
Ensemble Monte-Carlo Planning:
An Empirical Study

Alan Fern and Paul Lewis
School of EECS

Oregon State University
afern@eecs.oregonstate.edu, paularthurlewis@gmail.com

Abstract
Monte-Carlo planning algorithms, such as UCT, select ac-
tions at each decision epoch by intelligently expanding a sin-
gle search tree given the available time and then selecting the
best root action. Recent work has provided evidence that
it can be advantageous to instead construct an ensemble of
search trees and to make a decision according to a weighted
vote. However, these prior investigations have only consid-
ered the application domains of Go and Solitaire and were
limited in the scope of ensemble configurations considered.
In this paper, we conduct a more exhaustive empirical study
of ensemble Monte-Carlo planning using the UCT algorithm
in a set of six additional domains. In particular, we evaluate
the advantages of a broad set of ensemble configurations in
terms of space and time efficiency in both parallel and single-
core models. Our results demonstrate that ensembles are an
effective way to improve performance per unit time given
a parallel time model and performance per unit space in a
single-core model. However, contrary to prior isolated obser-
vations, we did not find significant evidence that ensembles
improve performance per unit time in a single-core model.

1 Introduction
UCT is a Monte-Carlo planning algorithm (Kocsis and
Szepesvari 2006) that extends recent algorithms for multi-
armed bandit problems to sequential decision problems in-
cluding Markov Decision Processes and games. Most no-
tably, UCT has served as the basis for some of the premiere
algorithms for computer Go (Gelly and Silver 2007) and has
also shown success in a variety of other domains (Balla and
Fern 2009; Finnsson and Bjornsson 2008; Bjarnason, Fern,
and Tadepalli 2009; Lang and Toussaint 2010).

At each decision epoch, UCT selects an action by first
using a sequence of Monte-Carlo simulations to construct a
look-ahead tree and then selecting the root action that looks
best. Recently, several investigations (see Section 2) have
observed improved performance by constructing an ensem-
ble of multiple trees and letting them vote in order to select
an action. This approach resembles ensemble methods from
the area of machine learning, such as bagging (Breiman
1996) and tree randomization (Breiman 2001), for which
thorough evaluations have shown broad, significant bene-
fits. In contrast, there is not yet a thorough evaluation of

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the ensemble approach for Monte-Carlo planning algorithms
such as UCT. Rather, the existing work has been limited to
only two domains, Go (Chaslot, Winands, and van den Herik
2008) and Solitaire (Bjarnason, Fern, and Tadepalli 2009),
and a very small number of ensemble configurations. As
such, there is not a good understanding of this approach in
terms of the types of advantages and their magnitude and
breadth.

The main contribution of this paper is to conduct a broader
evaluation of the ensemble approach, including a greater di-
versity of ensemble configurations and test domains. We
consider a matrix of ensemble configurations that varies the
ensemble size (number of trees) and the size of each tree in
the ensemble. The configurations are evaluated in each of
a diverse set of six domains including: Biniax, Backgam-
mon, Connect 4, Havannah, and two versions of Yahtzee.
Based on these results we consider the advantages of ensem-
bles when used in both parallel and single-core models. Our
main observations include: 1) In a parallel model, ensembles
almost always improve performance given a fixed amount of
time per decision, 2) In a single-core model, ensembles typ-
ically improve performance given a fixed memory limit, 3)
In a single-core model, there is no clear evidence that en-
sembles improve performance given a fixed time bound and
sometimes can decrease performance.

In what follows, we first review related work in Section
2. Next, we describe UCT and the ensemble approach in
Section 3. Section 4 describes our evaluation domains and is
followed by our evaluation and analysis of results in Section
5.

2 Related Work
Our work is inspired by recent investigations that provide
isolated results for Monte-Carlo ensembles. First, there have
been several attempts to design and evaluate parallel variants
of UCT (Cazenave and Jouandeau 2007; Gelly et al. 2008;
Chaslot, Winands, and van den Herik 2008). These ap-
proaches involve different ways of conducting Monte-Carlo
simulations in parallel in order to arrive at approximately the
same result as running UCT on a single processor, but much
faster. A variety of approaches were evaluated in the game
of Go, including ones involving complex message passing
and synchronization. However, a surprising result was that
perhaps the simplest “baseline” method, named root par-

58

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling



allelization (Chaslot, Winands, and van den Herik 2008),
was the dominant approach among those investigated. The
root parallelization method simply runs multiple versions of
UCT in parallel to construct an ensemble of trees and then
aggregates the information contained in their root nodes at
the end, thereby requiring minimal overhead for synchro-
nization. That is, root parallelization is a simple ensemble
approach where the ensemble members are each run on a
dedicated processor. Even more surprising was that in some
cases it was observed that the root parallelization approach
achieved speedups even when evaluated in a single proces-
sor model. That is, given a fixed amount of time, better per-
formance could be achieved by constructing ensemble mem-
bers in sequence on a single processor and voting, compared
to using that same amount of time to construct a single larger
tree. While compelling, these studies focused exclusively on
the game of Go.

In other recent work, motivated by planning in the domain
of Klondike solitaire, UCT was combined with the idea of
hindsight optimization, an idea that was then generalized to
arrive at the Ensemble UCT approach (Bjarnason, Fern, and
Tadepalli 2009). This approach constructs multiple smaller
trees on a single processor, instead of one large tree, and se-
lects an action according to a weighted vote among the trees.
Some advantages of the ensemble approach were noted, in-
cluding achieving better performance in a fixed amount of
time. The evaluation, however, was far from exhaustive and
focused on the single domain of Solitaire.

The above ensemble approaches are similar in spirit to
the idea of bagging predictors (Breiman 1996) in the area
of machine learning. Bagging methods construct an ensem-
ble of predictors by running a learning algorithm multiple
times, on random samples of the training data, and they
make predictions by voting among ensemble members. This
approach has been evaluated quite extensively (Dietterich
2000), and the main observation is that when the learning
algorithm is “unstable” (has high variance), then bagging is
very effective at improving performance compared to using
a single predictor. Similar results have been observed for
other ways of randomizing the learning algorithm to pro-
duce the ensemble (Breiman 2001). In Section 3, we will
see that some of the explanations for why bagging works
translate well to Monte-Carlo planning ensembles.

3 Ensemble Monte-Carlo Planning
In this section, we review the basic UCT algorithm and de-
scribe the particular ensemble approach that we will inves-
tigate. Next, we provide some rationale for why this ap-
proach might be expected to have advantages compared to
traditional UCT.

3.1 UCT
We consider planning in Markov Decision Processes
(MDPs) and 2-player alternating-turn stochastic games
where each state has a finite set of actions, but the total num-
ber of states is too large for standard dynamic programming
approaches to be applied. We assume without loss of gener-
ality that rewards are only received in a distinguished set of

terminal states (e.g. end of game) and that any trajectory is
guaranteed to reach and end at a terminal state. For MDPs,
the objective is to maximize the expected reward, and for
games the objective is to achieve the mini-max value.

UCT is an online planning algorithm, which, given the
current state s, selects an action by building a sparse look-
ahead tree over the state-space with s as the root, whose
edges correspond to actions and their outcomes and whose
leaf nodes correspond to terminal states. Each node in the
resulting tree stores value estimates for each of the available
actions that are used to select the next action to be executed.
In the context of games, each tree node is associated with
one of the players and the values are with respect to the max-
imizing, or root node, player.

UCT is distinct in the way that it constructs the tree and
estimates action values. Unlike standard mini-max search
or sparse sampling (Kearns, Mansour, and Ng 2002), which
typically build depth bounded trees and apply evaluation
functions at the leaves, UCT does not impose a depth bound
and does not require an evaluation function. Rather, UCT
incrementally constructs a tree and updates action values by
carrying out a sequence of Monte Carlo rollouts of entire
decision making sequences from the root to a terminal state.
The key idea behind UCT is to intelligently bias the rollout
trajectories toward ones that appear more promising based
on previous trajectories while maintaining sufficient explo-
ration. In this way, the most promising parts of the tree are
grown first while still guaranteeing that an optimal decision
will be made given enough rollouts.

It remains to describe how UCT conducts each rollout tra-
jectory given the current tree (initially just the root node) and
how the tree is updated in response. Each node s in the tree
stores: the number of times the node has been visited in pre-
vious rollouts n(s), the number of times each action a has
been explored in s in previous rollouts n(s, a), and a current
action value estimate for each action Q(s, a). Each rollout
begins at the root and actions are selected via the following
process. If the current state contains actions that have not
yet been explored in previous rollouts, then a random un-
explored action is selected. Otherwise, if all actions in the
current node s have been explored previously then we select
the action that maximizes an upper confidence bound given
by:

Q⊕(s, a) = Q(s, a) + c

√
logn(s)
n(s, a)

(1)

where c is a constant that is typically tuned on a per domain
basis. The selected action is simulated and the resulting state
is added to the tree if it is not already present. This ac-
tion selection mechanism is based on the UCB rule (Auer,
Cesa-Bianchi, and Fischer 2002) for multi-armed bandits
and attempts to balance exploration and exploitation. The
first term rewards actions whose action values are currently
promising while the second term adds an exploration bonus
to actions that have not been explored much and goes to zero
as an action is explored more frequently.

Finally, after the trajectory reaches a terminal state and
receives a reward of R, the action values and counts of each
state along the trajectory are updated. In particular, for any

59



state-action pair (s, a) on the trajectory we perform the fol-
lowing updates:

n(s)← n(s) + 1; n(s, a)← n(s, a) + 1

Q(s, a)← Q(s, a) +
1

n(s, a)
(R−Q(s, a))

According to this update, the action value Q(s, a) is equal to
the average reward of rollout trajectories that went through
(s, a). Once the desired number of rollout trajectories have
been executed UCT returns the root action that achieves the
highest Q-value. In our experiments, we follow the common
practice of only adding a single node to the tree per rollout
trajectory, which is the first node that occurs in the trajectory
that is not already in the current tree. Thus, the number of
trajectories will typically be equal to the number of nodes
in the tree grown by UCT. Note that UCT has two param-
eters, the exploration constant c, and the number of rollout
trajectories t.

3.2 Ensemble UCT
We consider an ensemble UCT approach that is parameter-
ized by an ensemble size n, a number of trajectories t, and an
exploration constant c. Given the current state, the ensemble
approach makes n independent calls to UCT, using parame-
ters t and c, resulting in n sparse look-ahead trees that are all
rooted at s. In an initial investigation we considered various
ways of combining the root node statistics from these trees
in order to make an overall ensemble decision. We found
that the approach used by root parallelization (RP) (Chaslot,
Winands, and van den Herik 2008) was nearly always a top
performer, which lead us to focus on it. Given the n trees,
let Q(i)(s, a) and n(i)(s, a) be the state-action values and
counts stored in the root of the i’th tree. The root paral-
lelization action value QRP (s, a) is then given by:

QRP (s, a) =

∑
i Q

(i)(s, a) · n(i)(s, a)∑
i n

(i)(s, a)

which is just the total reward through (s, a) over all trajec-
tories in all trees divided by the total number of times a was
tried in s across all trees. Note that this need only be com-
puted for the current state s. The action selected by the en-
semble is the one that maximizes QRP (s, a). We will refer
to this action selection approach as Ensemble UCT.

The value of QRP (s, a) can be viewed as scoring an ac-
tion a according to the weighted average of scores across
the ensemble members, with weights equal to the number
of times an ensemble member considered a at the root. In
contrast, the combination rule described in (Bjarnason, Fern,
and Tadepalli 2009) used an unweighted average of scores,
which we found to be less robust in some domains for some
ensemble configurations. More complex combining rules
such as plurality voting, instant runoff voting, and Borda
count voting, were sometimes better than this unweighted
average, but never significantly outperformed the simpler RP
rule and were often worse.

3.3 Potential Benefits of Ensembles
Clearly Ensemble UCT can be parallelized with very little
communication overhead by simply executing the n calls to

UCT on independent processors and returning the root node
statistics to a central process. This means that if an ensem-
ble with t trajectories per tree achieves higher reward than a
single tree with t trajectories, then parallelization will allow
us to achieve that higher reward without increasing the time
per decision. We will refer to this potential advantage as the
parallel time advantage.

Similarly, a single-core implementation of Ensemble
UCT has approximately the same memory requirement as
running only a single instance of UCT, since we need to
only remember the root statistics of each tree after it is con-
structed. Thus, if an ensemble with t trajectories per tree
achieves better performance than a single tree with t trajec-
tories, then we can achieve the higher reward without in-
creasing the memory requirements. We will refer to this po-
tential advantage as the single-core memory advantage.

Finally, for a single-core implementation, the time per de-
cision is linearly related to the total number of trajectories
used to construct the ensemble, which equals n · t. Thus,
if an ensemble can outperform a single tree with t′ = n · t
trajectories, then the improved performance can be achieved
on a single core with no additional time overhead. We will
refer to this potential advantage as the single-core time ad-
vantage.

Previous work has provided isolated evidence for each of
these three advantages; and our experiments will consider
these further. However, there remains the question of why
we might expect to observe any of these advantages. To
help answer this it is useful to draw on the general under-
standing of why and when bagging predictors improve per-
formance. Bagging has been shown to significantly improve
performance for learning algorithms that have high variance
(Breiman 1996). In a simplified sense, this is due to the
fact that averaging the outcomes of n i.i.d. random vari-
ables converges quickly to their expected value. Further, the
variance of the average is less than the variance of the indi-
vidual variables. In the case of bagging, the variance is due
to the learning algorithm outputting different predictors on
each run, and averaging across those predictions results in a
more stable and accurate output.

In analogy, UCT is a randomized algorithm that for a fixed
number of trajectories can often have significant variance
in the suggested action across independent runs, resulting
from the randomness inherent both in the rollout process and
in state transitions for stochastic domains. For example, if
an early trajectory through an action yields an unlucky re-
sult, then the action’s value will be temporarily small and
UCT will select the action infrequently until the impact of
the unlucky run disappears. A very large number of trajec-
tories may be required to overcome such cases. However,
such events will not occur in each run of UCT. Thus, if UCT
selects good actions “on average” across independent runs,
then combining the decisions of a large enough ensemble
is likely to be good. As a simplified example, if there are
two actions and t is large enough so that the optimal action
is returned with probability slightly better than 0.5, then a
simple majority vote ensemble will select the optimal action
with high probability. This is one reason that one might ex-
pect an ensemble of trees with t trajectories per tree to out-

60



Figure 1: Comparison of Domains
Domain Agents c APS SPA STOC
Backgammon 2 1 ≥ 1K 15 Yes
Biniax 1 8 4 ≥ 7K Yes
Connect 4 2 1 7 1 No
Havannah 2 1 61 1 No
Yahtzee 1 64 32 252 Yes

perform a single tree with t trajectories, providing a parallel
time and single-core memory advantage.

Note, however, that to observe a single-core time advan-
tage, an ensemble of small trees must outperform a single
larger tree. In particular, if the single tree uses t′ trajec-
tories, then an ensemble of size n must use no more than
t′/n trajectories per tree. Unfortunately, the performance of
each tree will decrease to some degree with fewer trajecto-
ries due to increased variance and bias of UCT. Thus, there
is a fundamental trade-off between using more trees, which
can have a variance reduction effect, and more trajectories
per tree, which can decrease variance and bias. The current
theoretical results for UCT are too coarse to provide signif-
icant guidance in making these choices. Thus, this trade-off
must be evaluated empirically and is likely to vary from do-
main to domain.

4 Description of Evaluation Domains
This section gives an overview of the five domains we use
in our experiments, which are all discrete, fully observable,
and either deterministic or stochastic. Figure 1 gives a com-
parison of the domains according to the following features:
number of agents, value used for the UCT constant, an up-
per bound on actions per state (APS), an upper bound on the
possible next states per action (SPA), and whether or not the
domains is stochastic. Space precludes providing all domain
rules and details.

Backgammon. Backgammon is an ancient two player,
stochastic game for which computers have achieved mas-
ter level play via reinforcement learning techniques (Tesauro
1994). Each move begins with the roll of two six sided dice,
which determines the possible locations to which a player
may advance their pieces, the choice of which constitutes
the action space. An interesting aspect of the game is that
the number of possible actions in a state can vary wildly,
from none to over a thousand. In our implementation, a re-
ward of 1 is received for a win and -1 for a loss.

Biniax. Biniax is a single-agent, highly stochastic,
arcade-style game for which we are unaware of prior eval-
uations of any AI techniques. The agent controls a single
element on a 5 by 7 board and actions may move the single
element to one of the four adjacent, non-diagonal locations,
but with some restrictions depending on the surrounding el-
ements. After every pair of moves, all elements on the board
shift down one location and the top row is replaced by ran-
dom elements. The game ends when the agent can make
no more legal moves. Note that due to the large number of
possible random states after selecting an action, due to the
random selection of the top row, standard UCT converges

far too slowly in this domain. Thus, we use a sparse version
of UCT described in (Bjarnason, Fern, and Tadepalli 2009),
which limits the number of next states included in the tree
for any given action to a specified constant number.

Connect 4. Connect 4 is a well known deterministic, 2-
player game where pieces are dropped into the columns of
a vertical 6x7 grid with the goal of forming a straight line
of 4 connected pieces. There are at most 7 actions per state,
since placing a piece in a column is a legal action only if
that column has at least one empty location. The reward is
1, 0, or -1 for a win, draw, or loss, respectively. An optimal
rule-based computer player has been built for Connect 4 and
it has been shown that the first player has a winning strategy
(Uiterwijk, Van den Herik, and Allis 1989).

Havannah. Havannah is a deterministic, 2-player con-
nection game, based on the game Hex. A player wins when
they achieve one of several types of connection patterns. No
existing computer agent is capable of beating the best hu-
man players on a full sized board (side length of 10) and
the game designer, Christian Freeling, has put out a prize
for anyone that can create an agent that can beat him in 1 of
10 games. The standard board has sides of length 8, but we
used length 5 boards in our experiments to speed-up simu-
lation times. The number of possible states is enormous and
for our board size a maximum number of actions of 61.

Yahtzee. Yahtzee is a stochastic, single-agent dice game.
The game consists of 13 rounds and in each round any num-
ber of 5 dice may be rolled up to 3 times. Different con-
figurations of dice correspond to different categories (e.g. a
straight), and a category must be selected for scoring each
round. An optimal algorithm exists which achieves an aver-
age score of 254.5896 with a standard deviation of 59.6117
(Glenn 2006). Human experts are also able to average close
to 250 points. The actions in the game correspond to both se-
lecting which die to roll during a round, followed by choos-
ing which category to score.

5 Empirical Results
In this section, we first describe our experimental setup and
then present our empirical results for a variety of ensemble
configurations and domains.

5.1 Experimental Setup
Each of the five domains was implemented in Java along
with our implementation of UCT and Ensemble UCT. The
implementations use a common API for communicating be-
tween domains and Monte-Carlo planners, making it easy to
incorporate new domains and planners into the framework.
The source for these domains and planners, among others,
are available upon request.

We selected the UCT constant c on a per domain basis,
and used the selected value for all ensemble configurations
in a particular domain. We selected the value that optimized
the performance of a single instance of UCT (ensemble of
size 1). In particular, for a range of values of c we generated
UCT curves that plotted performance vs. number of trajec-
tories. In all cases, we were able to find a value of c whose
curve was nearly uniformly best and selected that value of c

61



for our experiments (see Figure 1). In results not included in
this paper, we have verified that this value of c is typically
also best for a wide range of ensemble configurations. Thus,
in our experience, it is unnecessary to re-optimize the con-
stant for each ensemble configuration, which simplifies the
evaluation.

For the 2-player game domains, we evaluated the perfor-
mance of Ensemble UCT when playing against a single UCT
agent with a fixed number of trajectories. The number of tra-
jectories was selected to balance the trade-off between ex-
perimental time and strength of the opponent, which both
increase with the number of trajectories. For Connect 4
the fixed opponent used 212 = 4096 trajectories while Ha-
vannah and Backgammon used the smaller numbers of 128
and 256 respectively. The relatively small number of tra-
jectories used in the later cases were due to the relatively
slower implementations for these domains, which made it
impractical to conduct thorough experiments against oppo-
nents with more trajectories. Nevertheless, our results show
useful trends for ensemble performance against these oppo-
nents.

Generally, in our analysis we used the number of trajec-
tories as a proxy for runtime per decision, which is accurate
under the assumption that adding a single trajectory to a tree
always takes the same amount of time. Our timing results
(not shown) for various ensemble configurations, including
single trees, largely agree with this assessment. However,
we found this assumption to be slightly violated in domains
where there were small but measurable increases in the times
to run trajectories for larger trees (on the order of millisec-
onds per decision). This is domain dependent and primarily
due to the fact that for larger trees more node updates are
performed for each trajectory as well as more evaluations of
the UCT action selection rule. This means that for some do-
mains the performance of ensembles that use smaller trees
is slightly better than indicated in terms of the performance
achieved per unit time.

Our main experimental results are in Figures 2 through 7,
with one table for each of the 5 domains. We also included
an additional table for a modified version of the Yahtzee do-
main (called Modified Yahtzee), which uses a slightly differ-
ent scoring system that alters the optimal policy compared to
the normal Yatzhee domain.1 Each column in the tables cor-
responds to a particular ensemble size, or number of trees, n.
Each row corresponds to a particular number of trajectories
per tree. Thus, each table entry corresponds to a particular
ensemble configuration characterized by the number of trees
and trajectories per tree. The value recorded in a table en-
try is the average reward achieved over a series of between
1000 and 4000 games, along with the corresponding 99%
confidence interval.2

Note that the total number of trajectories used to create an
1This domain arose from an early implementation with a “bug”

in the scoring compared to the original Yatzhee. We elected to in-
clude the results since they represent a huge amount of computation
time and add to the diversity of domains considered.

2Time constraints prevented running all domains and config-
urations for the maximum of 4000 games, particularly for larger
ensembles and the more costly domain simulators.

ensemble is simply equal to the number of trees times the
trajectories per tree, the value of which is linearly related to
the time requirements of a single core implementation. In
each table, the range of ensemble sizes and trajectories per
tree differs. We attempted to consider the largest possible
ranges, the size of which depends on the memory and time
requirements for the simulator of each domain.3 The table
entries for configurations that we were unable to run are left
blank. In all cases, the ensemble sizes and trajectories per
tree are increased by a factor of two across the tables. Due
to this choice the ensembles along a diagonal of a table use
the same total number of trajectories. For example, a size
one ensemble with 212 trajectories per tree, uses the same
total trajectories as a size 2 ensemble with 211 trajectories
per tree.

5.2 Results
We now consider our experimental results from the perspec-
tive of the three potential ensemble advantages: parallel
time, single-core memory, and single-core time.

Parallel Time Advantage. Recall that there is a parallel
time advantage if the performance of an ensemble with t tra-
jectories per tree is better than the performance of a single
tree with t trajectories. In each table, the single tree perfor-
mance for various values of t can be observed along the first
column of results. As we move along each row the ensem-
ble size increases while t remains fixed. We see that, almost
uniformly, for all domains and values of t there is an ensem-
ble size that significantly improves on the single tree per-
formance; and typically this happens with only an ensemble
of two trees. This provides strong evidence that the ensem-
ble approach can robustly provide a parallel time advantage.
The fact that this advantage can be measured with only very
small ensembles is particularly useful given the wide avail-
ability of machines with a small number of multiple cores.

We further see that for most domains for a fixed value
of t the performance steadily increases as the ensemble size
grows and typically is substantially better than a single tree
for the largest ensemble size. This provides good evidence
that the ensemble approach can effectively leverage addi-
tional parallel processors when they are available. In some
cases the potential speedups allowed by parallelization are
quite impressive. For example, in Connect 4, an ensemble
of size 16 with t = 215 performs on par with a single tree
with t = 219, indicating a speedup of at least a factor of 16.

The Biniax domain was somewhat of an outlier in that
there was very little improvement with ensemble size. In
fact, for the smaller values of t there is no improvement and
even a slight decrease in performance, though not signifi-
cant according to the confidence intervals. Here there is a
significant improvement for the larger ensemble sizes, but it
is quite small compared to the other domains. After investi-
gating this issue, we made the following observations. The
Biniax domain only has at most four actions per state and we

3Our results were generated on a machine with 4 2.67GHz dual
core Intel Xeon processors and 24 gigabytes of memory. Our Java
library only ran a single thread so each test used one core for pro-
cessing and a second core for garbage collection.

62



Figure 2: Connect 4 Ensemble Table

Trajectories per
Tree

Ensemble Size
1 2 4 8 16

210 −.522± .048 −.370± .052 −.299± .053 −.233± .055 −.189± .055

211 −.256± .054 −.139± .055 −.102± .056 −.011± .057 −.056± .056

212 .011± .056 .121± .056 .227± .055 .253± .054 .284± .076

213 .234± .054 .413± .051 .507± .048 .543± .067 .608± .064

214 .470± .049 .646± .043 .765± .051 .842± .042 .841± .042

215 .648± .042 .793± .048 .859± .040 .899± .034 .918± .031

216 .727± .054 .884± .037 .886± .036 .926± .029

217 .811± .045 .898± .035 .917± .024

218 .871± .038 .910± 0.31

219 .903± .032

Figure 3: Yahtzee Ensemble Table

Trajectories per
Tree

Ensemble Size
1 2 4 8 16

29 161.1± 1.5 172.4± 1.8 179.9± 1.8 187.2± 1.9 193.4± 2.0

210 172.6± 1.5 181.0± 1.8 187.9± 1.8 193.4± 1.8 200.8± 2.0

211 184.0± 1.8 190.0± 1.8 193.8± 1.8 200.1± 2.0 204.9± 2.0

212 190.7± 1.9 195.0± 1.9 200.3± 2.0 203.3± 2.0 206.8± 2.0

213 196.7± 1.8 201.2± 2.0 203.3± 1.9 205.5± 2.0 209.1± 2.1

214 202.4± 2.1 205.4± 2.0 208.6± 2.1 209.7± 2.2

215 206.1± 2.1 208.8± 2.2 209.8± 2.1

216 208.0± 2.0 208.4± 2.0

Figure 4: Modified Yahtzee Ensemble Table

Trajectories per
Tree

Ensemble Size
1 2 4 8 16

27 160.3± 2.5 167.9± 1.5 175.3± 2.8 186.3± 2.8 193.5± 3.3

28 172.3± 2.8 179.2± 1.6 185.9± 2.8 193.7± 3.0 202.2± 3.7

29 183.1± 2.7 190.2± 1.8 197.0± 3.4 205.0± 3.9 208.3± 3.2

210 191.8± 2.8 199.9± 1.9 204.0± 3.3 207.9± 3.2 214.2± 3.7

211 197.9± 2.5 206.2± 2.0 211.0± 3.6 214.7± 3.8 217.4± 3.7

212 208.1± 3.7 211.1± 2.1 214.9± 3.9 215.6± 3.5 220.6± 2.7

213 209.0± 3.3 214.9± 1.8 216.4± 3.4 218.9± 4.0 221.4± 2.9

214 215.2± 4.0 217.1± 2.2 219.8± 2.8 223.4± 3.1 221.3± 4.0

215 215.0± 3.5 220.7± 2.1 220.9± 3.7

216 216.6± 3.7 221.0± 3.2

Figure 5: Backgammon Ensemble Table

Trajectories per
Tree

Ensemble Size
1 2 4 8 16

28 .021± .057 .323± .041 .563± .036 .734± .030 .826± .032

29 .405± .045 .616± .035 .758± .029 .831± .024 .883± .027

210 .659± .033 .793± .027 .858± .023 .885± .020 .884± 0.24

211 .787± .027 .861± .022 .868± .022 .888± .020

212 .881± .021 .895± .020 .901± 0.21

213 .899± .019 .906± .026

214 .910± .026

63



Figure 6: Havannah Ensemble Table

Trajectories per
Tree

Ensemble Size
1 2 4 8

27 .002± .058 .135± .057 0.235± .056 0.507± .050

28 .237± .056 .487± .050 0.565± .048 0.774± .036

29 .613± .045 .772± .037 0.816± .033 0.919± .023

210 .876± .028 .948± .018 0.951± .018 0.981± .011

211 .970± .014 .984± .010 0.986± .010

212 .999± .003 .988± .009

213 .996± .005

Figure 7: Biniax Ensemble Table

Trajectories per
Tree

Ensemble Size
1 2 4 8 16

28 102.1± 1.2 102.0± 1.2 100.9± 1.2 101.2± 1.4 101.8± 2.4

29 103.9± 1.2 104.0± 1.2 104.4± 1.2 103.0± 1.4 103.9± 2.4

210 105.9± 1.2 105.3± 1.2 105.0± 1.2 106.6± 2.4 107.7± 2.4

211 108.0± 1.2 107.9± 1.2 107.4± 1.2 108.3± 2.4 108.7± 2.4

212 109.0± 1.2 109.5± 1.2 110.6± 2.4 110.5± 2.4

213 110.6± 1.2 112.1± 1.2 113.8± 2.4 114.0± 2.4

214 111.9± 1.2 113.9± 1.2

215 113.2± 1.2

observed that the variance of UCT’s action choices in this
domain was very low, in that repeated runs of the algorithm
in a state would yield very similar results. We conjecture
that this is due to the fact that there is a fairly good and easy
to detect strategy in this domain, which is to strive for north-
ward movement. The low variance is a likely explanation
for the relative ineffectiveness of ensembles here, since en-
sembles primarily serve as a variance reduction mechanism.
For the larger values of t, the variance appears to increase
slightly, which is likely due to the fact that the deeper trees
allow for more look-ahead which can randomly vary from
run to run. This is a possible explanation for the improved
effectiveness for larger t in this domain compared to smaller
values of t. This observation follows the conventional wis-
dom for applying the bagging ensemble approach for learn-
ing predictors. In particular, bagging is only effective when
the base learning algorithm is unstable or has high variance.

Single-Core Memory Advantage. Recall that there is a
single-core memory advantage if the performance of an en-
semble with t trajectories per tree is better than the perfor-
mance of a single tree with t trajectories. Since this is the
same condition required for a parallel time advantage, the
above discussion applies here and we can conclude that there
is a clear single-core memory advantage almost uniformly.
It is interesting, however, to point out some notable instances
of this advantage. From above, we saw that in Connect 4 an
ensemble of size 16 with t = 215 performed on par with a
single tree with t = 219 while using 16 times less space.
We were unable to run experiments beyond t = 219 due to
memory limitations. However, from the trends in the table
there is every indication that we could have further improved

performance by increasing ensemble size without paying a
penalty in terms of space. We see a similar situation in both
of the Yahtzee domains where ensembles of 16 small trees
can equal the performance of the largest tree that our mem-
ory was able to support.

Thus, in domains where there is a single core and the bot-
tleneck is memory, rather than decision time, ensembles can
be an extremely effective way to improve performance. An
alternative would be to attempt to implement UCT in a way
that can effectively use disk space to store the tree. However,
this alternative appears to be much more of an engineering
effort than the simple ensemble approach we describe. An
interesting possibility is considering more complex ensem-
ble configurations for improving performance on multi-core
systems when the amount of memory per core becomes the
limiting factor. In this case, it seems likely that running en-
sembles of smaller trees on each core would allow for a way
around the memory bottleneck.

Single-Core Time Advantage. There is a single-core
time advantage if the performance of an ensemble of size
n with t trajectories per tree is better than a single tree with
the same number of total trajectories, which is equal to n · t.
In all of our tables, ensemble configurations on the diagonals
going from left-to-right, bottom-to-top use the same number
of total trajectories, n · t, and hence approximately require
the same amount of time per decision on a single core.

There is a clear trend across the domains when looking at
the diagonals in the tables. When the number of total trajec-
tories is small, the performance usually degrades slightly as
the ensembles become larger. In particular, there is typically
a small decrease in performance when going from a single

64



tree to multiple trees. For example, in Connect 4, a single
tree with t = 213 achieves a performance of 0.234, two trees
with t = 212 achieves 0.121, and four trees with t = 211

achieve a losing strategy of -0.102. This shows that when
the number of trajectories is small, ensembles quite reliably
do not exhibit a single-core time advantage, but rather ex-
hibit a single-core time disadvantage. To understand why
this is the case, note that for a fixed number of total tra-
jectories, if the ensemble size increases, then the value of
t must decrease by the same factor. Thus, as the ensemble
size grows, each tree in the ensemble becomes less power-
ful and for a small enough t the quality of their individual
decisions degrades to a point that can not be overcome by
aggregating results. More formally, as t decreases for the
ensemble members, the bias and variance of the individual
trees increases to a point where the variance reduction effect
of ensembles is not substantial enough. This is similar to the
observation that bagging predictors that are highly inaccu-
rate will often not be productive.

However, as the total number of trajectories on a diagonal
increases, we typically see that the performance no longer
degrades as the ensemble size increases. In most domains,
there is no clear increase in performance along the diagonal,
indicating that it does not appear to matter whether one adds
trajectories to an ensemble by doubling the number of trees
or by doubling the number of trajectories per tree. This is
a fairly surprising observation as the two choices result in
very different computational processes.

While we never observed statistically significant perfor-
mance improvement along a diagonal, there do appear to
be such trends in the Modified Yahtzee and Connect 4 do-
mains for larger numbers of total trajectories. For example,
in Modified Yahtzee we see that the largest single tree (i.e.
t = 216) has a mean performance that is worse than all en-
semble configurations on its diagonal. A similar observation
holds in Connect 4. However, none of the individual dif-
ferences are statistically significant, which prevents us from
drawing strong conclusions without increasing the number
of repeated runs to decrease the confidence intervals.

Thus, in summary, though prior work in Go and Solitaire
offered isolated evidence of a single-core time advantage,
we are not able to provide evidence for such an advantage
here. However, there are trends in the data, so far not statis-
tically significant, that suggest there might be a single-core
time advantage in some of our domains when the total num-
ber of trajectories is large enough.

6 Summary and Future Work
We evaluated a simple ensemble approach for UCT, where
UCT is used to build multiple independent trees and a final
decision is made via a weighted vote. To our knowledge this
is the first such evaluation to be conducted over a sizable
set of domains and configurations. Our main observations
are the following: 1) Ensembles can significantly improve
performance per unit time in a parallel model, 2) Ensembles
can significantly improve performance per unit memory in
a single-core model, and 3) Contrary to some prior observa-
tions, we did not observe a significant improvement in per-
formance per unit time in a single-core model.

In future work, we would like to gain a better theoreti-
cal understanding of why ensembles work when they do, for
example, by better understanding the bias-variance behav-
ior of UCT. We are also interested in exploring more com-
plex configurations that optimize performance given con-
straints on time, space, and the available CPUs. Finally,
we are interested in considering ways of further improving
the effectiveness of ensemble methods. For example, work
in machine learning has considered various methods of in-
creasing ensemble diversity (such as noise injection or prob-
lem transformations), which can sometimes improve perfor-
mance. While our initial investigations in this direction have
not shown benefits, there are many avenues left to be ex-
plored.

Acknowledgments
This work was supported by NSF grants IIS-0546867 and
IIS-0905678.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning
47(2):235–256.
Balla, R., and Fern, A. 2009. UCT for tactical assault planning in
real-time strategy games. In IJCAI, 40–45.
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower bounding
Klondike solitaire with Monte-Carlo planning. In ICAPS, 26–33.
Breiman, L. 1996. Bagging predictors. Machine learning
24(2):123–140.
Breiman, L. 2001. Random forests. Machine learning 45:5–32.
Cazenave, T., and Jouandeau, N. 2007. On the parallelization of
UCT. In Computer Games Workshop, 93–101.
Chaslot, G.; Winands, M.; and van den Herik, H. 2008. Parallel
Monte-Carlo tree search. Computers and Games 60–71.
Dietterich, T. 2000. An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting,
and randomization. Machine learning 40(2):139–157.
Finnsson, H., and Bjornsson, Y. 2008. Simulation-based approach
to general game playing. In AAAI, 259–264.
Gelly, S., and Silver, D. 2007. Combining online and offline knowl-
edge in UCT. In ICML.
Gelly, S.; Hoock, J.; Rimmel, A.; Teytaud, O.; and Kalemkarian, Y.
2008. On the parallelization of Monte-Carlo planning. In ICINCO.
Glenn, J. 2006. An optimal strategy for Yahtzee. Loyola College
in Maryland, Tech. Rep. CS-TR-0002.
Kearns, M.; Mansour, Y.; and Ng, A. 2002. A sparse sampling
algorithm for near-optimal planning in large Markov Decision Pro-
cesses. Machine Learning 49:193–208.
Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-Carlo
planning. In ECML, 282–293.
Lang, T., and Toussaint, M. 2010. Planning with Noisy Probabilis-
tic Relational Rules. JAIR 39:1–49.
Tesauro, G. 1994. TD-Gammon, a self-teaching backgammon pro-
gram, achieves master-level play. Neural computation 6(2):215–
219.
Uiterwijk, J.; Van den Herik, H.; and Allis, L. 1989. A knowledge-
based approach to connect-four: the game is over: white to move
wins! University of Limburg.

65




