
Online Planning for a Material Control System
for Liquid Crystal Display Manufacturing

Minh Do1, Kazumichi Okajima2, Serdar Uckun1, Fumio Hasegawa2,
Yukihiro Kawano2, Koji Tanaka2, Lara Crawford1, Ying Zhang1, and Aki Ohashi1

1Embedded Reasoning Area 2Products Development Center, IHI Corporation
Palo Alto Research Center Yokohama 235-8501, Japan
Palo Alto, CA 94304, USA {kazumichi okajima,fumio hasegawa

{minhdo,uckun,lcrawford,yzang,aki}@parc.com yukihiro kawano,koji tanaka}@ihi.co.jp

Abstract
The hyper-modular printer control project at PARC has
proven that a tightly integrated model-based planning and
control framework can effectively control a complex physical
system. Recently, we have successfully applied this frame-
work to another application: planning for the Material Con-
trol System (MCS) of Liquid Crystal Display (LCD) manu-
facturing plant in a joint project between the Embedded Rea-
soning Area at PARC and the Products Development Cen-
ter at the IHI Corporation. The model-based planner cre-
ated at PARC was able to successfully solve a diverse set
of test scenarios provided by IHI, including those that were
deemed very difficult by the IHI experts. The short project
time (2 months) proved that model-based planning is a flexi-
ble framework that can adapt quickly to novel applications.
In this paper, we will introduce this complex domain and
describe the adaptation process of the Plantrol online plan-
ner. The main contributions are: (1) introducing a success-
ful application of general-purpose planning; (2) outline the
timeline-based online temporal planner; and (3) description
of a complex warehouse management problem that can serve
as an attractive benchmark domain for planning.

Introduction
After the success of the Tightly Integrated Parallel Printer
(TIPP) project (Ruml et al. 2005; Do et al. 2008a), the
Embedded Reasoning Area (ERA) at PARC has been ex-
panding the software suite developed within this project.
Specifically, ERA has been developing the Plantrol frame-
work that integrates the planning and control components
for easy adaptation to a wide variety of applications.

In this paper, we will describe our efforts in adapting this
framework to the Material Control System (MCS) for an
LCD manufacturing plant in a joint project between ERA
and the Products Development Center at the IHI Corpora-
tion. This project was conducted during a two month period
in early 2010, and the planner was successfully validated us-
ing a variety of test cases.

The MCS domain presents a challenging online planning
problem. The domain involves a complex 2-floor plant and
a sequence of real-time orders to transfer LCD cassettes be-
tween different locations. The main challenges are:
• Complex structure: there are multiple transportation de-

vices with vastly different characteristics and capabilities.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Various named locations may have different capabilities
and constraints associated with them (e.g., storage loca-
tions vs. named intersections).

• Configuration changes: transport equipments and stor-
age locations may be added or changed in order to
change manufacturing processes and capacity; such ad-
ditions/changes should not stop the production lines.

• Unexpected component failures: different equipments (ei-
ther transporters or storage locations) may fail or get re-
paired in real time. The planner needs to route cassettes
around failures and avoid getting into deadlock situations.

• Real-time unpredictable transfer orders: transfer orders
arrive in real-time fashion; the planner does not know in
advance about future transfer orders.

Despite the short duration of the project, we have demon-
strated that Plantrol model-based planning software is a
good fit for this complex logistics domain. The planning
software successfully solved all testing scenarios provided
by the IHI team and the high-level PTDL modeling language
developed for the Plantrol planner is flexible and expressive
enough to model all critical constraints in this domain.

The remainder of this paper is organized as follows: in
the next section, we will describe the MCS problem in more
detail. We then outline the architecture and planning algo-
rithm of the Plantrol online planner. The next two sections
describe how we model and solve the MCS problem using
model-based planning technology and the empirical evalua-
tion. We conclude the paper with related work and a short
discussion and future work.

Material Control System for the LCD
Manufacturing Factory

IHI Corporation is a diversified Japanese company with over
23,000 employees that manufactures a wide range of prod-
ucts including jet engines, rockets, ships, bridges, storage
and process plants, and industrial machinery. The Products
Development Center (PDC) builds control software for vari-
ous machinery and plants for IHI customers. The MCS sys-
tem for the LCD manufacturing plant was developed by IHI
for an industrial customer (Fumio et al. 2009) and the PDC
was responsible for developing the transfer route algorithm.
Even though the MCS project is successful, IHI desires to
investigate model-based planning as a more powerful alter-
native to the current cassette routing algorithm in MCS. For

50

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

86

Vo l . 4 2 N o . 2 2 0 0 9

function, and the equipment control function.
2.2.1.1 Transfer control function
The transfer control function mainly consists of three
types of processing; transfer route search, transfer
command creation, and transfer command execution.
 Transfer instructions transmitted from the MES to the
CMCS designate a starting point, a destination, and a
cassette ID in a From-To format, for example, “Transfer
cassette ID001 from process A to process G.”
 To transfer the cassette from process A to process G, the
transfer route search process searches for the fastest route
to the destination from among several transfer routes.
Figure 2 shows a transfer route example.

 After a transfer route is determined, the transfer
instruction creation process creates transfer instructions
for cranes, vehicles, and other transfer facilities on the
transfer route. The created transfer instructions are
transmitted to individual transfer facilities by the transfer
instruction execution process. It is possible to cancel
the transfer or change the destination on the way. The
transfer states are monitored and displayed in real time.
Figure 3 shows a tracking monitor screen that displays
transfer states.
2.2.1.2 Inventory management function
This function controls the positions and IDs of cassettes
being transferred and those stored in automatic stockers,

SMCS

Buffer CV

Simulation model

Equipment control panel

Device
control
panel

OHV
control
panel

Crane
1

G8
crane

Actual machine

(Note) CV
STK-C
RGV-C

 : Conveyer
 : Stocker crane controller
 : Rail guided vehicle controller

OHV-C
G8STK-C

: Over head vehicle controller
: Stocker crane controller of G8

RGV

STK-C
1

STK-C
2

RGV-C OHV-C G8STK
-C

Equipment controller

Transfer
terminal

Transfer
terminal

CMCS

Core
system

Operation
system

Control
system

SMCS application

CMCS application

MES application for verification

MES for verification
Web server
application

Stocker controller
application

Stocker
control
panel

Stocker controller

Simulation
application

RGV controller
application

OHV controller
application

OHV
controller

OHV

Web serverCMCS serverSMCS server DB server
 (clustering configuration)

Fig. 1 MCS system configuration

Crane
2

Crane
Vehicle (RGV)

Process A

 : Examples of available(Note)
Vehicle (OHV)

Cassette
ID001

Fig. 2 Transfer route

Process G

transfer routes

Fig. 3 Tracking monitor

英文.indb 86英文.indb 86 09.12.3 11:39:14 AM09.12.3 11:39:14 AM

Figure 1: The complete MCS software suit. The CMCS with the transfer route calculation software component is at the top right corner

the rest of this section, we will describe the overall manufac-
turing process, transfer equipments, the MCS control archi-
tecture, and the current transfer route calculation algorithm.
LCD Manufacturing Process: IHI has been providing
physical distribution equipments and control systems for
new LCD factories. LCD manufacturing lines normally con-
sist of four main processes: (1) an array process to make a
thin film transistor (TFT) array circuit on a glass substrate;
(2) a color filter process to generate the three primary col-
ors, RGB, on another glass substrate; (3) a cell process to
stick the completed array substrate and the color filter sub-
strate together and inject liquid crystal; and (4) a module
process to integrate a driver (driving circuit), backlight, and
other components into the completed cell to make a display
(Nishimura 2005). The TFT array process flow in turn con-
sists of four or five cycles of (1) a washing process; (2) a
photolithography process, (3) an etching process, (4) an in-
spection process, (5) a repair process, and other processes.
The production flow is complicated and the production vol-
ume is large. The production requires a material control
system (MCS) which controls transfers between process de-
vices and glass substrate stockers in a TFT array process.
The MCS System: there are two computer systems that
control the LCD manufacturing plant: MES and MCS. The
manufacturing execution system (MES) performs (1) pro-
duction planning, (2) liquid crystal manufacturing process
control, (3) process device control, and (4) lot control. The
MCS receives instructions for transferring glass substrates
from the MES and issues control sequences to transfer glass
substrates from the current process to the next process by us-
ing cranes, vehicles, conveyors, and other transfer devices in
the factory. The MCS developed by IHI consists of (1) the
MCS that controls cassette transfer (CMCS), (2) the MCS
that controls single substrate transfer (SMCS), (3) equip-

ment controllers that control individual transfer facilities,
and (4) equipment control panels that control transfer de-
vices. Figure 1 shows the overall architecture of the MCS.

The CMCS in turn has three main functions: (1) the trans-
fer control function, (2) the inventory management func-
tion, and (3) the equipment control function (refer to the
right side of Figure 1). The transfer control function mainly
consists of three types of processing: transfer route search,
transfer command creation, and transfer command execu-
tion. Upon receiving the transfer instructions from the
MES in the 〈CassetteID, StartingPoint,Destination〉
format, the transfer route search finds the best route con-
necting StartingPoint and Destination among multiple valid
transfer routes. After the transfer route is determined, the
transfer instruction creation process creates transfer instruc-
tions for cranes, vehicles, and other transfer facilities on the
transfer route. The transfer instructions are then transmitted
to individual transfer facilities by the transfer instruction ex-
ecution process. It is possible to cancel the transfer order or
change the destination on the way. The transfer states are
monitored and displayed in real time.
Transfer route search: Within the overall MCS system, we
only investigated using planning technology as an alterna-
tive to the transfer route search component of the CMCS
system, as described above. Therefore, throughout the re-
maining of this paper, when we refer to the MCS system,
we mean this CMCS functionality. Given that liquid crystal
lines are operated continuously 24 hours a day, 365 days a
year (only stopping production for several days of mainte-
nance), it is very important to reduce transfer time between
processes and thus improve the overall production efficiency
of the factory. Moreover, it is desirable to have a flexi-
ble software framework given that transport equipments and
storage locations may be added/changed on a liquid crystal

51

93

Vo l . 4 2 N o . 2 2 0 0 9

in line for lifter C are not included in executable
transfer instructions, because all inspection devices
in the next process, process C, are occupied for
processing.

(3) Determining the priority of transfer instructions
by calculation
Prioritize transfer instructions in the list of

executable transfer instructions by calculation.
Multiply six evaluation items, (1) destination, (2)
substrate stand-by time, (3) load on a destination
process dev ice, (4) load on a s t a r t ing point
process device, (5) the number of substrates in the
process, and (6) load on transfer facilities in the
transfer direction, by weight, and then multiply the
calculated values under conditions by weight.

3. Establishment of a system verification
technique

3.1 System verification method
Using a physical distribution simulator, we have verified
functions and capacities of the CMCS and the SMCS.
 Specifically, we integrated the functions of factory
machines and control panels that directly control the
machines in simulation models, connect equipment
controllers and the SMCS at lower levels of the CMCS to
the simulation models, and make an imaginary factory
based on these simulation models. We also connected
verification MESs at higher levels of the CMCS and the
SMCS to verify their functions and capacities.
3.1.1 Simulation models
We built a TFT array process and a single substrate
transfer process for a liquid crystal manufacturing line in
the physical distribution simulator. Figures 21, 22 show
images of the simulation models.
3.1.2 Process flow for system verification
As an example, the process f low for the CMCS is
described below.

(1) The CMCS receives a transfer instruction from
the MES.

(2) The CMCS makes t ransfer com mands for
individual transfer devices based on the received
transfer instruction and transmits the transfer
commands to individual equipment controllers.

(3) An equipment cont rol ler breaks down the
t r a n s fe r c o m m a nd t o wo r k c o m m a nd s fo r
individual transfer devices and transmits them to
the simulation model.

(4) The simulation model makes transfer devices in
the model operate based on the work commands.

(5) After a transfer is completed, the simulation
model transmits a work command completion report
to the equipment controller.

(6) The equipment controller gives the CMCS a
transfer complete report and in turn the CMCS gives
a transfer complete report to the MES.

We use communication messages in the same format as
that for actual commands. We use software and devices
for the CMCS, SMCS, and equipment controllers that are
the same as the real ones. By creating equipment control
panels and transfer devices connected to the CMCS
and equipment controllers in the simulation model, we
are able to check transfer and production states of glass
substrates under the same conditions and in the same
process f low as in an actual factory. Off line system
verification contributes to improved software reliability
and faster system startup.
 Figure 23 shows the process f low of the system
verification method.
3.2 System verification results
This section describes the results of verifying functions
and capacities of the CMCS optimum transfer route
algorithm and the SMCS transfer efficiency improvement
algorithm.
3.2.1 CMCS verification results
3.2.1.1 Algorithm functions verification results

(1) Avoiding congestion
When transfer instructions were simultaneously

generated to transfer multiple cassettes from one
stocker to another in a factory, the congestion
avoidance function prevented transfer instructions
from concentrating in the same route.

2F

1F

Stocker

Crane

Traverser

Process device

Vehicle (RGV)

Vehicle (OHV)

Transfer unit

Lifter

Cassette
in stocker

Fig. 21 Simulation model of TFT array process

Cassette Buffer LifterCassette
port

Loader/
Unloader

Glass
conveyor

Good
substrate

Non-conforming
substrate Repair device D Inspection device C

Repair device BInspection device A

Fig. 22 Simulation model of single substrate transfer line

英文.indb 93英文.indb 93 09.12.3 11:39:18 AM09.12.3 11:39:18 AM

(a) High-level view

87

Vo l . 4 2 N o . 2 2 0 0 9

and the number of empty cassettes stored in automatic
stockers. Figure 4 shows the entire-line inventory
management monitor and Fig. 5 shows the inventory
management monitor for buffer.
2.2.1.3 Equipment control function
This function controls the working states and operating
conditions of cranes, vehicles, and other transfer devices,
glass substrate stockers and ports before devices.
 Equipment working states can be checked on the
tracking monitor screen.
2.2.2 Features
2.2.2.1 Optimum transfer route algorithm
To improve the production efficiency of a factory, it is
important to reduce transfer time between processes and
improve transfer efficiency.
 The CMCS has an algorithm that searches for a route to
reach the destination in the shortest time by ascertaining
equipment states in real time and taking into account
the states of process devices and transfer devices in the
factory at the moment. Figure 6 shows an example of a
search by the optimum transfer route algorithm.
2.2.2.2 High availability
For the most part, liquid crystal lines are operated
continuously, 24 hours a day, 365 days a year, only
stopping production for several days of maintenance
work. If a line is stopped due to system trouble, it has

a signif icant impact on production. Therefore, it is
important to improve system availability.
 Availability of a computer system is generally measured
in terms of the mean time between failures (MTBF) and
the mean time to repair (MTTR) of the system. In the
CMCS, the system control process monitors the operation
of each process. When it detects a process has gone
down, it automatically restores that process. The system
is equipped with this function to minimize the frequency
and time of system stoppage and improve the availability.
Figure 7 shows the concept of process monitoring
method.
2.2.2.3 Flexibility of system changes
On a liquid crystal manufacturing line, equipment
and ports may be added or changed in order to change
manufacturing processes and improve the manufacturing
capacity. Such system additions and changes should be
able to be done without stopping the line.
 The CMCS collectively controls system data in a
database server and the communicat ion between
processes also takes place via the database, rather than
directly between processes. Such architecture allows
processes to be changed or added without stopping
the system when a change or addition of equipment or

Fig. 4 Inventory management monitor

Fig. 5 Inventory management monitor for buffer

Current
position

Crane

Vehicle (OHV)

Vehicle (RGV)

Destination

: Shortest route

: Route search result

Congestion of vehicles

During
maintenance

(Note)

Fig. 6 Example of search result of the optimum transfer
 route algorithm

Suspended
due to

abnormality

Operation information

System control
process

Transfer control
process

Transfer device
communication process

MES communication
process

Screen management
process

Automatic transfer
process

Process restart

Fig. 7 Concept of process monitoring

英文.indb 87英文.indb 87 09.12.3 11:39:15 AM09.12.3 11:39:15 AM

(b) Sample route

Figure 2: (a) a two-floor LCD factory plant; and (b) sample cassette route on one floor

manufacturing line in order to change manufacturing pro-
cesses and improve the manufacturing capacity. Such sys-
tem additions/changes should not stop the production lines.

In summary, at the highest level, the MCS system receives
instructions for transferring LCD cassettes from one manu-
facturing process to the next by using various types of trans-
portation devices such as: cranes, overhead-vehicles (OHV),
rail-guided vehicles (RGV), lifters, and different types of
conveyors. Due to the complicated process flow and exis-
tence of many concurrent processes, it is virtually impos-
sible to register all transfer routes in advance. Moreover,
a process may have devices that are suspended due to fail-
ures or for maintenance; making some routes unavailable or
causing congestion in real-time. These factors lead to the
necessary of having an online algorithm that takes the real-
time states of process and transfer devices into consideration
and find quickly the route that will reach the destination at
the earliest time.
Example: the left side of Figure 2 shows the overall layout
of an exemplary plant. Two floors are connected by 4 uni-
directional lifters at different locations of the plant. Each
floor is roughly organized into 3 × 2 = 6 regions in which
there are 3 pairs of regions that are located close to each
other: two pairs to the left while the remaining pair is further
to the right. Figure 3 shows a schematic view of the first
floor of the plant in Figure 2a in which the 6 regions are
more identifiable (each is labeled BUF11* in red).

In each region, cassettes can be transferred between dif-
ferent locations using one of the two cranes that serves ei-
ther the upper or lower half of each region. Thus, there
are 6 × 2 = 12 cranes in each floor and a total of 12 ×
2 = 24 cranes in the whole factory plant. Possible loca-
tions accessible by cranes are: buffer (label:POT****), in-
termediate buffer (label:IMB*00* or IMRGV), input/output
ports (label:TEQ****) and shifter/traverser/lifter locations
(label:*SFT* or *TRV*).

There are also multiple ways to transfer cassettes between
different regions: overhead vehicle (OHV), rail-guided ve-
hicle (RGV), shifters (SFT) (label:B** SFT****), traversers
(TRV) (label:TRV1001) - both shifters and traversers are

conveyors, and uni-direction lifters/elevator (LFT) located
at locations TEQ1021, TEQ1026, TEQ1031, and TEQ1036.

All storage locations and transport equipments have dif-
ferent capabilities, capacities, and other equipment-specific
constraints. Failures of any of the storage or transfer equip-
ment can happen at any time. The control software needs
to route transfer orders around failures or any congested
area with an objective function of minimizing the overall
makespan. Often, rerouting needs to be done in real time
in response to failures. Figure 2b shows one example with
a complex route around failures, maintenance, and con-
gestion utilizing multiple transport equipments: crane →
crane → OHV → crane → traverser → crane →
RGV → RGV → crane → crane. Figure 3 shows
another exemplary scenario where four ports fail and the
controller needs to finish two transfer orders in parallel:
POT1022 → POT1032 and POT1043 → POT1024.
Most complex routes involve routing cassettes between two
locations in different floors and the lifters may become bot-
tleneck resources in that case. Fortunately, routing between
different floors is less frequent than within the same floor.
Current Approach: IHI’s current routing approach is
based on a shortest-path algorithm between two loca-
tions using a weighted directed connection graph with
vertices representing locations where the cassettes can be
stored/dropped/picked up, and directed edges between two
vertices v1 → v2 representing the availability of a transfer
equipment that can move a cassette from v1 to v2. When a
storage location or a transfer equipment fails or is put back
in service, the corresponding vertex or edge is removed from
or reinserted into the graph. It’s easy to see that if the plant
is empty, the shortest path represents the optimal route be-
tween any two locations. Difficulties arise when multiple
transfer orders are done in parallel. The key innovation in
the existing IHI solution is a method to adjust the weights in
real time. For example, if the algorithm decides to use edge e
for a route of a given cassette, then it will increase the weight
for e by a factor we. One potential problem with the current
approach is that customizing the weight adjustment factor
can be difficult and time consuming, especially when mul-

52

F1

TEQ1022 TEQ1023

TEQ1024 TEQ1025 TEQ1027 TEQ1028
TEQ1029

TEQ1030

TEQ1032 TEQ1033

TEQ1034 TEQ1035

TEQ1001 TEQ1002

TEQ1003 TEQ1004

TEQ1005 TEQ1006

TEQ1007 TEQ1008

TEQ1010 TEQ1011

TEQ1012 TEQ1013

POT1012

POT1013

POT1011

POT1014

POT1021

POT1022

POT1023

POT1024

POT1025

POT1031

POT1032

POT1033

POT1034

POT1035

POT1041

POT1042

POT1043

POT1044

POT1052

POT1053

POT1051

POT1054

POT1061

POT1062

POT1063

POT1064

B11_SFT1011

B12_SFT1011

B11_SFT1012

B12_SFT1012

B13_SFT1013

B14_SFT1013

B13_SFT1014

B14_SFT1014

B15_SFT1015

B16_SFT1015

B15_SFT1016

B16_SFT1016

B12_TRV1001 B13_TRV1001

BUF111 BUF112 BUF113 BUF114 BUF115 BUF116

IMB1001

IMRGV

CRANE11

CRANE12

CRANE21

CRANE22

CRANE31

CRANE32

CRANE41

CRANE42

CRANE51

CRANE52

CRANE61

CRANE62

(OHVs)

L1
L2 IMB1004 IMB1005 IMB1006

(RGV1) (RGV2)

TEQ1021 TEQ1026 TEQ1031 TEQ1036

Figure 3: Schematic view of the LCD factory’s first floor with: (1) possible failed components; (2) sample concurrent routes around failures.

tiple shortest paths overlap and equipment can fail at ran-
dom. Moreover, weight adjustment may not avoid routes
that cause deadlock. IHI has developed a special routine to
detect and resolve deadlocks (Fumio et al. 2009). Figure 2b
shows a sample route that avoids failures and congestions
using weight adjustments.

Plantrol Planner
The Plantrol project is a successor to the TIPP project (Ruml
et al. 2005; Do et al. 2008a). The goal of the Plantrol project
is to develop a flexible automation framework that integrates
online model-based planning and low-level control. In this
section, we will outline the architecture of the online planner
in this framework: the modeling language, state representa-
tion, online planning/replanning management, and planning
algorithm. We will omit many technical details and instead
focus on the application.
PTDL Modeling Language: PlanTrol Description Lan-
guage (PTDL) is a variation of the standard PDDL 3.1 mod-
eling language, thus naturally supporting multi-valued rep-
resentation. While PTDL follows the familiar PDDL syntax,
it concentrates on extending the capability of the PDDL to
model more expressive temporal and resource constraints.
The main extensions are:
• Resources: PTLD models resources explicitly, which

makes it more convenient to model resource-rich domains
such as the manufacturing sector.

• Timed condition/effect: action (pre)conditions and effects
can happen within any duration relative to the action’s
start and end time point.

(:action ohv move
:parameters (?o - ohv ?c - cassette ?l1 ?l2 - port)
:duration [(+ (travel-time ?l1 ?l2) 84), max travel time]
:condition

(over-all (can-pickup ?o ?l1) (can-dropoff ?o ?l2))
:effect

(over-all (use (space ?o)))
([start + 44, end] (change (location-of ?c) ?l1 ?l2))
([start + 44, start + 64] (increase (space ?l1) 1))
([end - 20, end] (decrease (space ?l2) 1)))

Figure 4: Example of a move action represented in PTDL

• Controllable action duration: PTDL models the upper
and lower bounds on an action’s duration. Depending on
the particular domain, the planner can either be conserva-
tive (e.g., reasoning with the upper-bound value) or op-
portunistic (e.g., reasoning with the lower-bound value)
or through extensive temporal reasoning select the best
value within the specified bounds.

Figure 4 shows a simplified version of the action of
moving a cassette between two locations l1 and l2. Note
that there are multiple OHVs but their initial locations are
unknown. It takes an average of 44 seconds to retrieve an
OHV to the initial location l1. The OHV then takes 20
seconds to load the cassette and it also takes 20 seconds to
unload the cassette into the destination location l2 after the
transfer is done. Thus, we need to model several different
temporal effects of this action a happening at different
periods within this duration: (1) a uses the OHV for the

53

whole duration; (2) from 44 seconds after a starts until the
end of a, the cassette will be moved from l1 to l2; (2) 20
seconds after the cassette starts being loaded into the OHV,
the location occupied by the cassette at l1 becomes free; (3)
20 seconds before the end of a, the cassette starts occupying
a new location at l2.

Overall Online Planning & Replanning Algorithm: The
overall online continual planning algorithm is not much dif-
ferent from the TIPP planner (Ruml et al. 2005). Messages
representing transfer orders or plant status updates are sent
to the planner in real time. Depending on the message type,
different actions are taken:

• Transfer order: The parser extracts the source and des-
tination locations, and creates a goal for the online goal
manager representing this transfer order.

• Failures/Repairs: The planner conducts a look-up oper-
ation using the pre-built database map to find all actions
that have this failed/repaired object as one of the param-
eters, and either removes them (in case of failure) or re-
enables them (in case of repair) in all future planning or
heuristic computation procedures. The planner then in-
vokes the exception handling routine (discussed later).

The planner continually inspects the online goal queue,
retrieves the earliest goal g, computes a plan Pg for g that is
consistent with all previous plans, and then stores it in the
plan manager. Whenever a plan P in the plan manager is
ready to execute (starting time of P is close to the current
wall-clock time tc), then it is sent to the execution engine.

Nominal Planning: Nominal planning involves retrieving
from the online goal queue at current wall-clock time tc a
goal g = 〈tg, X, Y 〉 that arrives at the planner at wall-clock
time tg < tc and represents a transfer order X → Y . The
planner generates a transfer plan/route P that results in the
cassette reaching Y at an earliest wall-clock time of te > tc.
Obviously, minimizing te involves minimizing the transfer
time (makespan of P) and the planning time to find P , as-
sume that P can be executed as soon as it is generated.

The Plantrol planner implements several different plan-
ning algorithms, such as forward-state-space and partial-
order, all operate on a timeline-based state representation.
Each planning algorithm can use one of several differ-
ent search algorithms. For this project, we only used the
forward-state-space temporal planner running Best-First-
Search (BFS) algorithm. Thus, we will limit the discussion
to this approach in this paper.
State representation: Our planner uses a timeline-based
planning approach that operates by continually maintain-
ing the timelines that capture how different variables change
their values over time. The planner builds and maintains
consistent plans by adding tokens to affected timelines. Each
token represents the (pre)condition or effect of one action
and thus represents a particular type of operation/change af-
fecting the variable represented by that timeline. When the
planner starts and reads in the domain description, it will
create one empty timeline for each of the grounded state
variables, which can be one of three types: (1) binary; (2)
multi-valued; (3) continuous. As goals arrive and plans are
generated, the timelines are populated with tokens represent-

LocationOf(Cassete) L1 L2 → L3L2 L3

F T

L1 → L2 Maintain at L2

Available(Crane1) T T → F F → T

3
2

0
2

F T

time

Space(Buffer1) [0;6]
0

t1 t5 t9t2 t7

Space - 1 Space - 2 Space + 2

Figure 5: Exemplary timelines representing possible planning
state at wall-clock time t1 with three different variables:(1) multi-
valued LocationOf(Cassette); (2) binary Available(Crane1)
and (3) continuous Space(Buffer). Tokens represent changes in
the future for those three variables due to future plans in the execu-
tion queue.

ing action conditions and effects. Figure 5 shows one exam-
ple of several timelines in the overall state representation, in
which we have three different variables with different value
domains, and ordered tokens that either change or maintain
some certain values. A token T basically represents a dura-
tive (pre)condition or effect of a given action and is defined
by: (i) start and end time points start(T) and end(T); (ii)
a start value v (or bounds [lb, ub] for continuous variables);
(iii) start condition (e.g., v = vs) specifies the condition that
needs to be satisfied by the token at start(T) (we currently
supports: =, 6=, >,<,≥,≤, NONE; (iv) change operation
〈operator, value〉 (e.g., v = v + 5 or v ← x) specifies
how the variable value changes within the token duration.
Change operators include: :=, +=, -=, ×=, /=, CHANGE,
USE, MAINTAIN. The variable value at the end of the token
is calculated based on the start value and the change opera-
tion. A given timeline is consistent if the start values of all
tokens are matched by the end values of the tokens preced-
ing them. At any given wall-clock time tc, there is a global
timelines TLG that represents the consistent timelines for all
variables. Tokens in TLG represents all actions in all found
plans for previous transfer orders.

When the planner starts planning for a goal g =
LocationOf(Cassette) : X → Y , at the wall-clock time
tc, it will first make a copy of the global timelines TLG and
create the initial planning state SI by:

• Remove all tokens that end before tc from all timelines.

• For new variable v = LocationOf(Cassette), create a
token T1 representing the initial location v = X that ends
at tc.

This initial state, which is a collection of timelines, with
its timestamp: 〈tc, SI〉, will be used to setup the root node
of the search tree.
Expansion: an action a is applicable for a given time-
stamped state 〈ts, S〉 if there exist a time point ta ≥ ts
such that when a starts at ta then all tokens representing
a’s conditions and effects will not cause any inconsistency
in any timeline in S. For each such applicable action a at
time ta, the planner creates one child state 〈ts, S′〉 by cre-
ating one token for each of a’s conditions and effects and
adds the newly created tokens to the corresponding time-
lines. For example, if action a = ohv move as shown
in Figure 4 is added at time ta = 100 and a ends at
te = 200, then 6 tokens are added to S: three spanning the

54

IHI Model

Plantrol Planner
Transfer Orders Interpret/Visualize

Plantrol Planner
Fail/Repair Messg Results

Figure 6: Adapting Plantrol planner for solving MCS problem

duration d1 = [100, 200] for variables v1 = can pickup,
v2 = can dropoff , and v3 = space(ohv); one span-
ning d2 = [144, 200] for v4 = location of ; one span-
ning d3 = [44, 64] for v5 = space(l1); and one spanning
d4 = [180, 200] for v6 = space(l2). Like (Do and Kamb-
hampati 2002), there is also a special action advance-time
that generates a child state of 〈ts, S〉 by advancing ts to the
next significant time point ts′ > ts, also removes all tokens
from S ending before ts′ .
Goal satisfaction: The plan is complete and satisfies all
goals if the end value of the last token in the timeline for
each goal variable matches the goal value. For example, the
state represented by the timelines in Figure 5 satisfies goals
if the goal requirement is LocationOf(Cassette) = L3.

In summary, our planner setting for this project
uses a Man-U-Plan-like online continual plan
management approach (Ruml et al. 2005;
Do et al. 2008a) and a EUROPA-like timeline-based
state representation (J. Frank 2000). Our particular ap-
proach used in this project extends the SAPA (Do and
Kambhampati 2002) forward temporal planning algorithm
to find the final plan. We use heuristics that extend
Man-U-Plan resource-adjusted temporal planning graph
heuristics (Do and Ruml 2006) to take advantage of the
tokens representing previously-generated plans.

Exception Handling: in the MCS domain, exceptions rep-
resent unexpected changes in the plant such as equipment
failures or repairs performed. As mentioned above, when
exceptions happen, the planner will map failures into the set
of actions that are either removed or added from the set con-
sidered for future plans. However, the Plantrol planner also
computes new routes for all existing cassettes given the new
plant configuration. It essentially uses a very similar ap-
proach to the replanning procedure in the planner used for
rerouting sheets in the TIPP printer (Do et al. 2008a). For
a given cassette c that was originally scheduled to follow a
route from X to Y ; at the time te that the planner receives
an exception message, assume that c is transferred between
two locations L1 → L2 and is scheduled to reach L2 at
time t2 ≥ te. The Plantrol planner then creates a new goal
g = 〈t2, L2 → Y 〉. The new goal g is then reinserted in the
online goal list at time t2 and is treated like a regular goal by
the planner.

Adapting Plantrol Planner to the MCS
Problem

A key promise of domain-independent model-based plan-
ning is that the planning software would be applicable across
multiple domains, and the adaptation effort would be limited

to modeling the problem and not on building a customized
solver. This is one of the main reasons PARC and IHI agreed
to a very aggressive project schedule.

Figure 6 outlines our adaptation work in which the main
Plantrol planner is kept intact and our efforts have been spent
on the peripheral issues: (1) building the domain model, (2)
setting up the format of the online messages and writing the
parser to interpret them, and (3) interpreting and visualizing
the results.
Modeling: Much of the project effort was dedicated to the
modeling task due to a variety of reasons:

1. The LCD plant is complex. Specifically, we have built
models for: (1) different sections of the overall plant; (2)
hypothetical plants up to two times bigger than the orig-
inal problem in order to demonstrate scalability; and (3)
some variations of the original plant with different layouts
and equipment setups. The final PTDL problem file for
the actual LCD plant consists of more than 1500+ lines
of PTDL specifications. Furthermore, most of these lines
were hand-coded to reflect plant actual geometry (timing
and distance numbers)1.

2. There are different ways to model the LCD plant in
PTDL. We had to iterate through modeling choices as we
exchange more information about the domain during the
course of the project.

3. Due to the physical distance between the teams, most
of the relevant plant information was communicated via
email. As a result, it took time to elicit and clarify all crit-
ical constraints. Indeed, some critical constraints such as
“no-reverse-running for conveyor” were identified a few
days before the final demonstration date.

In the final model of the actual plant that meets IHI
requirements, there are action templates that involve three
main components: (1) a vehicle/conveyor that carries the
cassette; (2) original location; (3) final location. However,
given that each location accessed by a given vehicle has
different characteristics (e.g., different capacities, special
constraints), we use different action templates for different
types of locations that are involved with a given action
(even if the transfer vehicle is the same). The transfer
action for vehicles, in general, consists of several steps:
(1) retrieve the vehicle; (2) load a cassette from the source
location into the vehicle; (3) move from the source location
to the destination location; (4) unload the cassette into the
destination location. We have already shown one example
for the OHV in Figure 4. While the transfer actions by
conveyors are simpler, there are additional constraints such
as: no-reverse-running and at most one end location can be
occupied at any given time.

Input Parsing: we added an option to parse/interpret MCS
models faster: Given that the model file for the MCS prob-
lem can be quite large, parsing and grounding the model to
generate suitable action sets can be time consuming. There-
fore, we have added a command line option to the planner
to read in MCS models faster. Note that this option does

1In our next phase of engagements, we will build tools to auto-
matically generate the PTDL description file.

55

not change the final output of the parser at all and thus run-
ning with or without this command line option should lead
to exactly the same behavior of the planner (i.e., same search
space, result, and running time – just faster parsing).

We also designed a custom online MES incoming
message syntax for the MCS application and built a small
parsing module to interpret it. Input messages include:
(1) transfer orders, (2) failures, and (3) repairs. While the
underlying planner handles them exactly like for any other
Plantrol application, given that the input formats are dif-
ferent, some adjustments to the parsing code were necessary.

Output Presentation: by default, the plan representation is
in a standard format of a sequence of actions with their start-
ing times. However, the action description can be quite un-
readable with all action parameters included to identify the
action instance. Therefore, we have also written code to add
an option to translate the plan into a sequence of locations
with time stamps to make it more intuitive. We also built a
rudimentary visualizer using the Java 3D tool chain to illus-
trate how cassettes are transferred by different transportation
devices according to the plan.

Project Evaluation
In this section, we will describe the evaluation and verifi-
cation process, deliverables at the end of the project, and
the general observations regarding the performance of our
model-based planning approach on the MCS problem2.

Verification using Complex Test Scenarios: As mentioned
earlier, the IHI team understands this problem domain very
well. Specifically, the Products Development Center has
worked on the transfer route algorithm for about 6 months
and IHI has developed the whole MCS system for a few
years; as the result, IHI has the full software suite deployed
in the field. Shortly before the demo, which is one month
from the start of the project, the IHI team provided over 10
test cases to verify different planning and exception handling
capabilities such as:

• Load balancing: test if the planner can balance transfer
orders between alternative transportation options.

• Fault avoidance: test if the planner can route cassettes
around failed components effectively.

• Deadlock avoidance: test if the planner can avoid fail-
ure scenarios that can cause deadlock between multiple
cassettes. Figure 3 shows the simplest test case for this
scenario in which deadlock can happen if both cassettes
are routed simultaneously using their respective shortest
paths that share the traverser TRV1001.
• Reverse running avoidance: a special (hard) constraint

on the conveyor that prevent it to change direction under
certain conditions.

The model-based Plantrol planner was able to generate
good-quality solutions for all test scenarios. During the
workshop, the team of IHI and PARC researchers also cre-
ated additional complex scenarios to test the planner. We

2Our planner is written in C++. Most tests were executed on a
Windows Vista QuadCore Xeon 2.0 GHz machine with 3GB RAM.

also demonstrated the capability to change plant configura-
tion in real time and the ability of the planner to accommo-
date these changes. Besides the test cases based on difficult
situations encountered by IHI during operation, we also built
a random test generator. When given 70 cassette-delivery
goals generated with the random start, end locations, and
random arrival time averaging 10 cassettes/minute, the aver-
age planning time for each goal is 2.43 seconds with good
plan quality. Note that the cassette arrival rate of 10 per
minute is intentionally set to be higher than realistic scenario
and would require the planner to manage approximately 50
packages in transition concurrently.

Comparing the results of the Plantrol planner and IHI
routing software, we found that there are some test cases in
which two approaches resulted in different plans. Further
examination shows that the differences were caused by the
differences in the level of detail in the two modeling ap-
proaches. The richer temporal and constraint representation
of the Plantrol planner resulted in more efficient cassette
routes in several cases. Moreover, our team observed
that the adaptation time of Plantrol software to the plant
modifications is small due to the model-based capability
and the expressiveness of the PTDL modeling language.

Deliverables: at the end of the project, the PARC team has
delivered to the IHI team: (1) the planner executable; (2) a
detailed project report summarizing the modeling, outcome,
performance, and complexity analysis; (3) all the PTDL
modeling files for the actual LCD plant and other hypotheti-
cal variations of the plant; and (4) a simple visualization tool
built using Java 3D to graphically display the output plans.
The overall conclusions are:

• The PTDL modeling language is expressive enough to
model all critical constraints in the MCS joint project.

• The Plantrol planner was able to solve all test scenarios re-
flecting difficult real-world situations learned from IHI’s
extensive experience with this problem. It also was able
to solve hypothetical situations involving modified plant
capabilities and configurations.

• Model-based planning can adapt to new applications
rapidly: in a very short time, PARC and IHI joint
team was able to develop PTDL models for not only
the LCD plant but also for another different application.
We demonstrated that the exact same planner executable
could solve both problems.

Overall, we believe that the MCS domain is a great match
for model-based online planning.

Related Work
From the planning application point of view, there are
many related projects. Obviously, the closest application is
TIPP (Ruml et al. 2005; Do et al. 2008a) in which sheets
of paper are routed in a way that is similar to how LCD cas-
settes are routed in the MCS domain. However, the LCD
factory plant has a much more diverse set of transporters,
and locations have different characteristics and constraints.
There are also benchmarks used in the previous IPCs with
flavors of this domain such as Logistics, Depots, and Driver-
Log. The key differences are: (1) the MCS domain involves

56

many more types of transporters and locations; and more im-
portantly (2) it is not an abstract or simplified setup but a real
problem setup with exact timing and distance information.

We have already mentioned earlier that the most related
planners are: Man-U-Plan (Ruml et al. 2005; Do et al.
2008b), EUROPA (J. Frank 2000), and SAPA (Do and
Kambhampati 2002). As expected, the closest planner to
ours is the Man-U-Plan planner. The Plantrol planner indeed
can be conceived as the next version of Man-U-Plan with
the following key extensions: (1) a more flexible and ex-
pressive timeline-based state representation; (2) support for
more types of variables; (3) support for different planning
algorithms on timeline; and (4) a more expressive modeling
language.

The EUROPA planner developed at the NASA Ames Re-
search Center was another inspiration for our planner design.
Like our planner, EUROPA maintains the set of timelines
for all variables and adds tokens to different timelines with
temporal constraints between related tokens. The key dif-
ference with our planner is that EUROPA has no notion of
action (only tokens). Therefore, it is hard to adapt traditional
action-based planning techniques or heuristics to guide EU-
ROPA search. This was indeed one problem identified in
EUROPA (Bernardini and Smith 2008). Moreover, given
that EUROPA depends on domain-specific control knowl-
edge to guide the planner, it is time-consuming to adapt it to
a new application.

As mentioned earlier, while Plantrol planner incorporates
several different planning algorithm (e.g., partial-order and
forward state-space planning), forward-state-space was
used for this project. In this regard, the algorithm is very
similar to Sapa (Do and Kambhampati 2002) extended
to handle complex timeline-based state representation
and wall-clock time constraints. There are many other
academic planners using the forward-state-space frame-
work ranging from classical FF (Hoffmann and Nebel
2001), FastDownward (Helmert 2006) to temporal such as
CRIKEY (Andrew Coles and Smith 2009). However, they
do not use timelines to track how state variables change
over time. This is partly due to the fact that they are offline
planners where they do not need to consider wall-clock
time evolution or interactions between planning, execution,
future commitments, and goal arrivals. We believe that our
timeline-based planning framework is more suitable for
the online planning scenarios that dominate the class of
applications that we are targeting.

Discussion: Given the close relation between the Plantrol
modeling language PTDL and the standard planning lan-
guage PDDL (especially PDDL3.1), it would be useful to
see how current state-of-the-art PDDL planners can perform
in this domain. After some consideration, we abandoned
this idea for several reasons. First, the domain needs to be
simplified a lot to accommodate current PDDL-based met-
ric temporal planners such as: convert from multi-valued to
binary representation, remove the online continual aspect of
the domain, simplify the temporal aspects of our durative
action (e.g., Figure 4) to map one PTDL action into multi-
ple PDDL actions with constraints or clip actions to enforce
their sequential execution. Moreover, previous experiences
modeling a simplified version of the TIPP domain in PDDL

to test other planners in (Do et al. 2008a) and IPC-08 in-
dicate that current state-of-the-art temporal PDDL planners
will not likely do well on this type of domain.

Conclusion & Future Work
In this project, the joint PARC and IHI team has demon-
strated that a complex logistics problem such as the MCS
problem can be modeled effectively using a general-purpose
modeling language (PTDL), and that such complex plan-
ning problems can be solved effectively using a model-based
planner with no major changes to the planning software or
inclusion of domain knowledge. As a further demonstration
of the flexibility of the Plantrol approach, we were able to
model and solve a preliminary version of a different applica-
tion using the exact same PTDL language and Plantrol plan-
ning software. Potential future enhancements to the Plantrol
environment include the full integration of the plan visual-
izer as well as the development of a graphical modeling en-
vironment.

References
Keith Halsey Derek Long Andrew Coles, Maria Fox and
Amanda Smith. Managing concurrency in temporal plan-
ning using planner-scheduler interaction. Artificial Intelli-
gence, 173:1:1–44, 2009.
S. Bernardini and D. Smith. Automatically generated heuris-
tic guidance for europa2. In Proc. 9th International Sympo-
sium on AI, Robotics, and Automation in Space (iSAIRAS-
08), 2008.
Minh B. Do and Subbarao Kambhampati. Sapa: A scalable
multi-objective metric temporal planer. Journal of Artificial
Intelligence Research, 20:155–194, 2002.
Minh B. Do and Wheeler Ruml. Lessons learned in applying
domain-independent planning to high-speed manufacturing.
In Proceedings of ICAPS-06, pages 370–373, 2006.
Minh Do, Wheeler Ruml, and Rong Zhou. On-line plan-
ning and scheduling: An application to controlling modular
printers. In Proc. of AAAI08, 2008.
Minh Do, Wheeler Ruml, and Rong Zhou. Planning for
modular printers: Beyond productivity. In Proc. of ICAPS-
08, 2008.
Hasegawa Fumio, Okajima Kazumichi, Shida Michinori,
Muramatsu Yuya, and Nakama Mitsuaki. Development of
material control system for next generation liquid crystal
glass. IHI Engineering Review, 42(2):85–96, 2009.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, pages 191–246, 2006.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253–302, 2001.
P. Morris J. Frank, A Jonsson. On reformulating planning as
dynamic constraint satisfaction. In Symposium on Abstrac-
tion, Reformulation and Approximation, 2000.
Y. Nishimura. Lcd fab, equipment, facilities. Electronic
Journal Corporation, 9:50–59, 2005.
Wheeler Ruml, Minh B. Do, and Markus Fromherz. On-line
planning and scheduling for high-speed manufacturing. In
Proc. of ICAPS-05, pages 30–39, 2005.

57

