(b)(b) =
∑

s b(s)R(s, π(b)) and Pr(o|b, π(b)) =∑
ss′ b(s) Pr(s

′|s, π(b)) Pr(o|s′, π(b)). An optimal policy
π∗ has an optimal value function V ∗ that is at least as
high as the value of any other policy for all beliefs (i.e.,
V ∗(b) ≥ V π(b) ∀b, π). The optimal value function satis-
fies Bellman’s equation:

V ∗(b) = max
a

Ra(b) + γ
∑

o

Pr(o|b, a)V ∗(bao) (1)

Smallwood and Sondik (1973) also showed that V ∗ is piece-
wise linear and convex with respect to the belief space. This
means that the optimal value function can be represented by
a (possibly infinite) set Γ∗ of α-vectors that map each state
s to some value α(s) yielding linear functions in the belief
space (i.e., α(b) =

∑
s b(s)α(s)). The optimal value func-

tion is the upper surface of the linear functions defined by
the α’s (i.e., V ∗(b) = maxα∈Γ∗ α(b)). In some situations,
it is also useful to consider the value Qπ(b, a) of executing
an action a at b followed by π. The optimal Q function (de-
noted Q∗) is also piece-wise linear and convex and therefore
can be represented by a set of α-vectors.

Some algorithms do not represent policies directly as a
mapping from beliefs to actions. Instead they use a value
function or Q-function to implicitly represent a policy. The
action of a specific belief b is the action that leads to the
largest value according to Q (i.e., π(b) = argmaxa Qa(b))
or a one step lookahead with V :

π(b) = argmax
a

Ra(b) + γ
∑

o

Pr(o|b, a)V (bao) (2)

Algorithms to optimize a policy can generally be divided
in two groups: offline algorithms (e.g., most value itera-
tion and policy search algorithms) that pre-compute a pol-
icy which is executed with minimal computation at runtime
and online algorithms that do not pre-compute anything, but
instead perform a forward search from the current belief at
each step to select the next action to execute. In practice,
it is best to combine offline and online techniques to pre-
compute a reasonable policy (or value function), which is
then refined online by a forward search. In this paper, we
focus on the offline computation of lower and upper bounds
for the optimal value function. Such bounds may be used to
guide an online search and to provide performance guaran-
tees.
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Algorithm 1 Blind Strategies

Inputs: P
Output: lower bound Q(s)
Q

a
(s)← mins′ Ra(s

′)/(1− γ) ∀a, s
repeat
Q

a
(s)←Ra(s) + γ

∑
s′ Pr(s

′|s, a)Q
a
(s′)∀a, s

until convergence

Algorithm 2 Point-based Value Iteration

Inputs: P and B = {b1, . . . , b|B|}
Output: lower bound Γ of α-vectors
Γ← {Q

a
|a ∈ A} where Q← blindStrategies(P)

repeat
Γ′ ← ∅
for each b ∈ B do
αao ← argmaxα∈Γ α(bao)
a∗ ← argmaxa Ra(b) + γ

∑
o Pr(o|b, a)αao(bao)

αb ← Ra∗ + γ
∑

o Pr(o|b, a
∗)αa∗o

Γ′ ← Γ′ ∪ {αb}
end for

until convergence

2.2 Lower Bounds

A simple and fast lower bound Q on the Q-function can
be computed by finding the value function of blind strate-
gies (Hauskrecht 1997) that ignore all observations by al-
ways executing the same action (see Alg. 1). In this algo-
rithm, each vector Q

a
(s) is the value function of the blind

strategy that always executes a, which is a lower bound for
the optimal Q-function.

Point-based value iteration techniques (Pineau, Gordon,
and Thrun 2006; Spaan and Vlassis 2005; Smith and Sim-
mons 2005; Kurniawati, Hsu, and Lee 2008; Shani, Braf-
man, and Shimony 2007) gradually refine a lower-bound
of the optimal value function. Given a set B of belief
points b, they iteratively compute the value of each belief
b with its gradient. Since the optimal value function is con-
vex, they find a set Γ of hyperplanes known as α-vectors
that provide a lower bound on the optimal value function.
Alg. 2 describes a generic point-based value iteration tech-
nique. Specific implementations differ in how the set of
belief points is chosen as well as the order in which the
value (and gradient) of each belief point is updated. Since
the only relevant beliefs are those that are reachable from
the initial belief b0, a popular approach consists of grow-
ing the set of belief points with the beliefs visited while
executing a heuristic policy (Smith and Simmons 2005;
Kurniawati, Hsu, and Lee 2008; Shani, Brafman, and Shi-
mony 2007). In particular, when this policy is obtained by
a one step lookahead (Eq. 2) with respect to a decreasing
upper bound of the value function, then convergence to the
optimal value function is guaranteed (Smith and Simmons
2005). This approach can be further refined to focus on the
beliefs reachable by the optimal policy by adapting the be-
lief set as the heuristic policy changes (Kurniawati, Hsu, and
Lee 2008).

Algorithm 3 Fast Informed Bound

Inputs: P
Output: upper bound Q̄
Q̄a(s)← maxsa Ra(s)/(1− γ) ∀as
repeat
Q̄a(s)← Ra(s)+
γ
∑

omaxa′

∑
s′ Pr(s

′|s, a) Pr(o|s′, a)Q̄a′(s′) ∀as
until convergence

2.3 Upper Bounds

Alg. 3 describes the fast informed bound (FIB) (Hauskrecht
2000), which is a simple and fast upper bound Q̄ on the opti-
mal Q-function. The update in the second last line of Alg. 3
yields an upper bound because the maximization over a′ is
taken independently for each state s instead of each belief b.
Note also that the transition and observation functions only
appear as a product, hence the product could be replaced by
TZ(s′, o, s, a).

In some situations, we can compute an upper bound
on the value function at specific belief points. Let V =
{〈b1, v1〉, . . . , 〈bn, vn〉} denote a set of belief-bound pairs
such that V̄ (bi) = vi returns an upper bound vi at bi. Since
V̄ is only defined at a specific set of beliefs, we will call this
set the domain of V̄ (i.e. dom(V̄ )).

It is often useful to infer an upper bound on the beliefs
outside of the domain of V̄ . Since the optimal value func-
tion is convex, we can interpolate between the beliefs of the
domain by solving a linear program. In particular, Alg. 4
shows how to compute the smallest upper bound possible
for any belief b given upper bounds Q̄ and V̄ on the optimal
Q-function and value function. In addition to computing a
bounding value v∗, the algorithm returns the lowest convex
combination c∗ of beliefs (i.e., distribution c∗(b̄) of beliefs
b̄ ∈ dom(V̄ )). However, since linear programs are compu-
tationally expensive, a sawtooth approximation (Hauskrecht
2000) (Alg. 5) is used in most state of the art algorithms
including HSVI2 and SARSOP. This approximation finds
the best interpolation that involves one interior belief with
|S|−1 extreme points of the belief simplex (denoted by es in
Alg. 5). The computation time is only O(|dom(V̄ )||S|) and
the approximation becomes exact in the limit when dom(V̄ )
contains the entire belief space. So there is a tradeoff: a
polynomial amount of computation is saved by avoiding lin-
ear programs, but more belief-bound pairs may be neces-
sary to achieve the same level of accuracy. In the worst
case, the increase in the number of belief-bound pairs may
be exponential since it takes exponentially many beliefs to
densely cover an |S|-dimensional space. Alternatively, one
can reduce the number of interpolations by caching the dis-
tributions c∗ that are repeatedly computed at the same be-
liefs (Hauskrecht 2000). We will apply this technique to mit-
igate the cost of LP interpolations, while ensuring a bound
that is as tight as possible.

3 Closing the Gap

We propose a new algorithm called GapMin that minimizes
the gap between lower and upper bounds on the optimal
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Algorithm 4 UB (LP upper bound interpolation)

Inputs: P , b, Q̄ and V̄
Outputs: upper bound v∗ and distribution c∗

v ← maxa
∑

s b(s)Q̄a(s)
LP: c∗ ← argminc

∑
b̄∈dom(V̄ ) c(b̄)V̄ (b̄)

s.t.
∑

b̄∈dom(V̄ ) c(b̄)b̄(s) = b(s) ∀s

c(b̄) ≥ 0 ∀b̄ ∈ dom(V̄ )
v∗ ← min(v,

∑
b̄∈dom(V̄ ) c

∗(b̄)V̄ (b̄))

Algorithm 5 UB (sawtooth upper bound interpolation)

Inputs: P , b, Q̄ and V̄
Outputs: upper bound v∗ and distribution c∗

v ← maxa
∑

s b(s)Q̄a(s)
for each b̄ ∈ dom(V̄ ) \ {es|s ∈ S} do
c(b̄)← minsb(s)/b̄(s)
f(b̄)← V̄ (b̄)−

∑
s b̄(s)V̄ (es)

end for
b̄∗ ← argminb̄ c(b̄)f(b̄)
v∗ ← min(v, c(b̄∗)f(b̄∗) +

∑
s b(s)V̄ (es))

c∗(es)← b(s)−
∑

b̄∈dom(V̄ )\{es|s∈S} b̄(s)c(b̄) ∀s

c∗(b̄∗)← c(b̄∗) and c∗(b̄)← 0 ∀b̄ 6= b̄∗

value function. The algorithm gradually increases a lower
bound by point-based value iteration similar to previous
techniques. It distinguishes itself from previous algorithms
in the upper bound computation and the exploration tech-
nique. The upper bound V̄ is gradually decreased by find-
ing belief points for which the upper bound is not tight and
adding them to the domain of V̄ . Each time some new belief-
bound pairs are added to V̄ , the reduction is propagated to
other reachable beliefs. This can be done efficiently by con-
structing an augmented POMDP and computing the fast in-
formed bound of this augmented POMDP. As a result, we
do not need to interpolate between the belief-bound pairs of
V̄ too often and using LP-interpolation instead of sawtooth
interpolation does not make a big difference in the overall
running time.

GapMin (Alg. 6) executes four major steps repeatedly:
a) it finds belief points B′ at which the lower bound is not
optimal and belief-bound pairs V̄ ′ that improve the upper
bound, b) point-based value iteration is then performed to
update the set Γ of α-vectors that represent the lower bound,
c) an augmented POMDP P ′ is constructed with the new
belief-bound pairs and d) the improvements induced by the
new belief-bound pairs are propagated throughout the up-
per bound by computing the fast informed bound of P ′.
GapMin is reminiscent of policy iteration techniques in the
sense that it alternates between finding beliefs at which the
bounds can be improved and then propagating the improve-
ments through the bounds by policy evaluation-like tech-
niques. Similar to HSVI2 and SARSOP, the bounds in Gap-
Min are also guaranteed to converge to the optimal value
function in the limit.

Alg. 7 describes a search for beliefs at which the lower or
upper bound is not tight. This search is done in a breadth-

Algorithm 6 Gap minimization

Inputs: P
Output: lower bound Γ and upper bound Q̄, V̄
Q̄← fastInformedBound(P)
V̄ ← {〈es,maxa Q̄a(s)〉|s ∈ S}
Γ← blindStrategies(P)
B ← ∅ and B̄ ← ∅
repeat
[B′, V̄ ′]← suboptimalBeliefs(P , Q̄, V̄ ,Γ)
B ← B ∪ B′

Γ← pointBasedValueIteration(P ,B)
V̄ ← V̄ ∪ V̄ ′

P ′ ← augmentedPOMDP(P , Q̄, V̄ )
Q̄′ ← fastInformedBound(P ′)
Q̄a(s)← Q̄′

a(es) ∀as
V̄ (b)← maxa Q̄

′
a(b) ∀b ∈ dom(V̄ )

until convergence

first manner with a priority queue that ranks beliefs accord-
ing to a score that measures the gap between the upper and
lower bound at the belief weighted by the probability of
reaching this belief. In contrast, HSVI2 and SARSOP per-
form their search in a depth-first manner, which tends to
find beliefs that are deeper, but less significant for the over-
all bounds. Hence, it is often the case that fewer beliefs
are needed to construct equally tight bounds when the be-
liefs are found by a breadth-first search. The search selects
actions according to a one-step lookahead with the upper
bound V̄ . This is the same action selection strategy as for
HSVI2 and SARSOP, which ensures that actions are tried
until they become suboptimal. This guarantees that upper
and lower bounds will converge to the optimal value func-
tion in the limit. The beliefs reached based on each obser-
vation are scored by measuring the gap between the upper
and lower bound weighted by the probability of reaching
that belief. The beliefs with a gap lower than some tolerance
threshold (adjusted based on the discount factor and search
depth) are discarded since their contribution to the gap of
the initial belief is negligible. The remaining beliefs are in-
serted in the priority queue in order of decreasing score. At
each visited belief, we verify whether the lower and upper
bounds can be tightened by a one-step look ahead search.
The search terminates when the queue is empty or a prede-
termined number of suboptimal beliefs have been found. It
returns a set B of beliefs for which the lower bound can be
improved and set V̄ of belief-bound pairs that improve the
upper bound. The priority queue ensures that beliefs are ex-
amined in decreasing order of potential contribution to the
gap of the initial belief.

Given a set of belief-bound pairs V̄ , we can propagate any
improvement to the upper bound by repeatedly computing
the following update for each 〈b, v〉 ∈ V̄ :

v = max
a

Ra(b) + γ
∑

o

Pr(o|b, a)UB(bao, Q̄, V̄ )

However, notice that the number of calls to the upper bound
interpolation function UB is |A||O| per update and to fully
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Algorithm 7 Suboptimal Beliefs

Inputs: P , Q̄, V̄ , Γ and tolerance
Output: lower bound beliefs B and upper bound V̄
score← maxα∈Γ α(bao)− UB(b, Q̄, V̄ )
queue← {〈b, gap, 1, 0〉}
while queue 6= ∅ do
〈b, score, prob, depth〉 ← pop(queue)
a∗ ← argmaxa Ra(b)+

γ
∑

o Pr(o|b, a)UB(bao, Q̄, V̄ )

val
∗
← Ra∗(b) + γ

∑
o Pr(o|b, a

∗)UB(ba∗o, Q̄, V̄ )

val ← UB(b, Q̄, V̄ )

if val− val
∗
> tolerance then

V̄ ← V̄ ∪ {〈b, val
∗
〉}

end if
val∗ ← Ra∗(b) + γ

∑
o Pr(o|b, a

∗)maxα∈Γ α(ba∗o)
val ← maxα∈Γ α(b)
if val∗ − val > tolerance then
B ← B ∪ {b}

end if
depth← depth+ 1
for each o ∈ O do
gap← maxα∈Γ α(bao)− UB(ba∗o, Q̄, V̄ )
if γdepthgap > tolerance then
probo ← probPr(o|b, a∗)
score← proboγ

depthgap
queue← insert(queue, 〈ba∗o, score, probo, depth〉)

end if
end for

end while

propagate an improvement we may need to compute thou-
sands’ of updates. When the interpolation is done by linear
programming, this is quite expensive, which is why HSVI2
and SARSOP use the sawtooth interpolation procedure. We
follow an alternative approach (Hauskrecht 2000) that dras-
tically reduces the number of calls to the interpolation func-
tion.

We noticed that we repeatedly make calls to the interpo-
lation for the same beliefs bao and that the optimal con-
vex combination c∗ returned by UB tends to be the same
even when the input V̄ changes. Since V̄ induces a con-
vex function, c∗ is always a convex combination of beliefs
that form a small convex hull of the desired belief. While V̄
changes, the resulting convex combination rarely changes.
Hence, one can cache the resulting c∗ for each call to UB
(one call for each bao). Given c∗, we can quickly compute
v∗ =

∑
〈b,v〉∈V̄ c∗(b)v, which is computationally negligible

in comparison to solving an LP. We can then quickly prop-
agate improvements at the cost of only one LP-interpolation
per belief bao. The propagation won’t be as good as if we
resolved the LP for each interpolation, but it is very close in
practice. Note that the LPs are resolved periodically (after
each search for new beliefs where the bounds are not tight),
so this does not affect the asymptotic convergence of the
bounds to the optimal value function.

It turns out that propagating improvements with

Algorithm 8 Augmented POMDP

Inputs: P = 〈S,A,O, T, Z,R, γ, b0〉, Q̄ and V̄
Output: P ′ = 〈S ′,A,O, TZ′, R′, γ, b′0〉
S ′ ← dom(V̄ )
for each b ∈ S′, a ∈ A, o ∈ O do
[val, c]← UB(bao, Q̄, V̄ )
TZ′(b′, b, a, o)← c(b′) Pr(o|b, a) ∀b′ ∈ S′

end for
R′

a(b)←
∑

s b(s)Ra(s) ∀a ∈ A, b ∈ S′

〈val, b′0〉 ← UB(b0, Q̄, V̄ )

LP caching is equivalent to solving a discrete belief
MDP (Lovejoy 1991; Hauskrecht 2000). The interpolation
essentially re-maps each bao to a convex combination of be-
liefs in the domain of V . Since the domain of V̄ always con-
tains the extreme points of the belief simplex, which cor-
respond to each state, we can view this belief MDP as an
augmented POMDP with additional states corresponding to
the interior beliefs of the domain of V . Alg. 8 describes how
to construct this augmented POMDP. The combined transi-
tion and observation function TZ is obtained by the convex
combination of each reachable belief bao according to V̄ .
Finally, we perform the propagation of the improvements
by computing the fast informed bound of this augmented
POMDP according to Alg. 3.

4 Experiments

We experimented with the suite of benchmark problems
posted on Cassandra’s POMDP website.2 Out of the 68
problems, we discarded four of them (1d.noisy, 4x4.95,
baseball and bulkhead.A) due to parsing issues and report
results for the remaining 64 problems. Whenever the dis-
count factor was 1, we changed it to 0.999 and whenever
there was no start belief, we set it to a uniform distribution
over the entire state space. We compare GapMin with saw-
tooth (ST) and LP interpolation to HSVI2 and SARSOP by
running the implementations provided in the ZMDP3 and
APPL4 packages.

We ran the four algorithms on each problem to compare
the quality of the lower and upper bounds as well as the size
of their representations. Each run was terminated as soon as
the gap between the lower and upper bound was less than
one unit at the 3rd significant digit or when 1000 seconds
was reached. GapMin found a near optimal policy (gap less
than one unit at the third significant digit) for 46 problems
(out of 64) in comparison to 32 for HSVI2 and 31 for SAR-
SOP. In Tables 1 and 2, we report the results for the 33 prob-
lems that were not solved (near) optimally by all solvers. For
each problem, (near) optimal gaps are highlighted and when
none of the techniques find a (near) optimal gap, the small-
est gap is highlighted. Among the 18 problems that were not
solved (near) optimally by any solver, GapMin with LP in-
terpolation found the smallest gap for 7 problems in compar-

2http://www.pomdp.org
3http://www.cs.cmu.edu/˜trey/zmdp/
4http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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Table 1: Results: comparison of the gap, lower bound (LB),
upper bound (UB), # ofα-vectors (|Γ|) to represent the lower
bound, # of belief-bound pairs (|V̄ |) to represent the upper
bound and time (seconds) for runs terminated after 1000 sec-
onds or when the gap is less than one unit at the 3rd signifi-
cant digit.

problem algorithm gap LB UB |Γ| |V̄ | time

aloha.10 hsvi2 9.0 535.4 544.4 4729 n.a. 997

|S| = 30 sarsop 9.5 535.2 544.7 48 2151 1000

|A| = 9, |O| = 3 gapMin ST 10.3 534.1 544.4 136 510 673

γ = 0.999 gapMin LP 7.6 536.5 544.2 152 383 968

aloha.30 hsvi2 38 1212 1249 2062 n.a. 1000

|S| = 90 sarsop 74 1177 1252 86 1245 999

|A| = 29, |O| = 3 gapMin ST 113 1136 1249 44 701 800

γ = 0.999 gapMin LP 111 1136 1247 46 442 799

cheng.D3-1 hsvi2 11 6417 6428 16 n.a. 997

|S| = 3 sarsop 15 6417 6432 10 1836 1000

|A| = 3, |O| = 3 gapMin ST 10 6412 6422 8 33 26

γ = 0.999 gapMin LP 10 6412 6422 8 8 25

cheng.D3-2 hsvi2 10 8240 8250 8 n.a. 404

|S| = 3 sarsop 12 8240 8252 6 866 1000

|A| = 3, |O| = 3 gapMin ST 10 8235 8245 3 21 15

γ = 0.999 gapMin LP 10 8235 8245 3 7 22

cheng.D3-3 hsvi2 105 7457 7562 13 n.a. 991

|S| = 3 sarsop 129 7457 7585 8 2437 999

|A| = 3, |O| = 3 gapMin ST 10 7452 7462 7 149 56

γ = 0.999 gapMin LP 10 7452 7462 7 15 37

cheng.D3-4 hsvi2 41 5827 5868 15 n.a. 993

|S| = 3 sarsop 48 5827 5875 5 1799 1000

|A| = 3, |O| = 3 gapMin ST 10 5822 5832 8 65 78

γ = 0.999 gapMin LP 10 5822 5832 5 16 37

cheng.D3-5 hsvi2 26 8673 8698 63 n.a. 990

|S| = 3 sarsop 34 8673 8706 10 2704 1000

|A| = 3, |O| = 3 gapMin ST 10 8668 8678 9 28 34

γ = 0.999 gapMin LP 10 8668 8678 10 8 15

cheng.D4-1 hsvi2 167 6715 6882 19 n.a. 999

|S| = 4 sarsop 180 6715 6894 10 6222 1000

|A| = 4, |O| = 4 gapMin ST 10 6710 6720 11 476 553

γ = 0.999 gapMin LP 10 6711 6721 11 45 288

cheng.D4-2 hsvi2 63 8381 8443 22 n.a. 995

|S| = 4 sarsop 71 8378 8450 8 2321 999

|A| = 4, |O| = 4 gapMin ST 10 8376 8386 12 323 135

γ = 0.999 gapMin LP 10 8376 8386 13 48 115

cheng.D4-3 hsvi2 55 7661 7715 20 n.a. 997

|S| = 4 sarsop 60 7660 7721 11 4720 1000

|A| = 4, |O| = 4 gapMin ST 10 7656 7666 10 144 91

γ = 0.999 gapMin LP 10 7656 7666 10 37 68

cheng.D4-4 hsvi2 65 7670 7735 18 n.a. 997

|S| = 4 sarsop 69 7669 7738 6 1371 1000

|A| = 4, |O| = 4 gapMin ST 10 7665 7675 16 362 313

γ = 0.999 gapMin LP 10 7665 7675 11 40 109

cheng.D4-5 hsvi2 91 7884 7975 35 n.a. 994

|S| = 4 sarsop 96 7884 7980 14 2584 1000

|A| = 4, |O| = 4 gapMin ST 10 7879 7889 19 453 415

γ = 0.999 gapMin LP 10 7879 7889 17 46 197

cheng.D5-1 hsvi2 59 6549 6608 19 n.a. 996

|S| = 5 sarsop 64 6549 6613 9 3002 999

|A| = 3, |O| = 3 gapMin ST 10 6544 6554 1 125 26

γ = 0.999 gapMin LP 10 6544 6554 1 22 25

cit hsvi2 0.0951 0.7430 0.8381 3739 n.a. 975

|S| = 284 sarsop 0.0491 0.7909 0.8399 3108 1368 967

|A| = 4, |O| = 28 gapMin ST 0.8378 0.0000 0.8378 1 123 802

γ = 0.990 gapMin LP 0.8378 0.0000 0.8378 1 104 855

ejs1 hsvi2 7.8 421.3 429.1 13 n.a. 991

|S| = 3 sarsop 48.8 421.3 470.1 9 37237 1000

|A| = 4, |O| = 2 gapMin ST 0.4 421.1 421.5 9 23 52

γ = 0.999 gapMin LP 0.3 421.2 421.6 9 11 65

ejs2 hsvi2 91 1781 1872 8 n.a. 997

|S| = 2 sarsop 115 1781 1896 7 12629 1000

|A| = 2, |O| = 2 gapMin ST 10 1777 1787 6 21 22

γ = 0.999 gapMin LP 10 1776 1786 6 5 13

ejs4 hsvi2 20.2 -133.6 -113.4 7 n.a. 999

|S| = 3 sarsop 22.8 -133.6 -110.8 2 5107 1000

|A| = 2, |O| = 2 gapMin ST 1.0 -134.1 -133.1 2 76 26

γ = 0.999 gapMin LP 1.0 -134.1 -133.1 2 7 13

fourth hsvi2 0.3758 0.2416 0.6174 3345 n.a. 994

|S| = 1052 sarsop 0.3300 0.2875 0.6175 3595 888 975

|A| = 4, |O| = 28 gapMin ST 0.6176 0.0000 0.6176 1 20 532

γ = 0.990 gapMin LP 0.6176 0.0000 0.6176 1 21 669

hallway2 hsvi2 0.5250 0.3612 0.8862 2393 n.a. 997

|S| = 92 sarsop 0.5247 0.3737 0.8984 262 1519 992

|A| = 5, |O| = 17 gapMin ST 0.3718 0.4173 0.7891 294 460 940

γ = 0.950 gapMin LP 0.4279 0.3621 0.7900 153 256 759

hallway hsvi2 0.250 0.945 1.195 1367 n.a. 996

|S| = 60 sarsop 0.210 0.995 1.206 456 1713 998

|A| = 5, |O| = 21 gapMin ST 0.078 1.008 1.086 290 549 765

γ = 0.950 gapMin LP 0.085 1.003 1.089 159 299 845

Table 2: Results continued (1000 seconds limit).

problem algorithm gap LB UB |Γ| |V̄ | time

iff hsvi2 0.924 8.931 9.855 7134 n.a. 999

|S| = 104 sarsop 0.775 9.095 9.871 6811 1991 997

|A| = 4, |O| = 22 gapMin ST 0.722 9.214 9.936 544 741 785

γ = 0.999 gapMin LP 0.660 9.261 9.920 532 831 940

learning.c2 hsvi2 0.090 1.549 1.639 4082 n.a. 996

|S| = 12 sarsop 0.093 1.556 1.648 4903 2054 996

|A| = 8, |O| = 3 gapMin ST 0.078 1.553 1.631 810 2038 893

γ = 0.999 gapMin LP 0.024 1.558 1.582 470 582 885

learning.c3 hsvi2 0.250 2.364 2.614 4229 n.a. 988

|S| = 24 sarsop 0.222 2.446 2.668 981 4094 997

|A| = 12, |O| = 3 gapMin ST 0.214 2.442 2.655 446 1387 944

γ = 0.999 gapMin LP 0.180 2.441 2.622 515 518 947

learning.c4 hsvi2 0.567 3.055 3.622 4569 n.a. 999

|S| = 48 sarsop 0.321 3.358 3.679 923 3717 982

|A| = 16, |O| = 3 gapMin ST 0.363 3.308 3.671 349 894 858

γ = 0.999 gapMin LP 0.353 3.306 3.658 500 365 989

machine hsvi2 3.49 63.18 66.66 662 n.a. 982

|S| = 256 sarsop 3.57 63.18 66.75 150 2742 998

|A| = 4, |O| = 16 gapMin ST 2.98 62.93 65.90 77 476 817

γ = 0.990 gapMin LP 3.20 62.39 65.59 67 292 856

milos-aaai97 hsvi2 18.31 49.15 67.46 3965 n.a. 998

|S| = 20 sarsop 19.61 49.74 69.35 3699 4465 997

|A| = 6, |O| = 8 gapMin ST 17.67 49.89 67.55 1212 1889 774

γ = 0.900 gapMin LP 15.42 49.97 65.39 581 1144 730

mit hsvi2 0.0939 0.7910 0.8849 5539 n.a. 1000

|S| = 204 sarsop 0.0665 0.8189 0.8854 2820 1861 999

|A| = 4, |O| = 28 gapMin ST 0.0388 0.8447 0.8835 152 143 806

γ = 0.990 gapMin LP 0.0554 0.8279 0.8833 120 130 859

pentagon hsvi2 0.1920 0.6341 0.8261 4361 n.a. 997

|S| = 212 sarsop 0.1311 0.6962 0.8273 3196 1228 971

|A| = 4, |O| = 28 gapMin ST 0.8258 0.0000 0.8258 1 191 990

γ = 0.990 gapMin LP 0.8258 0.0000 0.8258 1 121 893

query.s2 hsvi2 4.2 490.7 495.0 1366 n.a. 992

|S| = 9 sarsop 5.5 490.7 496.3 113 2992 999

|A| = 2, |O| = 3 gapMin ST 1.0 490.4 491.4 37 1916 224

γ = 0.990 gapMin LP 1.0 490.5 491.5 31 212 57

query.s3 hsvi2 26.2 546.8 573.1 1203 n.a. 997

|S| = 27 sarsop 28.1 546.8 574.8 112 3132 999

|A| = 3, |O| = 3 gapMin ST 10.8 546.7 557.5 154 4066 686

γ = 0.990 gapMin LP 7.0 546.7 553.7 119 1323 706

query.s4 hsvi2 51.9 569.5 621.4 2846 n.a. 999

|S| = 81 sarsop 54.3 569.1 623.4 166 6782 1000

|A| = 4, |O| = 3 gapMin ST 46.1 569.6 615.6 377 2601 958

γ = 0.990 gapMin LP 43.2 569.5 612.7 169 921 939

sunysb hsvi2 0.2396 0.5566 0.7963 4370 n.a. 997

|S| = 300 sarsop 0.3233 0.4748 0.7980 3537 1229 986

|A| = 4, |O| = 28 gapMin ST 0.7962 0.0000 0.7962 1 99 930

γ = 0.990 gapMin LP 0.7961 0.0000 0.7961 1 107 974

tiger-grid hsvi2 0.388 2.138 2.525 3394 n.a. 990

|S| = 36 sarsop 0.262 2.267 2.529 945 2165 997

|A| = 5, |O| = 17 gapMin ST 0.106 2.296 2.402 386 506 912

γ = 0.950 gapMin LP 0.132 2.271 2.402 255 435 923

ison to 5 problems for GapMin with sawtooth interpolation,
4 problems for SARSOP and 2 problems for HSVI2. In gen-
eral, the GapMin variants require much fewer α-vectors and
belief-bound pairs to represent the upper and lower bounds
than HSVI2 and SARSOP, which demonstrates the effec-
tiveness of the breadth-first search.

Figure 1 compares the lower and upper bounds for long
running times on 8 of the 18 problems that were not solved
optimally by any of the solvers. The circles correspond to
GapMin with LP interpolation, stars to GapMin with saw-
tooth interpolation, solid lines to HSVI2 and the dash-dotted
lines to SARSOP. The GapMin variants clearly outperform
HSVI2 and SARSOP on 5 of the problems (hallway, hall-
way2, machine, mit and tiger-grid). GapMin with LP in-
terpolation also finds a tighter upper bound, but a slightly
looser lower bound for iff. It did not perform well on cit and
pentagon. This can be explained by the fact that the upper
bound for those two problems was already quite good and
most of the work was about tightening the lower bound for
which GapMin has no advantage over HSVI2 and SARSOP.
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Figure 1: Comparison of lower and upper bounds for GapMin with LP interpolation (circles), GapMin with sawtooth interpo-
lation (stars), HSVI2 (solid line) and SARSOP (dash-dotted line)
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Table 3: Results with 50000 seconds limit.

problem algorithm gap LB UB |Γ| |V̄ | time

cit hsvi2 0.0182 0.8192 0.8373 29803 n.a. 49760

|S| = 284 sarsop 0.0169 0.8228 0.8396 21168 9337 49916

|A| = 4, |O| = 28 gapMin ST 0.0226 0.8141 0.8367 739 681 48931

γ = 0.990 gapMin LP 0.0149 0.8215 0.8364 648 614 45473

hallway hsvi2 0.179 0.994 1.173 15374 n.a. 49951

|S| = 60 sarsop 0.178 1.013 1.191 3053 12869 49992

|A| = 5, |O| = 21 gapMin ST 0.043 1.015 1.058 947 2611 34828

γ = 0.950 gapMin LP 0.036 1.016 1.051 851 1904 43184

hallway2 hsvi2 0.4211 0.4319 0.8530 18505 n.a. 49983

|S| = 92 sarsop 0.4482 0.4336 0.8818 1901 10908 49973

|A| = 5, |O| = 17 gapMin ST 0.2620 0.4605 0.7225 1647 2809 46687

γ = 0.950 gapMin LP 0.2256 0.4680 0.6936 1135 1798 36766

iff hsvi2 0.199 9.302 9.501 40984 n.a. 50000

|S| = 104 sarsop 0.290 9.259 9.549 54016 12237 49966

|A| = 4, |O| = 22 gapMin ST 0.634 9.273 9.908 1614 4502 34472

γ = 0.999 gapMin LP 0.156 9.275 9.431 1626 6231 40046

machine hsvi2 2.89 63.18 66.07 7857 n.a. 49998

|S| = 256 sarsop 3.02 63.18 66.20 996 22591 49963

|A| = 4, |O| = 16 gapMin ST 1.67 63.17 64.84 139 3807 49261

γ = 0.990 gapMin LP 1.14 63.17 64.30 173 1988 49036

mit hsvi2 0.0575 0.8273 0.8848 34461 n.a. 49942

|S| = 204 sarsop 0.0196 0.8655 0.8851 20662 12097 49616

|A| = 4, |O| = 28 gapMin ST 0.0105 0.8714 0.8819 861 984 41564

γ = 0.990 gapMin LP 0.0091 0.8721 0.8812 832 1051 43680

pentagon hsvi2 0.1349 0.6910 0.8258 29033 n.a. 49924

|S| = 212 sarsop 0.0702 0.7570 0.8271 21950 7534 49994

|A| = 4, |O| = 28 gapMin ST 0.8249 0.0000 0.8249 1 713 44437

γ = 0.990 gapMin LP 0.1497 0.6747 0.8244 425 846 40436

tiger-grid hsvi2 0.217 2.286 2.502 28182 n.a. 49948

|S| = 36 sarsop 0.231 2.290 2.522 5333 12504 49987

|A| = 5, |O| = 17 gapMin ST 0.055 2.322 2.377 2404 3752 38675

γ = 0.950 gapMin LP 0.052 2.321 2.373 2404 3778 43254

In Table 3, we report the size of the lower and upper bound
representations found by the algorithms at 50000 seconds
for the same 8 problems as in Fig. 1. The GapMin variants
clearly find more compact representations than SARSOP
and HSVI2. Also, GapMin with LP interpolation slightly
outperforms GapMin with sawtooth interpolation.

Finally, we discuss the running time of GapMin. It is in-
teresting to note that GapMin is implemented in Matlab and
uses CPLEX to solve LPs where as HSVI2 and SARSOP are
heavily optimized C implementation that avoid linear pro-
grams. Nevertheless GapMin performs very well as evident
from the experiments. This can be explained by the fact
that the breadth-first search finds more important beliefs for
the bounds and therefore fewer α-vectors and belief-bound
pairs are necessary to represent the bounds. Furthermore, we
reduced the number of upper bound interpolations, which
allows linear programming to be used at a negligible cost
while improving the tightness of the upper bounds.

5 Conclusion

In this paper, we described a new algorithm called Gap-
Min that strives to compute tight upper and lower bounds
of the optimal value function. It addresses the need for
performance guarantees that practitioners often encounter.
GapMin differs from previous state of the art point-based
approaches by performing a prioritized breadth-first search,
efficiently propagating upper bound improvements with an
augmented POMDP and computing exact interpolations by
linear programming. When tested on the suite of bench-
mark problems from Cassandra’s POMDP website, Gap-
Min found a near optimal solution (gap smaller than one
unit at the third significant digit) in less than 1000 sec-
onds for 46 problems (out of 64) in comparison to 32 prob-

lems for HSVI2 and 31 for SARSOP. GapMin also finds
representations for the lower and upper bounds that are
1.5 to 50 times more compact than HSVI2 and SARSOP
for the more difficult problems (Table 3). Our next step
is to extend GapMin to factored POMDPs. The main is-
sue is that LP interpolation yields linear programs with ex-
ponentially many variables and constraints. However, it
should be possible to use column and constraint genera-
tion techniques similar to what has been done to tackle fac-
tored MDPs by linear programming (Guestrin et al. 2003;
Schuurmans and Patrascu 2001).
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