
Automatic Polytime Reductions of
NP Problems into a Fragment of STRIPS

Aldo Porco
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

aldo@gia.usb.ve

Alejandro Machado
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

alejandro@gia.usb.ve

Blai Bonet
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Abstract

We present a software tool that is able to automatically trans-
late an NP problem into a STRIPS problem such that the for-
mer problem has a solution iff the latter has one, a solution
for the latter can be transformed into a solution for the former,
and all this can be done efficiently. Moreover, the tool is built
such that it only produces problems that belong to a fragment
of STRIPS that is solvable in non-deterministic polynomial
time, a fact that guarantees that the whole approach is not an
overkill. This tool has interesting applications. For example,
with the advancement of planning technology, it can be used
as an off-the-shelf method to solve general NP problems with
the help of planners and to automatically generate benchmark
problems of known complexity in a systematic and controlled
manner. Another interesting contribution is related to the area
of Knowledge Engineering in which one of the goals is to de-
vise automatic methods for using the available planning tech-
nology to solve real-life problems.

Introduction

Deciding plan existence for STRIPS is PSPACE-complete
(Bylander 1994). This means that any decision problem that
can be solved by a deterministic algorithm that uses polyno-
mial space can be reduced in polynomial time to deciding
plan existence of a STRIPS problem. However, although
such reductions exist, there is no known algorithm that au-
tomatically generates a STRIPS problem from an arbitrary
PSPACE problem (up to our knowledge).

Such an algorithm would be a valuable tool for a num-
ber of reasons. First and most importantly, the algorithm
would provide the basis for developing a General Problem
Solver able to tackle PSPACE problems, suitably described
in a high-level declarative language, by translating them into
STRIPS and then applying one of the many available plan-
ners. Second, given the recent (and future) advancements in
the area, the algorithm would be of practical interest too be-
cause it would offer an easy way to solve concrete instances
of difficult problems and, in some cases, competitively with
other specialized algorithms. Finally, by generating STRIPS
problems in a controlled manner, one could design bench-
mark problems in order to evaluate the heuristics or algo-
rithms used in planning. All these applications assume in

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one way or another that the input is a declarative description
of a PSPACE problem, that a solution for the input problem
can be efficiently computed from a solution to the planning
problem, and that solving the latter problem is no more dif-
ficult than solving the former problem.

In this paper we take a first step in constructing such a tool
by considering the class NP instead of PSPACE. Nonethe-
less, the result is an interesting tool that is able to translate a
given NP problem, expressed as a decision problem, into a
STRIPS problem that satisfies above properties. We present
the formal translation and its properties, and evaluate it on
classical NP-complete problems such as satisfiability and the
computation of Hamiltonian paths on digraphs.

The input problem is specified using the existential frag-
ment of second-order logic that is known to capture NP. This
is a fundamental result in the area of Descriptive Complex-
ity Theory (DCT) on which the tool is firmly grounded. On
the other hand, the guarantee that the planning problem is no
more difficult than the input (in the worst case) is achieved
by targeting a class of STRIPS problems for which plan ex-
istence can be decided in NP.

Part of the contribution is related to the area of Knowledge
Engineering for Planning and Scheduling (KEPS) that fo-
cuses on the practical deployment of planning resources for
solving real-life problems. The tool presented in this work
produces a planning problem that can be fed into a planner
from a declarative description of a NP problem. Thus, the
tool can be thought as a KEPS tool that permits the use of
planning technology for solving real-life problems that are
not directly specified in PDDL. However, differently from
other tools, our framework permits to formally characterize
the scope, soundness and completeness of the tool, and to
obtain worst-case guarantees on the complexity of solving
the generated problems.

Our tool is not the first such tool. Cadoli and Schaerf
(2005) develop one that translates a DATALOG-like specifi-
cation of an NP problem, called NP-SPEC, into a SAT prob-
lem that is then fed into a solver to find a solution to the input
problem. Hence, our proposal is quite similar to NP-SPEC,
yet we target STRIPS instead of SAT. Furthermore, unre-
stricted STRIPS as well as specifications based on second-
order logic go well beyond NP, and thus we have a clear
direction for extending the tool in the future.

Another related work is that of Mitchell and Ternovska

178

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

(2005) that proposes a general framework for describing
problems, in NP and beyond, that is based on the Model Ex-
tension (MX) problem. A simple parameterization of MX
renders the decision problem in NP, while fully unrestricted
MX is in NEXPTIME. Mitchell and Ternovska propose a
language for expressing general problems, but do not present
a practical solver based on their ideas.

In the following, we revise the relevant concepts from
DCT, describe the tool, give the formal translation from NP
problems into STRIPS, and study its properties. At the end,
we present experiments and conclude with a discussion.

Descriptive Complexity Theory

It is a field of research, lying in the intersection of mathe-
matics and computer science, that studies complexity theory
from a pure mathematical viewpoint without committing to
a model of computation such as Turing machines. DCT be-
gan with the seminal work of Fagin (1974) on NP. Today, the
major complexity classes had been characterized and impor-
tant results had been obtained (Immerman 1998).

In DCT, a decision problem like SAT1 is denoted as a col-
lection of finite (first-order) structures that satisfy a second-
order existential sentence. In this section, we review the fun-
damental concepts from logic and the most important results
from DCT that are relevant to this work.

Languages

Every logical language is constructed from a set of sym-
bols or vocabulary. The symbols are typically partitioned
into pure logical symbols such as ‘∧’, ‘∃’, etc., punctua-
tion symbols such as ‘(’ and ‘)’, and relational, functional
and constant symbols. The logical and punctuation symbols
belong to every language while the relations, functions and
constants change from one language to another. Hence, it
is convenient to define the signature of the language as the
finite set of relations, functions and constants that are al-
lowed in the formulae. Signatures are denoted by tuples like
σ = 〈P 1, Q2, f1, A,B〉 that contains two relational sym-
bols P and Q of arities 1 and 2 respectively, one functional
symbol f of arity 1, and two constants A and B. In DCT,
functional symbols can be avoided altogether and thus will
not be considered in the rest of the paper. We denote with
FOL(σ) and SOL(σ) the sets of all first-order and second-
order formulae built from σ. In general, if L denotes a logic
or fragment of a logic, L(σ) denotes the set of all formulae
belonging to L built from σ.

SOL differs from FOL in that quantification on relational
symbols is permitted. SOL formulae are constructed as

– any FOL(τ) formula, τ ⊇ σ, is a SOL(σ) formula,

– if Φ and Ψ are SOL(σ) formulae, then so are ‘(Φ)’, ‘¬Φ’,
‘Φ ∧Ψ’, ‘Φ ∨Ψ’, etc., and

– if Ra /∈ σ and Φ is a SOL(σ) formula, then ‘(∃R)Φ’ and
‘(∀R)Φ’ are SOL(σ) formulae.

We typically denote FOL formulae with lowercase Greek
letters, and other formulae with capital letters. For the rest

1In this paper, SAT is the subset of satisfiable CNF formulae.

s 1 t

Figure 1: the digraph that corresponds to the structure
A = 〈|A|, EA, sA, tA〉 where |A| = {0, 1, 2}, EA =
{(0, 1), (1, 2)}, sA = 0 and tA = 2.

of the paper, we only consider (first- and second-order) for-
mulae without free variables, also called sentences, and for
second-order formulae, those that comply with the form

Φ = (Q1R
a1

1)(Q2R
a2

2) · · · (QnR
an

n)ψ

where each Qi is a quantifier in {∃, ∀}, and ψ is a first-order
sentence over σ ∪ {Ra1

1 , . . . , R
an

n }. This form is universal
because for every second-order sentence there is an equiva-
lent of this form. If all Qis are existential quantifiers, then
we say that Φ is a second-order existential sentence. The
class of all second-order existential sentences, also called
the existential fragment of SOL, is denoted by SO∃; simi-
larly, one defines SO∀. If there is 1 < k < n, such that
Qi = ∃ for all i < k and Qi = ∀ for all i ≥ k, then the
sentence belongs to the fragment SO∃∀, and so on.

First-Order Structures

Logical formulae are interpreted with respect to first-order
structures. A first-order structure over signature σ =
〈Ra1

1 , . . . , R
as

s , c1, . . . , ct〉, where Ri is an ai-ary rela-
tional symbol and cj is a constant, is a tuple A =
〈|A|, RA

1 , . . . , R
A
s , c

A
1 , . . . , c

A
t 〉 with non-empty universe

|A| where each RA
i ⊆ |A|ai is a subset of ai-tuples from

|A| (called the interpretation of Ri) and each cAj ∈ |A| is an

element of |A| (called the interpretation of cj). Without loss
of generality, we assume that the universe is always of the
form |A| = {0, 1, . . . , n− 1}. DCT is only interested in fi-
nite structures (i.e. structures of finite universe); the class of
all finite structures for signature σ is denoted by STRUC[σ].

We do not have enough space to formally present the se-
mantic interpretation of formulae with respect to structures.
We only say that a formula φ in FOL(σ) (or SOL(σ)) holds
(or is satisfied) in structure A ∈ STRUC[σ] iff the for-
mula holds when each relation Ri and constant cj is in-

terpreted by RA
i and cAj respectively. If φ holds in A, we

write A � φ. For example, consider σ = 〈E2, s, t〉 and
A = 〈|A|, EA, sA, tA〉 where |A| = {0, 1, 2}, EA =
{(0, 1), (1, 2)}, sA = 0 and tA = 2. Then, A �

(∃x)(E(s, x) ∧ E(x, t)) and A 2 (∀x)(∃y)E(x, y). No-
tice that σ can describe digraphs with designated vertices s
and t; e.g., A corresponds to the graph shown in Fig. 1.

Second-order formulae are also interpreted with respect
to first-order structures. For example, the sentence

Φ2COL = (∃R1)(∀xy)[E(x, y) → ¬(R(x) ↔ R(y))]

holds in A since the unary relation R = {1} makes it true.
Indeed, this formula holds in a structure A ∈ STRUC[σ] iff
the digraph encoded by A is 2-colorable.

The class of finite structures in STRUC[σ] that sat-
isfy a sentence Φ ∈ L(σ) is denoted by MOD[Φ]; e.g.,
MOD[Φ2COL] is the class of all finite 2-colorable digraphs.

179

DCT requires some basic numeric relations and constants
that have fixed interpretation at each structure; the relations

are <2, SUC2, BIT2, PLUS3 and TIMES3 while the con-
stants are 0 and max. For the interpretations, x < y iff x
is less than y, SUC(x, y) iff y = x + 1, BIT(x, y) iff the
yth-bit in the number x is 1, PLUS(x, y, z) iff z = x + y,
and TIMES(x, y, z) iff z = x× y. The constants 0 and max
are mapped into 0 and ‖A‖ − 1 respectively.

Complexity Classes

The last example shows that a sentence can describe a col-
lection of finite discrete structures (such as digraphs) that
satisfy a certain property (such as 2-colorability).

In DCT, a decision problem corresponds to a class of first-
order structures that satisfy a sentence. The seminal work of
Fagin (1974) established that every decision problem in NP
can be characterized by the class of structures that satisfy a
second-order existential sentence; in symbols, NP = SO∃.
Consider SAT, for example. An instance of SAT is a CNF
with m clauses over n propositional variables, where a
clause is a subset of positive and negative literals. Two re-
lational symbols σSAT = 〈N2, P 2〉 suffice to describe the
positive and negative occurrences of propositions in clauses:
N(x, y) (resp. P (x, y)) expresses that the proposition x ap-
pears negatively (resp. positively) in clause y; e.g., (p∨¬q∨
r)∧(¬p∨¬r)∧(¬p∨q) is encoded withA = 〈|A|, NA, PA〉
where |A| = {0, 1, 2}, NA = {(1, 0), (0, 1), (2, 1), (0, 2)}
and PA = {(0, 0), (2, 0), (1, 2)}. On the other hand, a truth-
assignment is a subset of true propositions and the existence
of a truth assignment (satisfiability) can be expressed with
the SO∃ sentence ΦSAT :2

(∃T 1)(∀y)(∃x)[(P (x, y) ∧ T (x)) ∨ (N(x, y) ∧ ¬T (x))]

The following list shows the major results of DCT on the
characterization of complexity classes (Immerman 1998):

• non-deterministic log-space (NL) equals FOL extended
with a transitive-closure operator (FO(TC)),

• P equals second-order Horn sentences (SO-Horn),

• NP equals SO∃ and coNP equals SO∀,

• the polynomial-time hierarchy (PH) equals SO, and

• PSPACE equals SOL extended with a transitive-closure
operator (SO(TC)).

A transitive-closure operator is a syntactic construct whose
interpretation coincides with the transitive closure of a rela-
tion. Thus, it is not surprising that NL equals FO(TC) be-
cause checking the existence of a path from node s to node t
in a digraph with designated vertices s and t is NL-complete
(Sipser 2005), and this property holds whenever s is related
to t in the transitive closure of the edge relation.

Syntactic Abbreviations

Quite often one needs to quantify over a k-ary function fk

instead of a relation. This can be accomplished by quantify-
ing over a (k + 1)-ary relation F k+1 and adding first-order

2This sentence assumes that m ≥ n. If not, add tautological
clauses to the CNF.

formulae that guarantees that F represents f . For example,
a unary function f can be represented by the binary relation
F and the formula

ψfun = (∀xyy′)(F (x, y) ∧ F (x, y′) → y = y′) .

Likewise, in need of an injective function, one quantifies
over a relation F and adds above formula plus

ψinj = (∀xx′y)(F (x, y) ∧ F (x′, y) → x = x′) .

Finally, if the function needs to be total, then one should use
ψtot = (∀x)(∃y)F (x, y). We use the abbreviations (∃F ∈
Fun)φ and (∃F ∈ Inj)φ to denote (∃F 2)(φ∧ψfun ∧ψtot) and
(∃F 2)(φ∧ψfun∧ψinj∧ψtot) respectively, and ‘PFun’ instead
of ‘Fun’ and ‘PInj’ instead of ‘Inj’ if the function does not
need to be total. For example, the following sentence defines
digraphs with directed Hamiltonian paths

ΦDHP = (∃F ∈ Inj)(∀x)[x < max →

(∃x′yz)(E(y, z) ∧ F (x, y) ∧ SUC(x, x′) ∧ F (x′, z))] .

To see how it works, observe that a directed Hamiltonian
path over the vertices |A| = {0, . . . , n−1} can be thought of
as a permutation f on the vertices such that E(f(x), f(x +
1)) for each 0 ≤ x < n− 1.

The Tool

The input to the tool is a signature σ, a SO∃ sentence Φ de-
scribing a property of interest, and a first-order structure A
describing an object on which to test the property Φ. The
output is a PDDL domain and instance that have a valid
plan if and only if A satisfies Φ. Moreover, a certificate
for the satisfaction of the property, in the form of values for
the second-order variables in Φ, can be recovered in linear
time from the plan.

Hence, we can think of the tool as a generator of reduc-
tions among problems. Recall that a reduction from problem
A into problem B is a computable function f such that for
each instance ω, ω ∈ A iff f(ω) ∈ B.

In our case, the reduction decomposes in two functions

D : Signatures × SO∃ → PDDL Domains ,

I : Signatures × SO∃ × STRUC → PDDL Instances

such that dom = D(σ,Φ) is a PDDL domain and ins =
I(σ,Φ,A) is a PDDL instance.

In order to get something of theoretical and practical in-
terest, the reduction should run in polynomial time (so that
it would not be able to check whether A satisfies Φ and then
produce a trivial planning problem) and its output should
be solvable in NP (so that complexity of solving the output
problem is no bigger than the complexity of solving the in-
put problem). However, the plan-existence decision problem
for PDDL is not in NP because 1) the number of grounded
fluents and actions may be exponential in the input size, and
2) a minimum-length plan may be of exponential size in the
number of grounded fluents and actions. Thus, not every
reduction works for our purposes and we must be careful
with its design. In the following two sections, we present an
acceptable reduction and study its formal properties.

180

Reductions

A (grounded) STRIPS planning problem is a tuple P =
〈F, I,G,O〉 where F is a collection of fluents (proposi-
tions), I ⊆ F denotes the initial state, G ⊆ F denotes the
goal states and O is a collection of actions. Each action
a ∈ O is defined by three subsets of fluents pre(a), add(a)
and del(a) that stand for the precondition, and the positive
and negative effects of the action. As usual, action a is ap-
plicable at state s iff pre(a) ⊆ s, and the result of applying
a is res(s, a) = (s \ del(a)) ∪ add(a). A plan for state s is
a sequence of actions applicable from the initial state I that
achieves the goal condition.

A PDDL planning problem is a pair 〈dom, ins〉 made of
a domain and instance description in the PDDL language
(McDermott et al. 1998). In this paper, we only consider
the simplest fragment of PDDL which is equivalent to un-
grounded STRIPS, and hence the grounding of 〈dom, ins〉
results in an STRIPS problem P . The size of the grounding
is polynomial for fixed domain, but exponential for unre-
stricted domain and instance.

Getting an acceptable reduction is not obvious at the be-
ginning, but once you get one, others become apparent. For
lack of space, we present only one reduction that is aimed
at SAT-based planners. We are aware of other reductions,
including one designed for optimal sequential planners that
produce a delete-free problem together with a length bound.

The first step in the translation is to transform the for-
mula by eliminating the implications and bi-implications,
and moving the negations to the literal level. Further, con-
stants other than 0 and max are removed by introducing
unary relational symbols with interpretations consisting only
of the unique element that interprets each constant. After
the formula is preprocessed in this manner, the domain and
problem are generated as follows.

Domain

D(σ,Φ) produces a domain for signature σ and sentence
Φ ∈ SOL(σ) of the form (∃Ra1

1) · · · (∃Ran

n)ψ. The actions
in the domain are divided in three groups: actions for set-
ting the truth-value of the second-order variables, actions for
proving the sentence ψ and two other actions.

Actions for variables For each second-order variable Ri

or arity ai, there is an action set Ri true with ai param-
eters that sets the fluent Ri and removes not-Ri which is
initially true; these fluents are used to denote the truth value
of Ri. For example, the action for the relation T 1 in SAT is

(:action set_T_true

:parameters (?x)

:precondition (and (guess) (not-T ?x))

:effect (and (T ?x) (not (not-T ?x))))

The fluent guess is used to create two phases within
plans: a ‘guess’ phase for setting the value of quantified re-
lations, and a ‘proof’ phase for showing the validity of ψ.

Actions for formulae These actions are designed follow-
ing the structure of ψ and make use of fluents that denote the
validity of the subformulae in ψ.

For each subformula θ, there is a fluent F[θ] that denotes
its validity in the structure and actions to add it. The fluent
F[θ] has parameters that match the free variables in θ. The
function F[·] is called the fluent translation and it is closely
related to the Tseitin translation (Tseitin 1968).

The actions are generated by recursing over the subfor-
mulae θ of ψ in a depth-first manner as follows:3

– if θ(x̄) =
∧n

i=1
θi(x̄i) with x̄ = ∪n

i=1x̄i, then gener-
ate the action prove[θ] with parameters x̄, precondition∧n

i=1
F[θi](x̄i) and unique add effect F[θ](x̄),

– if θ(x̄) =
∨n

i=1
θi(x̄i) with x̄ = ∪n

i=1x̄i, then generate
n actions of the form prove[θ]i(x̄i) with precondition
F[θi](x̄i) and unique add effect F[θ](x̄),

– if θ(x̄) = (∃y)θ′(x̄, y), then generate prove[θ](x̄, y) with
precondition F[θ′](x̄, y) and unique add effect F[θ](x̄),

– if θ(x̄) = (∀y)θ′(x̄, y) then generate two actions. The
idea is to prove θ(x̄) by varying y over all objects.

The first action prove[θ]0(x̄) shows θ′(x̄, 0). The action
has parameters x̄, precondition F[θ′](x̄, 0) and unique ef-
fect F[(∀y ≤ z)θ′(x̄, y)](x̄, 0). (Observe that the fluent
translation is applied to a different formula in which the
quantification is bounded by z.)

The second action prove[θ]1(x̄, z
′, z′′) inductively

proves (∀y ≤ z)θ′(x, y) once (∀y < z)θ′(x, y) holds.
The action has parameters x̄, z′, z′′, preconditionF[(∀y ≤
z)θ′(x̄, y)](x̄, z′)∧F[θ′](x̄, z′′)∧SUC(z′, z′′) and unique
add effect F[(∀y ≤ z)θ′(x̄, y)](x̄, z′′).

All these actions have as additional precondition the fluent
proof. Also, notice that there are no actions for literals as
such are taken care by the fluent translation as follows:

– F[Q(x̄)](x̄) = Q(x̄),

– F[¬Q(x̄)](x̄) = not-Q(x̄),

– F[(∀y)θ′(x̄, y)](x̄) = F[(∀y ≤ z)θ′(x̄, y)](x̄,max),

– in all other cases, F[θ](x̄) = holds <id>(x̄) where <id>
is a unique identifier for θ.

Other actions Two other actions are required. One
for switching the phase from ‘guess’ to ‘proof’ called
begin-proof that has precondition guess, adds
proof and removes guess, and another action called
prove-goal that has precondition F[ψ] and unique add
effect holds goal. Figure 2 shows the domain for ΦSAT .

Abbreviations In the presence of abbreviations, the oper-
ators for the second-order variables are extended in order to
make the translations more efficient. For (∃F ∈ Fun), the
precondition and delete of set F true are extended with
the fluent (free F dom ?x) so that there can be at most
one fluent F (x, y) true for each x and thus there is no need
to include the subformulaψfun. Similarly, for (∃F ∈ Inj) the
precondition and delete are further extended with the fluent
(free F ran ?y).

3θ(x̄) means that the free variables in θ are among those in x̄.

181

(define (domain SAT)

(:constants zero max)

(:predicates

(holds_and_2 ?x ?y) (holds_and_6 ?x0 ?x1)

(holds_exists_8 ?x0) (holds_forall_9 ?x0)

(holds_or_7 ?x0 ?x1) (holds_goal)

(N ?x ?y) (P ?x ?y) (T ?x) (not-T ?x)

(suc ?x ?y) (guess) (proof)

)

(:action set_T_true

:parameters (?x)

:precondition (and (guess) (not-T ?x))

:effect (and (T ?x) (not (not-T ?x))))

(:action prove_forall_9_1

:precondition (and (proof)

(holds_exists_8 zero))

:effect (holds_forall_9 zero))

(:action prove_forall_9_2

:parameters (?y1 ?y2)

:precondition (and (proof)

(suc ?y1 ?y2)

(holds_forall_9 ?y1)

(holds_exists_8 ?y2))

:effect (holds_forall_9 ?y2))

(:action prove_exists_8

:parameters (?y ?x)

:precondition (and (proof)

(holds_or_7 ?y ?x))

:effect (holds_exists_8 ?y))

(:action prove_or_7_0

:parameters (?y ?x)

:precondition (and (proof)

(holds_and_2 ?y ?x))

:effect (holds_or_7 ?y ?x))

(:action prove_or_7_1

:parameters (?y ?x)

:precondition (and (proof)

(holds_and_6 ?y ?x))

:effect (holds_or_7 ?y ?x))

(:action prove_and_2

:parameters (?y ?x)

:precondition (and (proof)

(P ?x ?y) (T ?x))

:effect (holds_and_2 ?y ?x))

(:action prove_and_6

:parameters (?y ?x)

:precondition (and (proof)

(N ?x ?y) (not-T ?x))

:effect (holds_and_6 ?y ?x))

(:action prove-goal

:precondition (holds_forall_9 max)

:effect (holds_goal))

(:action begin-proof

:precondition (guess)

:effect (and (proof) (not (guess)))))

Figure 2: Full domain translation for Φsat = (∃T 1)(∀y)(∃x)
[(P (x, y) ∧ T (x)) ∨ (N(x, y) ∧ ¬T (x))].

Problem

The PDDL problem is generated by the call I(σ,Φ,A). The
objects in the problem correspond to the elements in the uni-
verse |A| = {0, . . . , n−1}: 0 is mapped to the object zero,
n−1 to the object max, and the other elements 0 < i < n−1
to objects obj i. The goal is to achieve holds goal, and
the initial situation consists of fluents describing the truth-
value of all the relations in A and the predefined relations
such as<, SUC, etc. that are mentioned in Φ. Also, for each
second-order variable R, the initial situation has fluents to
denote false values for R, and in cases where R is a func-
tion, the initial situation has fluents of the type free R dom

and/or free R ran.

Formal Properties

The most important properties to care about are soundness,
completeness and the complexity guarantees. Soundness
and completeness mean that the translation function actually
implements a reduction between decision problems, while
the complexity guarantees refer to the time to compute the
reduction and the complexity of deciding plan existence on
the generated problem. In this section we show that the tool
is a polytime reduction from the NP problem MOD[Φ] into
a fragment of STRIPS that is decidable in NP.

It is well known that checking plan existence for STRIPS
problems without deletes is in NP (Bylander 1994). The
proof relies on the fact that an optimal plan does not repeat
actions and thus is of linear size. A similar complexity result
for STRIPS can be obtained if each action with non-empty
delete list can be applied at most once.

Definition 1. A STRIPS problem P = 〈F, I,G,O〉 is at-
most-once iff the operators can be partitioned into O =
O0 ∪ O1 such that all operators in O0 are delete-free, and
for each a ∈ O1, there is a fluent p ∈ pre(a) ∩ del(a) that
is added by no action; i.e., p /∈ add(a) for all a ∈ O. The
class of all at-most-once problems is denoted by STRIPS-1.

Consider now the grounding function G that maps a pair
〈dom, ins〉 of PDDL domain and instance into a STRIPS
problem P = G(dom, ins). For fixed dom, the function
ins G(dom, ins) runs in polytime O(‖ins‖k) for some k
that only depends on dom. Likewise, the translation func-
tion I runs in polytime in the size of the structure A, but
exponential in the largest arity of a second-order existential
quantifier in Φ. Therefore, the function fσ,Φ : STRUC[σ] →
STRIPS defined by

fσ,Φ(A) = G(D(σ,Φ), I(σ,Φ,A))

is a polytime function that maps σ-structures into grounded
STRIPS problems. This function is a reduction.

Theorem 2. The function fσ,Φ is a polytime reduction from
the decision problem MOD[Φ] into STRIPS-1.

Proof. (Sketch.) The proof is by structural induction on
the subformulae θ of ψ, starting from literals and building
up towards more complex subformulae. The statement to
show is that 〈A, Rπ

1 , . . . , R
π
n〉 � θ(x̄) iff there is a plan π

that achieves F[θ](x̄) and defines interpretations Rπ
i for the

second-order variables Ri. Here, 〈A, Rπ
1 , . . . , R

π
n〉 denotes

182

a) directed Hamiltonian path b) 6-clique

Figure 3: Two examples of NP-Complete problems reduced to STRIPS and the solutions computed by an off-the-shelf planner.
The left panel shows a digraph of 15 vertices with a Hamiltonian path and the right panel a graph of 15 vertices with a 6-clique.

the extension of A with the relations Rπ
i that interpret the

symbols Ri.

For A ∈ STRUC[Φ], fσ,Φ(A) is a STRIPS-1 problem
because all operators are delete-free except begin-proof
and the set R true operators, but each one of these deletes
a precondition that is added by no operator.

Corollary 3. The plan-existence decision problem for
STRIPS-1 is NP-complete.

Proof. For inclusion, note that every action a ∈ O1 can be
applied at most once. Because each such action deletes flu-
ents, then some (or all) actions inO2 may be required before
applying another action from O1. Thus, the size of a plan is
at most quadratic in the total number of actions. For hard-
ness, fσSAT,ΦSAT

reduces SAT into STRIPS-1 in polytime.

Therefore, our tool translates any given problem in NP,
encoded by a SO∃ sentence, into PDDL/STRIPS. Such a
sentence specifies the properties of a solution in a declara-
tive manner. The solution of the problem is obtained from
the valuation of the second-order variables that make the
sentence true and that is contained in any valid plan for the
planning problem. For example, the assignment that satis-
fies the CNF encoded by a structure A corresponds to the
values of the second-order variable T .

It is important to say that although SO∃ captures the
whole class NP, there are problems that are easier to encode
as sentences than others. For instance, there are succinct and
clear sentences for SAT, Hamiltonian path, k-colorability,
vertex cover and other problems, yet we do not have at
this moment sentences for most of the benchmark problems
used in planning. On the other hand, toy problems such as
Blocksworld are not interesting and the exercise of abstract-
ing relevant aspects of a real-world task into SO∃ sentences
may reveal the core difficulties involved in a task.

In the rest of this section, we derive tight bounds on the
length of parallel plans. These bounds are used with SAT-
based planners to show that a given problem has no solution
and also to improve performance.

Horizon Windows

A horizon window for a STRIPS problem P is an interval
of the form [s, f] such that P has a plan iff it has a plan of
length ℓ ∈ [s, f]. A window is a parallel-horizon window if
ℓ refers to the makespan of a parallel plan. Horizon windows
can be effectively used to prune the search space.

The recursive structure of the generated problem permits
the calculation of non-trivial horizon windows and of tight
parallel-horizon windows. Indeed, since all set operators can
be applied concurrently, a parallel plan needs at most one
time step to execute them. The plan also requires the oper-
ators begin-proof and prove-goal. Thus, the parallel-
horizon window is [2, 3] (the lower bound 2 applies when
there is a plan that uses no set operators) plus the parallel-
horizon windowmkspw(ψ) of the sentence ψ. The parallel-
horizon window is inductively defined as

– mkspw(θ)
.
= [0, 0] if θ is a literal,

– mkspw(∧n
i=1θi)

.
= 1 +

∨n

i=1
mkspw(θi),

– mkspw(∨n
i=1θi)

.
= 1 +

∧n

i=1
mkspw(θi),

– mkspw((∃y)θ(x̄, y))
.
= 1 +mkspw(θ), and

– mkspw((∀y)θ(x̄, y))
.
= ‖A‖+mkspw(θ),

where A is the structure associated to the problem, and
the operations between windows and scalars are [a, b] ∨
[a′, b′]

.
= [max{a, a′},max{b, b′}], [a, b] ∧ [a′, b′]

.
=

[min{a, a′},max{b, b′}] and c + [a, b]
.
= [c + a, c + b].

SAT, for example, has the window [‖A‖ + 5, ‖A‖ + 6]
which means that the CNF encoded by a structure A is sat-
isfiable iff there is a parallel plan of makespan ℓ such that
‖A‖+ 5 ≤ ℓ ≤ ‖A‖+ 6.

By bounding the upper limit of parallel horizon windows,
we obtain the following.

Theorem 4. Consider a signature σ, Φ ∈ SO∃(σ) and A ∈
STRUC[σ]. Then, to decide A � Φ, it is enough to consider
parallel plans of makespan linear on ‖A‖ for fixed Φ but
independently of the arities in σ and Φ. More precisely, it is
enough to consider plans of makespan maxb qb(‖A‖− 1)+
hb +3 where qb is the number of universal quantifiers along
branch b in the parse tree of ψ, hb is the height of branch b,
and ψ is the FOL part of Φ.

183

Proof. Let n = ‖A‖ and T the parse tree for ψ. For a
maximal branch b ∈ T , let qb be the number of universal
quantifiers in b, hb its height, and u(b) the upper limit of the
parallel horizon window along b. The upper limit u(ψ) of
mkspw(ψ) is maxb∈T u(b), and u(b) = qbn + hb − qb =
qb(n−1)+hb. End by adding 3 to the upper limit u(ψ).

This bound is tight for SAT. This result is surprising be-
cause one would expect the need to consider parallel plans of
makespan O(‖A‖k) for some k. However, note that a linear
makespan does not mean a linear number of operators.

Finally, observe that by composing the translation fσ,Φ
with any translation from STRIPS to SAT, and using the up-
per bound of the window, one obtains a polytime reduction
from the problem expressed by Φ into SAT.

Experiments

We performed experiments on the NP-complete prob-
lems SAT, CLIQUE, DIRECTEDHAMILTONIANPATH, 3-
DIMENSIONALMATCHING, 3-COLORABILITY and k-
COLORABILITY. Also, we computed the chromatic number
of random graphs using the tool as an oracle.

The instances for SAT were taken from the SATLIB
repository,4 the instances for graph problems were randomly
generated according to the G(n, p) model (Bollobás 2001),
and the instances for matching were generated by randomly
choosing triplets from {0, . . . , n− 1}3 with probability p.

The experiments were performed on an Intel Xeon pro-
cessor running at 1.86 GHz with 2 GB of RAM. The plan-
ners were run for 30 minutes with a limit of 1 GB of memory.
The planners that solved more instances are M and Mp that
support lower and upper bounds for time horizons (Rintanen
2010b; 2010a), and a num2sat (Hoffmann et al. 2007) modi-
fied to handle upper bounds on time horizons. Among these,
M was the one that solved more instances.

Figure 3 shows two examples with solutions: the left
panel shows a random digraph of 15 vertices that has a
directed Hamiltonian path, and the right shows a random
graph of 15 vertices with a 6-clique. These structures were
discovered by M on the problems obtained from the sen-
tences and the structures encoding the graphs.

Table 2 shows a summary of results for M. In total, we
ran the planner on 1,920 instances from which 1,614 were
solved: 706 on the positive side meaning that the input struc-
ture satisfies the property, and the rest 908 instances on the
negative side. The problems of type uf20, uf50 and uf75 are
random satisfiable 3CNF instances from the phase transition
region with 20, 50 and 75 propositional variables respec-
tively, while the problems uuf50 and uuf75 are random un-
satisfiable instances. The instances of type n-k in CLIQUE

refer to graphs with n vertices on which to look for cliques
of size k, those n-k in k-COLORABILITY refer to graphs
with n vertices on which to test k-colorability, and those of
type n in other problems refer to graphs with n vertices.

The table contains information about the total number of
instances of each type (N), the number of instances solved
by M (N∗), the number of instances solved in the positive

4
http://www.satlib.org

k-colorability

instance χ 1 2 3 4 5 6 7

10-0.75-1 5 2 2 6 101 3
10-0.75-2 5 1 2 2 6 4
10-0.85 7 2 2 3 6 4 1,265 4
15-0.25 2 27 62
15-0.60 5 27 29 54 118 72
15-0.70 6 28 28 33 47 329 67
20-0.10 3 214 350 705
20-0.25 4 211 272 1,261 837

Table 1: Results for M on the computation of chromatic
numbers on random graphs. For each instance, the table
shows the chromatic number χ, and the time (in seconds) to
prove/disprovek-colorability for increasing values of k. The
last value for k, for each instance, is the chromatic number.

and negative, and the average time that M took per instance.
As it can be seen, we tried to generate a balanced set of prob-
lems with positive and negative instances. Overall, we think
that M behaves very good as it solves 84.06% of the bench-
mark which is made of NP-complete problems of varying
size and difficulty.

Chromatic Numbers

The chromatic number of a graph G = (V,E) is the least
k such that G is k-colorable. It is NP-hard to compute the
chromatic number of a graph, but we can do it by testing
for k-colorability for increasing values of k = 1, . . . , |V |.5

Table 1 shows results for the computation of chromatic num-
bers on random graphs. For each instance, it shows the chro-
matic number χ and the time to prove/disprove the existence
of a k-coloring for increasing values of k.

Discussion

We presented a “black box” that given as input a signa-
ture σ, a second-order existential sentence Φ and a structure
A ∈ STRUC[σ], outputs a STRIPS problem P that is solv-
able in non-deterministic polynomial time and has a plan iff
A � Φ. The black box is fully automated and runs in poly-
nomial time in the size ‖A‖, and thus can be thought of as
an efficient method to generate polytime reductions from NP
into STRIPS.

The choice of SO∃ as the input language is arbitrary.
However, SO∃ is a widely accepted formalism for express-
ing problems because it is declarative and not tied to any
particular problem. In theory, one could choose any NP-
Complete problem, such as SAT or Hamiltonian Path, as the
input language for representing NP problems. This would
make the translation much easier, but then the user would
have to express his problems as instances of them, rendering
the approach uninteresting.

We have not compared our approach with direct transla-
tions of problems into SAT, tools such as NP-SPEC from
other areas, or specialized solvers. We expect to perform
some of these comparisons in the near future. Specially,

5One can do better by performing a binary search on k.

184

with tools that generate SAT instances from problem de-
scriptions, because our tool combined with M can be thought
as a tool that reduces SO∃ to SAT.

More ambitiously, we would like to consider complex-
ity classes beyond NP by exploiting known results in DCT.
For example, PSPACE equals SO(TC) and thus any SO(TC)
formula can be mapped into STRIPS. Unfortunately, the re-
duction is not as easy as the one for NP. The general reduc-
tions that we know consists of going from the formula to a
polyspace TM that decides the validity of the formula in the
input structure and then to simulate the TM with STRIPS.
Instead, we would like more meaningful and practical re-
ductions.

Acknowledgments Thanks to M. Helmert, P. Haslum and
J. Hoffmann for interesting discussions, to J. Rintanen for
helping us with M and Mp, and to the anonymous reviewers
for their comments and references to related work.

References

Bollobás, B. 2001. Random Graphs. Cambridge University
Press, second edition.

Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.

Cadoli, M., and Schaerf, A. 2005. Compiling problem spec-
ifications into SAT. Artificial Intelligence 162:89–120.

Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. American Mathematical
Society 7:27–41.

Hoffmann, J.; Gomes, C.; Selman, B.; and Kautz, H. A.
2007. SAT encodings of state-space reachability problems
in numeric domains. Proc. 20th Int. Conf. on Automated
Planning and Scheduling, 1918–1923.

Immerman, N. 1998. Descriptive Complexity. Springer.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control, New Haven, CT.

Mitchell, D. G., and Ternovska, E. 2005. A framework for
representing and solving NP search problems. Proc. 20th
National Conf. on Artificial Intelligence, 430–435.

Rintanen, J. 2010a. Heuristic planning with SAT: Beyond
strict depth-first search. Proc. 23rd Australasian Joint Conf.
on Artificial Intelligence, 415–424.

Rintanen, J. 2010b. Heuristics for planning with SAT. Proc.
16th Int. Conf. on Principles and Practice of Contraint Pro-
gramming, 414–428.

Sipser, M. 2005. Introduction to Theory of Computation,
2nd Edition. Boston, MA: Thomson Course Technology.

Tseitin, G. S. 1968. On the complexity of derivation in
propositional calculus. In Slisenko, A. O., ed., Studies in
Constructive Mathematics and Mathematical Logic, Part 2.
Springer. 115–125.

N∗/N #pos #neg avg. time

SAT: mkspw = [n+ 5, n+ 6]

uf20 40/40 40 0 1.7
uf50 40/40 40 0 146.7
uf75 15/40 15 0 362.1
uuf50 40/40 0 40 548.5
uuf75 1/40 0 1 1,746.4

CLIQUE: mkspw = [2n+ 4, 3n+ 7]

10-3 40/40 22 18 1.2
10-4 40/40 12 28 2.2
10-5 40/40 1 39 32.3
15-3 40/40 22 18 10.5
15-4 40/40 11 29 36.6
15-5 39/40 4 35 74.3
15-6 37/40 1 36 79.4
20-3 40/40 25 15 40.2
20-4 40/40 17 23 72.6
20-5 39/40 10 29 159.6
20-6 34/40 4 30 185.2
25-3 40/40 30 10 111.9
25-4 40/40 18 22 231.0
25-5 39/40 10 29 387.5
25-6 36/40 8 28 394.1

DIRECTEDHAMILTONIANPATH: mkspw = [n+ 3, n+ 10]

10 40/40 15 25 1.1
15 39/40 18 21 63.7
20 31/40 20 11 70.0
25 29/40 20 9 202.1
30 22/40 20 2 629.1

3-DIMENSIONALMATCHING: mkspw = [3n+ 4, 3n+ 6]

10 40/40 36 4 9.6
15 40/40 40 0 251.5
20 13/40 13 0 1,191.0
25 0/40 0 0 —

3-COLORABILITY: mkspw = [2n+ 4, 2n+ 7]

10 40/40 18 22 0.1
15 40/40 24 16 0.9
20 40/40 12 28 3.0
25 40/40 30 10 8.9
30 40/40 9 31 20.9
40 40/40 4 36 75.1
50 40/40 1 39 196.7

k-COLORABILITY: mkspw = [2n+ 4, 3n+ 6]

10-2 40/40 9 31 1.9
10-3 40/40 18 22 2.8
10-4 40/40 27 13 11.0
15-2 40/40 7 33 33.5
15-3 40/40 16 24 46.5
15-4 40/40 24 16 91.7
20-2 40/40 3 37 254.9
20-3 40/40 12 28 395.9
20-4 40/40 20 20 497.3
25-2 0/40 0 0 —
25-3 0/40 0 0 —
25-4 0/40 0 0 —

Total 1,614/1,920 706 908 180.9

Table 2: Results for M. For each problem type, the table
shows number of solved instances (N∗), total number of
instances (N), number of solved instances that satisfy the
property (#pos), number of solved instances that do not sat-
isfy the property (#neg), and the average time in seconds.

185

