Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

Planning and Acting in Incomplete Domains

Christopher Weber and Daniel Bryce
christopherweber @hotmail.com, daniel.bryce @usu.edu
Department of Computer Science
Utah State University

Abstract

Engineering complete planning domain descriptions is often
very costly because of human error or lack of domain knowl-
edge. Learning complete domain descriptions is also very
challenging because many features are irrelevant to achiev-
ing the goals and data may be scarce. We present a planner
and agent that respectively plan and act in incomplete do-
mains by 1) synthesizing plans to avoid execution failure due
to ignorance of the domain model, and ii) passively learning
about the domain model during execution to improve later
re-planning attempts.

Our planner DeFault is the first to reason about a domain’s
incompleteness to avoid potential plan failure. DeFault
computes failure explanations for each action and state in
the plan and counts the number of interpretations of the
incomplete domain where failure will occur. We show
that DeFault performs best by counting prime implicants
(failure diagnoses) rather than propositional models. Our
agent Goalie learns about the preconditions and effects of
incompletely-specified actions while monitoring its state and,
in conjunction with DeFault plan failure explanations, can
diagnose past and future action failures. We show that by
reasoning about incompleteness (as opposed to ignoring it)
Goalie fails and re-plans less and executes fewer actions.

1 Introduction

The knowledge engineering required to create complete and
correct domain descriptions for planning problems is often
very costly and difficult (Kambhampati 2007; Wu, Yang,
and Jiang 2007). Machine learning techniques have been
applied with some success (Wu, Yang, and Jiang 2007), but
still suffer from impoverished data and limitations of the al-
gorithms (Kambhampati 2007). In particular, we are mo-
tivated by applications in instructable computing (Mailler
et al. 2009) where a domain expert teaches an intelligent
system about a domain, but can often leave out whole pro-
cedures (plans) and aspects of action descriptions. In such
cases, the alternative to making domains complete is to plan
around the incompleteness. That is, given knowledge of the
possible action descriptions, we seek out plans that will suc-
ceed despite any (or most of the) incompleteness in the do-
main formulation.

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

274

While prior work (Garland and Lesh 2002) (henceforth
abbreviated, GL) has categorized risks to a plan and de-
scribed plan quality metrics in terms of the risks (essentially
single-fault diagnoses of plan failure (de Kleer and Williams
1987)), no prior work has sought to deliberately synthesize
low-risk plans based on incomplete STRIPS-style domains
(notable work in Markov decision processes (Nilim and El
Ghaoui 2005; Choudhary et al. 2006) and model-based re-
inforcement learning (Sutton and Barto 1998) has explored
similar issues). Our planner DeFault labels partial plans
with propositional explanations of failure due to incomplete-
ness (derived from the semantics of assumption-based truth
maintenance systems (Bryce 2011)) and either counts fail-
ure models or prime implicants (diagnoses) to bias search.
Our agent Goalie passively learns about the incomplete
domain as it executes actions, like Chang and Amir (2006)
(henceforth abbreviated, CA). Unlike CA, Goalie exe-
cutes plans that are robust to domain incompleteness. Within
Goalie, we compare the use of robust plans generated by
our planner DeFault, and plans that are generated in the
spirit of CA which are not intentionally robust (i.e., they are
optimistically successful). We demonstrate that the effort to
synthesize robust plans is justified because DeFault exe-
cutes fewer overall actions and fails and re-plans less.

This paper is organized as follows. The next section de-
tails incomplete STRIPS, the language we use to describe
incomplete domains. We follow with our approach to plan
synthesis and search heuristics. We discuss alternatives
to reasoning about failure explanations, including model
counting and prime implicant counting. We describe our ex-
ecution monitoring and re-planning strategy, and then pro-
vide an empirical analysis, related work, and conclusion.

2 Background & Representation

Incomplete STRIPS minimally relaxes the classical STRIPS
model to allow for possible preconditions and effects. In the
following, we review the STRIPS model and present incom-
plete STRIPS.

STRIPS Domains: A STRIPS (Fikes and Nilsson 1971)
planning domain D defines the tuple (P, A, I, GG), where:
P is a set of propositions; A is a set of action descrip-
tions; I C P defines a set of initially true propositions; and
G C P defines the goal propositions. Each action ¢ € A
defines: pre(a) C P, a set of preconditions; add(a) C P,



a set of add effects; and del(a) C P, a set of delete ef-
fects. A plan 7 = (ag, ...,an—1) in D is a sequence of ac-
tions, which corresponds to a sequence of states (s, ..., Sn),
where: sg = I; pre(a;) C si fort = 0,....,n — 1; G C s,;
and s;41 = s¢\del(a¢) Uadd(a;) fort =0,...,n — 1.
Incomplete STRIPS Domains: Incomplete STRIPS do-
mains are identical to STRIPS domains, with the excep-
tion that the actions are incompletely specified. Much like
planning with incomplete state information (Domshlak and
Hoffmann 2007; Bryce, Kambhampati, and Smith 2008), the
action incompleteness is not completely unbounded. The
preconditions and effects of each action can be any subset
of the propositions P; the incompleteness is with regard to
a lack of knowledge about which of the subsets correspond
to each precondition and effect. To narrow the possibilities,
we find it convenient to refer to the known, possible, and im-
possible preconditions and effects. For example, an action’s
preconditions must consist of the known preconditions, and
it must not contain the impossible preconditions, but we do
not know if it contains the possible preconditions. The union
of the known, possible, and impossible preconditions must
equal P. Therefore, an action can represent any two, and we
can infer the third. We choose to represent the known and
possible, but note that GL represent the known and impossi-
ble, noting that the trade-off making our representation more
appropriate if there are fewer possible action features.

An incomplete STRIPS domain D defines the tuple (P,
/~1, I, G), where: P is a set of propositions; Ais a set of in-
complete action descriptions; I C P defines a set of initially
true propositions; and G C P defines the goal propositions.
Each action @ € A defines: pre(a) C P, a set of known
preconditions; pre(a) C P, a set of possible preconditions;
add(a) C P, a set of known add effects; add(a) C P, a set
of possible add effects; del(a) C P, a set of known delete

effects; and (ia(d) C P, a set of possible delete effects.
Consider the following incomplete domain:

P= {p’q’T’g}“A: {dai)vé}v[: {paQ}vG: {g}
The actions are defined:

pre(a) = {p,q},pre(a) = {r},add(a) = {r},del(a) = {p}
pre(b) = {p}, add(b) = {r},del(b) = {p},del(b) = {q}
pre(¢) = {r}, pre(¢) = {q},add(¢) = {g}

The set of incomplete domain features F is comprised of
the following propositions for each @ € A: pre(a,p) if p €
pre(a); add(a, p) if p € add(a); and del(a, p) if p € del(a).

An interpretation F* C F of the incomplete STRIPS do-
main defines a STRIPS domain, in that every feature f € F*
indicates that a possible precondition or effect is a respective
known precondition or known effect. Those features not in
F* are not preconditions or effects.

A plan 7 for D is a sequence of actions that when applied
can lead to a state where the goal is satisfied. A plan m =

(aog, .-, @p—1) in an incomplete domain D is a sequence of
actions that corresponds to the optimistic sequence of states

(S0, .-, 8n), where: so = I; pre(a;) C sy fort = 0,...,n;
G C sp; and s¢41 = s¢\del(a;) U add(a;) U add(a;) for
t=0,...n—1

275

For example, the plan (&, b, ¢) corresponds to the state

sequence (SO = {paq}vsl = {paqu}752 = {QaT}583 =
{q, 7, g}), where the goal is satisfied in s3.

Discussion: Our definition of the plan semantics sets a loose
requirement that plans with incomplete actions succeed un-
der the most optimistic conditions: possible preconditions
need not be satisfied and the possible add effects (but not
the possible delete effects) are assumed to occur when com-
puting successor states. This notion of optimism is similar
to that of GraphPlan (Blum and Furst 1995) in that both as-
sert every proposition that could be made true at a particular
time even if only a subset of the propositions can actually
be made true. In GraphPlan, there may exist a plan to estab-
lish a proposition if the proposition appears in the planning
graph. In our definitions there does exist an interpretation
of the incomplete domain that will establish a proposition
if it appears in a state (Bryce 2011), and this interpretation
may correspond to the true domain. In GraphPlan, failing to
assert a proposition that may be established could eliminate
plans, and in our case, failing to assert a proposition would
prevent us from computing interpretations of the incomplete
domain that achieve the goal.

We ensure that the plan is valid for the least constraining
(most optimistic) interpretation of the incomplete domain. If
the plan can achieve the goal in the most optimistic interpre-
tation, then it may achieve the goal in others, if the goal is
not reachable in this interpretation, then it cannot be reached
in any interpretation (Bryce 2011). As we will show, we can
efficiently determine the interpretations in which a plan is
invalid and use the number of such failed interpretations as
a plan quality metric.

3 Planning in Incomplete Domains

We present a forward state space planner called DeFault
that attempts to minimize the number of interpretations
of the incomplete domain that can result in plan failure.
DeFault generates states reached under the optimistic in-
terpretation of the incomplete domain, but labels each state
proposition with the interpretations (a failure explanation)
where it will be impossible to achieve the proposition.
As such, the number of interpretations labeling the goals
reached by a plan indicates the number of failed interpreta-
tions. By counting interpretations (i.e., propositional model
counting), we can determine the quality of a plan.

DeFault labels propositions and actions with domain
interpretations that will, respectively, fail to achieve the
proposition or fail to achieve the preconditions of an action.
That is, labels indicate the cases where a proposition will be
false (i.e., the plan fails to establish the proposition). Labels
d(-) are represented as propositional sentences over F whose
models correspond to domain interpretations.

Initially, each proposition py € s is labeled d(py) =L
to denote that there are no failed interpretations affecting the
initial state, and each py ¢ sq is labeled d(pg) = T. For all



g3

pre(3, r)v del(3, p)v
(del(b, q) A pre(€, q))

Ps
= >(3
[==¢ / del(b, q)
QA0~<T — D1 2 Sie(3,r)v del 3, p)v
. “pre(a,r) SO pre(d, r)v del(3, p) \ (@I(E,q)/\ﬁe(é,q))
ro” Ty N —>I
T pre(a, r)v < pre(a, r)v

pre(a, r)v—add(3, r)

(del(3, p)A—add(3,r))

(del(3, p) A—add(3, 1))

Figure 1: Labeled Plan

t > 0, we define:

d(ay) = d(a—1) v\/d(p:) v \/(d(p)Apre(ar, p)) (1)
pepre(a@)  pepre(a)
d(pe) A d(ay) :p € add(a,)
d(pt) A (d(ae)V

_ —add(d, p)) : p € add(a)
d(pt-i-l) = T ‘pe del(dt) 2)
d(pt) vV del(dt,p) p e del(dt)
d(py) : otherwise

where d(a_;) =L. The intuition behind the label propaga-
tion is that in Equation 1 an action will fail in the domain in-
terpretations d(a;) where a prior action failed, a known pre-
condition is not satisfied, or a possible precondition (which
is a known precondition for the interpretation) is not satis-
fied. As defined by Equation 2, the plan will fail to achieve
a proposition at time ¢ + 1 in all interpretations where i) the
plan fails to achieve the proposition at time ¢ and the action
fails, ii) the plan fails to achieve the proposition at time ¢ and
the action fails or it does not add the proposition in the inter-
pretation, iii) the action deletes the proposition, iv) the plan
fails to achieve the proposition at time ¢ or in the interpreta-
tion the action deletes the proposition, or v) the action does
not affect the proposition and any prior failed interpretations
still apply.

A consequence of our definition of action failure is that
each action fails if any prior action fails. This definition fol-
lows from the semantics that the state becomes undefined
if we apply an action whose preconditions are not satisfied.
While we use this notion in plan synthesis, we explore the
semantics that the state does not change (i.e., it is defined)
upon failure when we discuss acting in incomplete domains.
The reason that we define action failures in this manner is
that we can determine all failed interpretations affecting a
plan d(), defined by d(an—1) V'V g d(gn). By d(ar), it
is possible to determine the interpretations that fail to suc-
cessfully execute the plan up to and including time ¢.

For example, consider the plan depicted in Figure 1. The
propositions in each state and each action at each time are
labeled by the propositional sentence below it. The edges
in the figure connecting the propositions and actions de-
note what must be true to successfully execute an action or
achieve a proposition. The dashed edges indicate that action
incompleteness affects the ability of an action or proposition
to support a proposition. For example, a possibly deletes p,
so the edge denoting its persistence is dashed. The proposi-

276

tional sentences d(-) below each proposition and action de-
note the domain interpretations where a action will fail or a

proposition will not be achieved. For example, b at time one,
by, will fail if either pre(a, r) or del(a, p) is true in the inter-
pretation. Thus, d(7) = pre(a,r) V del(@,p) V (del(b, q) A
pre(é, ¢)) and any domain interpretation satisfying d(m) will
fail to execute the plan and achieve the goal.

4 Heuristics in Incomplete Domains

Similar to propagating failed interpretation labels in a plan,
we can propagate labels in the relaxed planning problem to
compute a search heuristic. The primary heuristic is the
number of actions in a relaxed plan. While we do not use
the number of failed domain interpretations as the primary
heuristic, we use the failure labels to bias the selection of
the relaxed plan actions and break ties between search nodes
with an equivalent number of actions in their relaxed plans.
As in recent trends in satisficing planning (classical, confor-
mant, etc.) we want high quality solutions, but not at the
expense of returning no solution. We solve the relaxed plan-
ning problem using a planning graph and thus begin with a
brief description of planning graphs.
Planning Graph Heuristics: A
ning graph is a layered graph of
(Pt, Ata sy At+m7 PterJrl)- The
built for a state s; defines Pr = {pp € si},
Aty = {atwpepre(a)pt € Piupr,a € AU AP)},
and Piyp+1 = {pt+k+1|at+k S .AtJrk,p S add(a)}, for
k = 0,...,m. The set A(P) includes noop actions for each
proposition, such that A(P) = {a(p)|p € P,pre(a(p))
add(a(p)) = p,del(a(p)) = The R''F heuristic
(Hoffmann and Nebel 2001) solves this relaxed planning
problem by choosing actions from A:4,, to support the
goals in Py 41, and recursively for each chosen action’s
preconditions, counting the number of chosen actions.
Incomplete Domain Heuristics: Propagating failed in-
terpretations in the planning graph resembles propagating
failed interpretations over a plan. The primary difference
is how we define the failed interpretations for a proposition
when the proposition has multiple sources of support. Re-
call that we allow only serial plans and that at each time
each state proposition is supported by persistence and/or a
single action (action choice is handled in the search space).
In a level of the relaxed planning graph, there are potentially
many actions supporting a proposition, and we select the
supporter with the fewest failed interpretations. The chosen

relaxed plan-
sets of vertices
planning graph



supporting action, denoted a;+x(p), determines the failed

interpretations affecting a proposition p at level ¢t + &k + 1.
A relaxed planning graph with propagated labels

is a layered graph of sets of vertices of the form

(75,5,,4,5, e At+m,75t+m+1). The relaxed planning graph
built for a state 5; defines: Py = {pi|p € &t}; Airr =

{arrk|Vpepe@brer € Piyr,a € AU A(P)}; and

Piikt1 = {Pr4k+1l@iin € Arpr,p € add(a) U add(a)},
for k = 0,...,m. Much like the successor function used
to compute next states, the relaxed planning graph assumes
an optimistic semantics for effects by adding possible add
effects to proposition layers. However, as we will explain
below, it associates failed interpretations with the possible
adds.

Each planning graph vertex has a label, denoted CZ() The

failed interpretations d(p;) affecting a proposition are de-
fined such that: d(p;) = d(p;); and for k > 0,

d(arsr) = \/ d@rer) Vv \/ (d(Besr) Apre(a,p)  (3)

pEpre(a) pepre(a)

o~

A dlar1(p)

d(Prirr1) = dlaer(p))V N
—add(a;1x(p),p) : p € add (e (p))

Every action in every level k of the planning graph will fail
in any interpretation where their preconditions are not sup-
ported (Equation 3). A proposition will fail to be achieved in
any interpretation where the chosen supporting action fails
to add the proposition (Equation 4).

We note that the rules for propagating labels in the plan-
ning graph differ from the rules for propagating labels in
the state space. In the state space, the action failure labels
include interpretations where any prior action fails. In the
relaxed planning problem, an action’s failure labels include
only the interpretations affecting its preconditions, and not
prior actions; it is not clear which actions will be executed
prior to achieving a proposition because many actions may
be used to achieve other propositions at the same time.
Heuristic Computation: We terminate the relaxed plan-
ning graph expansion at the level ¢ + k + 1 where one
of the following conditions is met: i) the planning graph
reaches a fixed point where the explanations do not change,
cZ(ﬁHk) = d(]ﬁt+k+1) for all p € P; or ii) the goals have
been reached at ¢ + k& + 1 and the fixed point has not yet
been reached. Our h™~¥'F" heuristic makes use of the cho-
sen supporting action a1 (p) for each proposition that re-
quires support in the relaxed plan. Hence, it measures the
number of actions used while attempting to minimize failed
interpretations (the supporting actions are chosen by com-
paring failure explanations). Our A~ heuristic measures
the number of interpretations that fail to reach the goals in
the last level: h™M = |M(Vpeqd(pisms1))|, where m + 1
is the last level of the planning graph, M (-) is the set of
models of a formula. DeFault uses both heuristics, treat-
ing h~F'F as the primary heuristic and using A~ to break
ties. While it is likely that swapping the role of the heuris-
tics may lead to higher quality plans (fewer failed interpre-

1 p € add(Gy+x(p))
4

277

tations), our informal experiments determined that the scal-
ability of DeFault is greatly limited in such cases — mea-
suring failed interpretations is not correlated with solution
depth in the search graph, unlike relaxed plan length. The
relaxed plans are informed by the propagated explanations
because we use the failure explanation to bias action selec-
tion.

5 Counting Models & Prime Implicants

Failure explanations d(-) and d(-) are propositional sen-
tences that help bias decisions in our heuristic-based search.
Namely, we assume that we can count the number of propo-
sitional models of these sentences to indicate how many
interpretations of the incomplete domain will fail to suc-
cessfully execute a plan. Model counting is intractable
(Roth 1996), but by representing the sentences as OBDDs
(Bryant 1986), model counting is polynomial in the size of
the OBDD (Darwiche and Marquis 2002), although it can be
exponential sized in the worst case).

In addition to OBDDs and model counting, we also ex-
plore counting prime implicants (PIs) (also called diagnoses)
which allows us to computer a heuristic h™~"7, which is sim-
ilar to h~M . A set of PIs is a set of conjunctive clauses
— similar to a DNF, where no clause is subsumed by an-
other. These are used in model-based diagnosis to represent
diagnoses — sets of incomplete features that must interact to
cause system failure (de Kleer and Williams 1987). We find
it useful to bound the cardinality — the number of conjuncts
— of the PlIs, effectively over-approximating the models of a
propositional sentence.

Instead of counting the models of two labels dlg) and
d'(-), we can compare the number of PIs (as in A~F1). Our
intuition is that having fewer diagnoses of failure is pre-
ferred, just as is having fewer models of failure (even though
having fewer PIs does not always imply fewer models). The
advantage is that counting PIs is much less expensive than
counting models, especially if we bound the cardinality of
the PIs. Finally, when counting PIs, we use a heuristic that
compares two sets in terms of the number of cardinality-one
PIs, and if equal, the number of cardinality-two PIs, and so
on. The intuition behind comparing PIs in this fashion is
that smaller PIs are typically satisfied by a larger number of
models and are thus more representative of the number of
models. That is, a sentence with one cardinality-one PI will
have more models than a sentence with one cardinality-two
PL

6 Acting in Incomplete Domains

Acting in incomplete domains provides an opportunity to
learn about the domain by observing the states resulting
from execution. In the following, we describe what our
agent Goalie can learn from acting in incomplete domains
and how it achieves its goals. Goalie will continue to exe-
cute a plan until it is faced with an action that is guaranteed
to fail or it has determined that the plan failed in hindsight.
Goalie maintains a propositional sentence ¢ defined
over F U {fail}, which describes the current knowledge
of the incomplete domain. The proposition fail denotes



whether Goalie believes that its current plan may have
failed — it is not always possible to determine if an action
applied in the past did not have its preconditions satisfied.
Initially, Goalie believes ¢ = T, denoting its complete
lack of knowledge of the incomplete domain and whether
its current plan will fail. If Goalie executes @ in state s
and transitions to state s’, then it updates its knowledge as
o Ao(s,a,s'), where

N (failANo™)Vot :s=¢
o(s,a,s") = { oF AN (5)
oo = \/ pre(@np) (6)
pre(a,p)€F:
PEs
O+ o Opre A Oadd A Odel (7)
orTe — /\ ﬁﬁfé(d,p) (8)
pre(a,p)€F:
PEs
o™ = A add(ap) A\ —add@p) (9)
z;&a(&,p)eF: a’&a(&,p)EF:
pes’\s p&sUs’
o™ = N\ del(ap)AJ\ —del(ap) (10)
a;l(d,p)EF: agl(&,p)eF:
pEs\s’ pEsns’

We assume that the state will remain unchanged when
Goalie executes an action whose precondition is not satis-
fied by the state, and because the state is observable, Equa-
tion 5 references both the case where the state does not
change and the case where it changes. If the state does not
change, then either the action failed and one of its unsatis-
fied possible preconditions is a precondition (Equation 6), or
the action succeeded (Equation 7). If the state changes, then
Goalie knows that the action succeeded. If an action suc-
ceeds, Goalie can conclude that: i) each possible precon-
dition that was not satisfied is not a precondition (Equation
8); ii) each possible add effect that appears in the successor
but not the predecessor state is an add effect and each that
does not appear in either state is not an add effect (Equation
9); iii) each possible delete effect that appears in the prede-
cessor but not the successor is a delete effect and each that
appears in both states is not a delete effect (Equation 10).

Using ¢, it is possible to determine if the next action in a
plan, or any subsequent action, can or will fail. If pAd(az1)
is satisfiable, then a;, can fail, and if ¢ = d(as1r), then
a¢+r, will fail. Goalie will execute an action if it may not
fail, even if later actions in its plan will fail. If Goalie de-
termines that its next action will fail, or a prior action failed
(¢ = fail), then it will re-plan. Goalie uses ¢ to modify
the actions during re-planning by checking for each incom-
plete domain feature f € Fif ¢ = f orif ¢ | —f. Each
such literal entailed by ¢ indicates that the respective action
has the possible feature as a known or impossible feature; all
other features remain as possible features.

Algorithm 1 is the strategy used by Goalie. First, the
algorithm initializes the agent’s knowledge and plan (line
1). Then while the plan is non-empty and the goal is not
achieved (line 2) the agent proceeds with execution. The

278

Algorithm 1: Goalie(s, G, A)

Input: state s, goal G, actions A
1 ¢« T;7m+ Plan(s,G, A, ¢);
2 while 7 # () and G £ s do

3 a < m.first(); m < m.rest();
4 if pre(a) C sand ¢ I~ V pre(a,p) then
pre(a,p)€F:pgs
5 s’ « Execute(a);
6 ¢ +— pNo(s,a,s);
7 5 s';
8 else
9 | | ¢ oA fail;
10 end
1 if ¢ = fail then
12 ¢ < rair®;
13 7+ Plan(s,G, A, ¢);
14 end
15 end

agent selects the next action in the plan (line 3) and de-
termines if it can apply the action (line 4). If it applies
the action, then the next state is returned by the environ-
ment/simulator (line 5) and the agent updates its knowledge
(line 6 and Equation 5) and state (line 7). Otherwise the
agent determines that the plan will fail (line 9). If the plan
has failed (line 11), then the agent forgets its knowledge of
the plan failure (line 12) and finds a new plan using its new
knowledge (line 13). Goalie cannot guaranteed success
unless it can find a plan that will not fail (i.e., d(w) =1).

Goalie is not hesitant to apply actions that may fail be-
cause trying actions is its only way to learn about them.
However, Goalie is able to determine when an action will
fail and so re-plans. More conservative strategies are pos-
sible if we assume that Goalie can query a domain ex-
pert about action features to avoid potential plan failure, but
we leave such goal-directed knowledge acquisition for fu-
ture work.

7 Empirical Evaluation

The empirical evaluation is divided into four sections: the
domains used for the experiments, the test setup used, results
for off-line planning, and results for planning and execution.
The questions that we would like to answer include:

e Ql: Does reasoning about incompleteness lead to high
quality plans?

e Q2: Does counting prime implicants perform better than
counting models?

e Q3: As the number of incomplete features grows, does
stronger reasoning about incompleteness help?

e Q4: Does reasoning about incompleteness reduce the
number of execution failures during execution?

Domains: We use four domains in the evaluation: a mod-
ified Pathways, Bridges, a modified PARC Printer, and
Barter World. For these domains, we created multiple in-
stances by injecting incomplete features with probabilities



0.25, 0.5, 0.75, and 1.0. An instance may possess up
to ten thousand incomplete features. Planning results are
taken from ten random instances (varying F) of each prob-
lem. Within these, each planning and execution result is
one of ten ground-truth domains selected by the simulator.
The problem generators and our planner are available at:
http://www.cs.usu.edu/~danbryce/software/default.jar.

The Pathways (PW) domain from the International Plan-
ning Competition (IPC) involves actions that model chem-
ical reactions in signal transduction pathways. Pathways is
a naturally incomplete domain where the lack of knowledge
of the reactions is quite common, and are an active research
topic in biology (Choudhary et al. 2006).

The Bridges (BR) domain, of which there are three ver-
sions, consists of a traversable grid where the task is to find
a different treasure at each corner of the grid. In BR1 (ver-
sion 1), a bridge might be required to cross between some
grid locations (a possible precondition); in BR2, many of
the bridges may have a troll living underneath that will take
all the treasure accumulated (a possible delete effect); and
in BR3, the corners may give additional treasures (possible
add effects). Grids are square and vary in dimension (2-16).

The PARC Printer (PP) domain from the IPC involves
planning paths for sheets of paper through a modular printer.
A source of domain incompleteness is that a module ac-
cepts only certain paper sizes, but its documentation is in-
complete. Thus, in using the module, paper size becomes a
possible precondition to actions.

The Barter World (BW) domain involves navigating a grid

and bartering items to travel between locations. The domain
is incomplete because actions that acquire items are not al-
ways known to be successful (possible add effects) and trav-
eling between locations may both require certain items (pos-
sible preconditions) and result in the loss of an item (possi-
ble delete effects). Grids vary in dimension (2-16) and items
in number (1-4).
Test Setup: The tests were run on a Linux machine with a
3 Ghz Xeon processor, a memory limit of 2GB, and a time
limit of 20 minutes per run for the off-line planning invoca-
tion and 60 minutes for each on-line planning and execution
test. All code is written in Java and run on the 1.6 JVM.

We use five configurations of the planner: DeFault-F'F,
DeFault-PIk (k =1, 2, 3), and DeFault-BDD, each
of which differ in how they reason about domain incom-
pleteness. DeFault-F'F does not compute failure expla-
nations and uses the FF heuristic; inspired by the planner
used by CA, it is likely to find a plan that will work for only
the most optimistic domain interpretation. DeFault-PIk,
where k is the bound on the cardinality of the prime impli-
cants, counts prime implicants to compare failure explana-
tions. DeFault-BDD uses OBDDs to represent and count
failure explanations. DeFault uses a best first search with
deferred heuristic evaluation and a dual-queue for preferred
and non-preferred operators (Helmert 2006).

The number of failed interpretations for a plan 7 found
by any of the planners is found by counting models of an
OBDD representing d(w). The versions of the planner are
compared by the proportion of interpretations of the incom-
plete domain that achieve the goal and total planning time

279

FF PIl PI2 PI3 BDD
FF 0 155 161 161 123
PI1 629 o 79 78 208
PI2 619 77 0 46 208
P13 594 62 51 0 199
BDD | 512 189 189 187 0

Table 1: Number of plans having a greater number of suc-
cessful domain interpretations (i.e., better quality). Bold in-
dicates best performers.

All Problems: Time

4e+07 ; ; ; ; ;
3.5e+07 r
3e+07 r
2.5e+07 r
2e+07 +
1.5e+07
1le+07 |
5e+06 r
0

Cumm. Time (s)

0 200 400 600 800 1000 1200
Problems

FF +— PI1 < PI2 % PI3 = BDD -=-

Figure 2: Cumulative Time in All Domains.

in seconds. The plot in the following section depict these
results using the cumulative planning time to identify the
performance over all problems and domains. We also re-
port detailed results on the number of solved problems per
domain and the relative quality of solutions (successful do-
main interpretations).

We also compare the off-line planning results to a con-
formant probabilistic planner POND (with N=10 particles
in its heuristic) (Bryce, Kambhampati, and Smith 2008) that
solves translated instances of the incomplete STRIPS prob-
lems. We set the minimum required probability of goal sat-
isfaction to the minimum proportion of successful domain
interpretations of plans found by the other approaches. We
do not provide the details of the translation because the re-
sults are very poor, but refer the reader to an extended ver-
sion of this work (Bryce 2011). We attempted a comparison
to PFF (Domshlak and Hoffmann 2007), but the implemen-
tation proved unstable for all but the smallest instances.
Off-line Planning Results: Figure 2 plots the cumulative
total planning time. To enhance readability, every one hun-
dredth data point is plotted in the figures (while still repre-
sentative of the true cumulative number). Table 1 lists the
number of times that each configuration finds a better solu-
tion (number of successful interpretations) than another; for
example, P11 finds a better solution than F'F' 629 times.
Table 2 lists the number of solved problems for each planner
and highlights the most solved for each domain in bold.

We see that Q1 is answered positively by the results.
Plan quality is improved by reasoning about incompleteness



[Domain | FF | PIl_ P2 PI3BDD | POND |
PP025 | 130| 83 85 86 80 10
PP 0.5 130| 87 88 87 80 0
PP075 | 130 | 82 83 81 80 0
PP 1.0 13/ 10 9 9 8 0
PP 403 | 262 265 263 248 10
BRI025 | 40| 22 22 22 22 2
BR10.5 39 20 20 20 20 2
BRIO75| 36| 19 19 19 19 2
BRI 1.0 41 2 2 2 2 1
BR2025| 38| 20 20 20 21 3
BR20.5 35| 25 25 25 23 3
BR20.75 | 35| 22 21 21 21 2
BR2 1.0 41 2 2 2 2 1
BR3025| 45| 36 36 36 36 1
BR3 0.5 47| 33 33 33 32 2
BR3075 | 46| 39 39 39 41 1
BR3 1.0 5 4 4 4 3 1
BR 374 | 244 243 243 242 21
BW 025 | 150 | 106 128 129 108 60
BWO.5 | 150 | 134 137 134 118 45
BWO0.75 | 150 | 140 138 137 111 27
BW 1.0 15| 14 14 14 11 2
BW 465 | 394 417 414 348 | 155
PWO025 | 160 | 40 40 40 40 0
PWO.5 | 160| 70 60 50 60 13
PWO0.75 | 170 | 60 50 40 60 12
PW 1.0 19 5.6 6 1 2
PW 509 | 175 156 136 167 46

[Total | 1751 | 1075 1081 1056 1005 | _ 232 |

Table 2: Instances Solved By Domain

(through DeFault-PIk or -BDD), but scalability suffers.
However, we note that minimizing the number of failed in-
terpretations can be phrased as a conformant probabilistic
planning problem, which is notoriously difficult (Domsh-
lak and Hoffmann 2007; Bryce, Kambhampati, and Smith
2008), and expecting the scalability of a classical planner is
perhaps unreasonable.

Q2 is answered overall positively by our experiments be-
cause the PIk counting approaches solve more problems
with better quality and in less time than the BDD model
counting approach.

Q3 is answered negatively because as the probability of
injecting incomplete features grows from 0.25 to 1.0 the
P1I3 approach initially solves the most problems, but then
P1I2, and then PI1 solve the most problems in each domain.
A possible explanation for this result is that it becomes too
costly to reason about incompleteness as it increases and that
a more coarse approach is needed; however, the BDD ap-
proach, while not the best, seems to degrade less as the in-
completeness increases. It is likely that the OBDD package
implementation (Vahidi 2011) is to credit for the BDD ap-
proach’s performance because model counting can become
prohibitively expensive in larger problems.

280

Table 2 indicates that POND is not competitive and sug-
gests that existing approaches are not directly applicable to
planning in incomplete domains. We note that DeFault
is inspired by POND, but employs more approximate rea-
soning about incompleteness by using bounded prime im-
plicants (see (Bryce 2011) for a more thorough discussion).
On-line Planning & Execution Results: Figure 3 depicts
a comparison between Goalie using DeFault-FF' and
DeFault-PI1 to synthesize plans, so that we can judge
whether planning and execution strategies such as that of
CA will benefit when planners reason about incompleteness.
The scatter plots in the figure show the respective number of
actions applied to achieve the goal, the number of plans gen-
erated, and the total planning and execution time.

Q4 is answered mostly positively. By investigating the
plots of the number of actions taken and the number of plans
generated, it is apparent that DeFault-PI1 takes fewer ac-
tions as the instances require near 100 steps, and tends to fail
and re-plan less often. The plot of the total time taken shows
that the planners are somewhat mixed or even for times less
than 10 seconds. However, for times greater than 10 sec-
onds, it appears that using DeFault-F'F in Goalie can
take up to an order of magnitude less time. However, there
are several difficult instances in which DeFault-PI1 does
outperform DeFault-F'F. We expect that more efficient
implementations of reasoning about prime implicants (e.g.,
tries) could lower the cost of planning with DeFault, al-
lowing it to capitalize on its more robust plans.

8 Related Work

Planning in incomplete domains is noticeably similar to
planning with incomplete information. However, for incom-
plete domains it is the actions, not the states, that are incom-
plete. Incomplete domains can be translated to conformant
probabilistic planning domains, and planners such as POND
(Bryce, Kambhampati, and Smith 2008) and PFF (Domsh-
lak and Hoffmann 2007) are applicable. However, while the
translation is theoretically feasible, current CPP planners are
not reasonable approaches to the problem (Bryce 2011).

Our investigation is an instantiation of model-lite plan-
ning (Kambhampati 2007). Constraint-based hierarchical
task networks are an alternative, pointed out by Kambham-
pati (2007), which avoid specifying all preconditions and
effects through methods and constraints that correspond to
underlying, implicit causal links.

As previously stated, this work is a natural extension of
the Garland and Lesh (2002) model for evaluating plans in
incomplete domains. We note that their STRIPS-like formu-
lation of incomplete domains has come to define the term
“incomplete domains” as a research area. Our methods for
computing plan failure explanations are different in that we
compute them in the forward direction and allow for multi-
ple, interacting faults instead of single faults. In addition to
calculating the failure explanations of partial plans, we use a
relaxed planning heuristic informed by failure explanations.

Prior work of Chang and Amir (2006) addresses planning
with incomplete models, but does not attempt to synthesize
robust plans, which is similar to our DeFault-F'F planner.
We have shown that incorporating knowledge about domain



Actions Applied

Plans Generated

Total Time (s)

10° 10
= .2 o o
g 10 Y Y
= = 1 =
3 = 10 : 3
S a1 S : S
A 10 a : a
0 oL 3
10 ‘ ‘ 10 ‘ 10 R
10° 10* 102 108 10° 10* 102 10%10210%10%10' 10%10%10%
DeFault-FF DeFault-FF DeFault-FF

Figure 3: Comparison of Goalie with DeFault-FF and DeFault-PI1.

incompleteness into the planner can lead to an agent that re-
plans less and thus fails less often. We also differ in that we
do not assume direct feedback from the environment about
action failures and we can learn action preconditions.

9 Conclusion

We have presented the first work to utilize heuristic search
to find robust plans for incomplete domains. Our planner,
DeFault, i) performs forward search while maintaining
plan failure explanations, and ii) estimates the future fail-
ures by propagating failure explanations on planning graphs.
We have shown that, compared to a configuration that essen-
tially ignores aspects of the incomplete domain, DeFault
is able to scale reasonably well but find much better qual-
ity plans. We have also shown that representing plan failure
explanations with prime implicants leads to better scalabil-
ity than counting OBDDs models. Our agent Goalie uses
DeFault to generate robust plans that fail less often and
require less re-planning than more optimistic planning ap-
proaches that ignore incompleteness.

Acknowledgements: This work was supported by DARPA
contract HR001-07-C-0060.

References

Blum, A., and Furst, M. L. 1995. Fast planning through
planning graph analysis. In Proceedings of IJCAI’95, 1636—
1642.

Bryant, R. 1986. Graph-based algorithms for Boolean func-
tion manipulation. [EEE Transactions on Computers C-
35(8):677-691.

Bryce, D.; Kambhampati, S.; and Smith, D. 2008. Sequen-
tial monte carlo in probabilistic planning reachability heuris-
tics. ALJ 172(6-7):685-715.

Bryce, D. 2011. Planning in incomplete domains.
Technical Report 001, Utah State University. Available
at: http://www.cs.usu.edu/~danbryce/papers/USU-CS-TR-
11-001.pdf.

Chang, A., and Amir, E. 2006. Goal achievement in par-
tially known, partially observable domains. In Proceedings
of ICAPS’06.

281

Choudhary, A.; Datta, A.; Bittner, M. L.; and Dougherty,
E. R. 2006. Intervention in a family of boolean networks.
Bioinformatics 22(2):226-232.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. JAIR 17:229-264.

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. ALJ 32(1):97-130.

Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. JAIR 30:565-620.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving. In
Proceedings of AAAI'71, 608—620.

Garland, A., and Lesh, N. 2002. Plan evaluation with in-
complete action descriptions. In Proceedings of AAAI’02.
Helmert, M. 2006. The fast downward planning system.
JAIR 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253—
302.

Kambhampati, S. 2007. Model-lite planning for the web age
masses. In Proceedings of AAAI'07.

Mailler, R.; Bryce, D.; Shen, J.; and Orielly, C. 2009.
Mable: A framework for natural instruction. In Proceedings
of AAMAS’09.

Nilim, A., and El Ghaoui, L. 2005. Robust control of
Markov decision processes with uncertain transition matri-
ces. Oper. Res. 53(5):780-798.

Roth, D. 1996. On the hardness of approximate reasoning.
AlJ 82(1-2):273-302.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction (Adaptive Computation and Machine
Learning). The MIT Press.

Vahidi, A. 2011. JDD: Java BDD package.
http://javaddlib.sourceforge.net/jdd/.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An automatic

knowledge engineering tool for learning action models for
Al planning. K. Eng. Rev. 22(2):135-152.





