
Potential Search: A Bounded-Cost Search Algorithm

Roni Stern
Information Systems Engineering

Ben Gurion University
Beer-Sheva, Israel

roni.stern@gmail.com

Rami Puzis
Deutsche Telekom Laboratories

Information Systems Engineering
Ben Gurion University

Beer-Sheva, Israel
puzis@bgu.ac.il

Ariel Felner
Information Systems Engineering
Deutsche Telekom Laboratories

Ben Gurion University
Beer-Sheva, Israel
felner@bgu.ac.il

Abstract

In this paper we address the following search task: find a goal
with cost smaller than or equal to a given fixed constant. This
task is relevant in scenarios where a fixed budget is avail-
able to execute a plan and we would like to find such a plan
while minimizing the search effort. We introduce an algo-
rithm called Potential search (PTS) which is specifically de-
signed to solve this problem. PTS is a best-first search that ex-
pands nodes according to the probability that they will be part
of a plan whose cost is less than or equal to the given bud-
get. We show that it is possible to implement PTS even with-
out explicitly calculating these probabilities, when a heuristic
function and knowledge about the error of this heuristic func-
tion are given. In addition, we also show that PTS can be
modified to an anytime search algorithm. Experimental re-
sults show that PTS outperforms other relevant algorithms in
most cases, and is more robust.

Introduction and Overview
Most heuristic search algorithms measure the quality of their
solution by comparing it to the optimal solution. They can
be classified into four major classes according to the quality
of the solution that they return.
(1) Optimal algorithms. Optimal algorithms return a solu-
tion that is guaranteed to be optimal. Algorithms from this
type are usually variants of the well-known A* (Pearl 1984)
or IDA* (Korf 1985) algorithms. In many real-life problems
it is not practical to use optimal algorithms, as many prob-
lems are very hard to solve optimally.
(2) Suboptimal algorithms. Suboptimal algorithms guar-
antee that the solution returned is no more than w times the
optimal solution, where w > 1 is a predefined parameter.
These algorithms are also called w-admissible. Weighted
A* (Pohl 1970) and Optimistic Search (Thayer and Ruml
2008) are examples of algorithms of this class. Suboptimal
algorithms usually run faster than optimal algorithms, trad-
ing the quality of the solution for running time.
(3) Any solution algorithms. Any solution algorithms re-
turn a solution, but they have no guarantee about the qual-
ity of the solutions they find. Such algorithms usually find
a solutions faster than algorithms of the first two classes,

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but possibly with lower quality. Examples of any solu-
tion algorithms include Depth-first-branch-and-bound (DF-
BnB) (Zhang and Korf 1995), beam search variants (Furcy
and Koenig 2005), Hill climbing and Simulated annealing.
(4) Anytime algorithms. Anytime algorithms are: “al-
gorithms whose quality of results improves gradually as
computation time increases” (Zilberstein 1996). An any-
time search algorithm starts as an any solution algorithm.
After the first solution is found, an anytime search algo-
rithm continue to run, finding solutions of better qualities
(with or without guarantee on their suboptimality). Some
anytime algorithms are guaranteed to converge to find-
ing the optimal solution if enough time is given. Promi-
nent examples of anytime search algorithms are Anytime
Weighted A* (Hansen and Zhou 2007) and Anytime Repair-
ing A* (Likhachev, Gordon, and Thrun 2003).

Bounded-Cost Search Problems
In this paper we deal with a fifth type of search algorithm,
addressing the following scenario. Assume that a user has a
given constant amount of budget C to execute a plan. The
cost of the optimal solution or the amount of suboptimality
is of no interest and not relevant. Instead, a plan with cost
less than or equal to C is needed as fast as possible. We call
this problem the bounded-cost search problem, and define it
formally as follows:

Definition 1 Bounded-cost search problem. Given a de-
scription of a state space, a start state s, a goal test func-
tion and a constant C, a bounded-cost search problem is the
problem of finding a path from s to a goal state with cost less
than or equal to C.

For example, consider an application server for an online
travel agency such as Expedia, and a customer that requests
a flight to a specific destination arriving before a given time
and date (in which the customer has a meeting). This is
clearly a bounded-cost problem, where the cost is the arrival
time. The task of Expedia is to build as fast as possible an
itinerary in which the user will arrive on time. The user is
not concerned with the optimality or suboptimality of the
resulting plan, and Expedia would like to respond quickly
with a fitting solution.

None of the algorithms from the classes above directly
answer this problem. Of course, ideally, one might run an

234

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling



optimal algorithm. If the optimal solution cost is less than
or equal to C then return it, otherwise return failure, as no
solution of cost C exists. One could even use C for pruning
purposes, and prune any node n with f(n) ≥ C. However,
this technique for solving the bounded-cost search problem
might be very inefficient as finding a solution with cost C
can be much more easy than finding the optimal solution.
Similarly, it is not clear how to tune any of the suboptimal
algorithms (for example, which weight to use in Weighted
A* and its variants), as the cost of optimal solution is not
known and therefore the ratio between the cost of the desired
solution C and the optimal cost is unknown too. A possible
direction for solving a bounded-cost search problem is to run
an anytime search algorithm and halt it when a good enough
solution is found. However, solutions with costs higher than
C may be found first even though they are of no use. The
main problem with all these variants is that the desired goal
cost is not used to guide the search, i.e., C is not considered
when choosing which node to expand next.

It is possible to view a bounded-cost search problem as a
CSP, where the desired cost bound is simply a constraint
on the solution cost. However, for many problems there
are powerful domain-specific heuristics, and it is not clear if
general CSP solvers can use such heuristics. The potential-
based approach described next is reminiscent of CSP solvers
based on solution counting and solution density, where as-
signments that are estimated to allow the maximal number
of solutions are preferred (Zanarini and Pesant 2009).

The Potential Search Algorithm
In this paper we introduce an algorithm called Potential
search (PTS), which is specifically designed to solve a
bounded-cost search problem. PTS is designed to focus on a
solution that is less than or equal to C, and the first solution
it provides meets this requirement. PTS is a best-first search
algorithm that expands nodes according to the probability
that they will be part of a plan of cost less than or equal to
the given budget C. We denote this probability as the poten-
tial of a node. Of course, the exact potential of a node is un-
known. Instead, we show how any given heuristic function
can be used to simulate the exact potential. This is possible
as long as we have a theoretical model of the relation be-
tween the heuristic and the cost of the optimal plan. Several
such models are analyzed, and a general method for imple-
menting PTS given such a model is proposed. We prove that
with this method, nodes are expanded in a best-first order
according to their potential. Furthermore, PTS can also be
modified to run as an anytime search algorithm. This is done
by iteratively running PTS with decreasing bounded costs.

Experimental results on the standard 15-puzzle as well
as on the Key Player Problem in Communication (KPP-
COM) demonstrate the effectiveness of our approach. PTS
is competitive with the state-of-the-art anytime and subopti-
mal heuristic search algorithms. It outperforms these algo-
rithms in most cases and is more robust.

Potential search
We now turn to describe the PTS algorithm in detail. Con-
sider the graph presented in Figure 1. Assume that we are

a

b g

s

g(b)=10

g(a)=100

h(b)=90

h(a)=3

Figure 1: Example of an expansion dilemma.

searching for a path from node s to node g and that we
are asked to find a path of cost less than or equal to 120
(C = 120). After expanding s, the search algorithm needs
to decide which node to expand next, node a or node b.1

If the task were to find the optimal path from s to g, then
clearly node b should be expanded first, since there may be a
path from s to g that passes through b which is shorter than
the cost of the path that passes through a as (g(b) + h(b) =
100 < g(a) + h(a) = 103). However, since any path that is
shorter than 120 is acceptable in our case, expanding node
b is not necessarily the best option. For example, it might
be better to expand node a which is probably very close to a
goal of cost less than 120 (as h(a = 3)).

We propose the Potential search algorithm (denoted as
PTS) which is specifically designed to find solutions with
costs less than or equal to C. We define the potential of a
node as the probability (Pr) that this node is part of a path
to a goal with cost less than or equal to C. This potential
is formally defined as follows. Let g(n) be the cost of the
shortest path found so far from the initial state to n, and let
h∗(n) be the real cost of the shortest path from n to a goal.

Definition 2 : Potential. The potential of node n, denoted
PT (n), is Pr(g(n) + h∗(n)) ≤ C.

PTS is simply a best-first search (or any of its variants)
which orders the nodes in the open-list (denoted hereafter
as OPEN) according to their potential PT and chooses to
expand the node with the highest PT (n).

If h∗(n) is known then the PT (N) is easy to calculate.
It is a binary function, returning 1 if g(n) + h∗(n) ≤ C
and 0 otherwise. Of course, usually, h∗(n) is not known
in advance and the exact potential of a node cannot be cal-
culated. However, we show that it is possible to order the
nodes according to their potential even without knowing or
calculating the exact potential. This can be done by using the
heuristic function h coupled with a model of the distribution
of its values. Next we show how we can reason about the
exact potential for several such heuristic models. We then
show how these can be extended to the general case.

Estimating the Potential of a Node
Many years of research in the field of heuristic search
have produced powerful methods for creating sophisticated

1Throughout this paper we use the standard heuristic search ter-
minology, where the shortest known path between the start node s
and a node n is denoted by g(n), and a heuristic estimate of the
distance from a node n to a goal is denoted by h(n).

235



heuristics, such as abstractions (Larsen et al. 2010), con-
straint relaxation and memory based heuristics (Felner, Korf,
and Hanan 2004; Sturtevant et al. 2009) as well as heuris-
tics for planning domains (Katz and Domshlak 2010). Next,
we show how it is possible to use any given heuristic and
still choose to expand the node with the highest potential
even without explicitly calculating it. All that is needed is
knowledge about the model of the relation between a given
heuristic and the optimal cost as defined in the next section.

Heuristic Models

Let h be a given a heuristic function, estimating the cost
of reaching a goal from a node. Consider the relation be-
tween h and h∗. In some domains, this relation is a known
property of the available heuristic function (e.g., a precision
parameter of a sensor). In other domains, it is possible to
evaluate the model of a heuristic function, i.e., how close h
is to h∗, from attributes of the domain. In order to preserve
a domain-independent perspective, we focus on several gen-
eral models of this h-to-h∗ relation. We call this relation the
heuristic model or h-model and define it as follows:

Definition 3 h-accuracy model. The function e is the h-
model of h if h∗(n) = e(h(n)) for every node n.

Note that the h-model is not necessarily a deterministic
function, since there can be nodes with the same h but differ-
ent h∗ values. Next, we show that it is possible to implement
PTS as a best-first search for a number of common special
cases of h-models. The potential function (PT (n)) is not
known. However, for these cases, we provide a cost func-
tion that is easy to calculate and prove that this cost function
orders the nodes exactly in the order of the potential func-
tion, that is, the node with the smallest cost is also the node
with the highest potential. Therefore, it is possible to simu-
late the potential of a node with this cost function.

Additive h-Model

Consider the following h-model: h∗(n) = h(n)+X , where
X is an independent identically distributed (i.i.d.) random
variable. This does not imply that the distribution of X is
uniform, but just that additive error of every node is taken
from the same distribution (independently). We call this type
of h-model an additive h-model.2

Lemma 1 For any i.i.d. random variable X , if the h-model
is h∗(n) = h(n)+X and f(n) = g(n)+ h(n) then for any
pair of nodes n1,n2 we have:

f(n1) ≤ f(n2)⇔ PT (n1) ≥ PT (n2)
Proof: Assume that PT (n1)≥PT (n2), and let hi, gi

and h∗i denote h(ni), g(ni) and h∗(ni) respectively. Ac-
cording to the potential definition (Definition 2) then:

2This is reminiscent of the bounded constant absolute error
model described by (Pearl 1984) where the difference between h
and h∗ was bounded by a constant (i.e., h∗(n) ≤ h(n) + K).
Here, K is the largest values for X .

Pr(g1 + h∗
1 ≤ C) ≥ Pr(g2 + h∗

2 ≤ C)
⇔ Pr(h∗

1 ≤ C − g1) ≥ Pr(h∗
2 ≤ C − g2)

According to the h-model, this is equivalent to:
Pr(h1 +X ≤ C − g1) ≥ Pr(h2 +X ≤ C − g2)

⇔ Pr(X ≤ C − g1 − h1) ≥ Pr(X ≤ C − g2 − h2)
Since X is i.i.d., then this is equivalent to:

C − g1 − h1 ≥ C − g2 − h2 ⇔ f(n2) ≥ f(n1)�
Consequently, for any problem with an additive h-model,

standard A*, which expands the node with the smallest f -
value, will always expand the node with the highest poten-
tial. This results is summarized in Theorem 1:
Theorem 1 For any i.i.d. random variable X , if h∗=h+X
then PTS can be implemented as a best-first search using the
standard cost function of A∗, f = g + h.

Therefore, for an additive h-model we can order the nodes
in OPEN according to their potential, even without knowing
the exact potential and regardless of the distribution of X .

Linear Relative h-Model
An additive h-model may not fit many real problems. Con-
sider for example a shortest path problem in a map, using
the air distance as a heuristic. If the air distance between
two nodes is very large, there is a larger possibility that ob-
stacles exist between them. More obstacles imply larger dif-
ference between the air distance and the real shortest path.
We therefore propose the following more realistic h-model:
h∗(n) = h(n) ·X for any random i.i.d. variable X . We call
this type of model the linear relative h-model3 and present
the following cost function:

flnr(n) =
h(n)

C − g(n)
Next we prove that nodes with smaller flnr(n) are more

likely to find a path with cost≤ C. The intuition behind this
is as follows. C − g(n) is an upper bound on the remain-
ing cost to the goal from node n that may result in a path
with total cost smaller than or equal to C. h(n) is a lower
bound estimation of the remaining cost. Therefore, nodes
with smaller h(n)

C−g(n) are more likely to find a path within
such a bound.
Lemma 2 For any i.i.d. random variable X , if the heuristic
model is h∗(n) = h(n) ·X then for any pair of nodes n1,n2
we have: flnr(n1) ≤ flnr(n2)⇔ PT (n1) ≥ PT (n2)

Proof: Assume that PT (n1) ≥ PT (n2). According to
the potential definition this means that:

Pr(g1 + h∗
1 ≤ C) ≥ Pr(g2 + h∗

2 ≤ C)
⇔ Pr(h∗

1 ≤ C − g1) ≥ Pr(h∗
2 ≤ C − g2)

According to the h-model, this is equivalent to:
Pr(X · h1 ≤ C − g1) ≥ Pr(X · h2 ≤ C − g2)
⇔ Pr(X ≤ C−g1

h1
) ≥ Pr(X ≤ C−g2

h2
)

Since X is i.i.d., this is equivalent to:
C−g1
h1
≥ C−g2

h2
⇔ h1

C−g1
≤ h2

C−g2
⇔ flnr(n1) ≤ flnr(n2)�

Consequently, for any problem with a heuristic that has a
linear relative h-model, a best-first search that uses flnr as
a cost function will expand nodes exactly according to their
potential. This result is summarized in Theorem 2:

3This model is reminiscent of the constant relative error (Pearl
1984), where h∗(n) ≤ K · h(n) for some constant K.

236



h-model (e) er(h∗, h) Pgen fgen
h+X (additive) h∗-h C-g-h f=g+h
h·X (linear relative) h∗

h
C−g
h

h
C−g=flnr

hX logh(h
∗) logh(C-g) -logh(C-g)

Table 1: h models and their corresponding cost functions.

Theorem 2 For any i.i.d. random variable X , if h∗=h ·X
then PTS can be implemented as a best-first search using
flnr as a cost function.

General h-Model

Consider the more general h-model, which is some function
of h and a random i.i.d. variable X . We denote this function
by e and write h∗ = e(h,X). Let er be the inverse func-
tion of e such that er(h∗, h) = X . We denote an h-model
as invertible if such an inverse function er exists, and de-
fine a general function Pgen(n) = er(C − g(n), h) which
simulates the potential of a node as follows.

Lemma 3 Let X be an i.i.d. random variable X and
h∗ = e(h,X) an invertible h-model, where er is monotonic.
Then, for any pair of nodes n1,n2, Pgen(n1) ≥ Pgen(n2)⇔
PT (n1) ≥ PT (n2)

Proof: Assume that PT (n1) ≥ PT (n2).
According to the potential definition this means that:

Pr(g1 + h∗
1 ≤ C) ≥ Pr(g2 + h∗

2 ≤ C)
⇔ Pr(h∗

1 ≤ C − g1) ≥ Pr(h∗
2 ≤ C − g2)

Since e is invertible, we apply er(·, h) to both sides:
Pr(X ≤ er(C − g1, h1)) ≥ Pr(X ≤ er(C − g2, h2))

Since X is i.i.d., this is equivalent to:
er(C − g1, h1) ≥ er(C − g2, h1)
⇔ Pgen(n1) ≥ Pgen(n2)�

Thus, for any problem with an invertible h-model, a best-
first search that expands the node with the highest Pgen will
exactly simulate PTS as this is the node with the highest
potential. Pgen can be easily converted (e.g., by multiplying
Pgen by -1) to a cost function fgen where an equivalent best-
first search will choose to expand the node with the smallest
fgen. This is summarized in Theorem 3:

Theorem 3 For any i.i.d. random variable X , if h∗ =
e(h,X), e is invertible, and er is monotonic, then PTS can
be implemented as a best-first search using a cost function
fgen(n).

Notice that Theorems 1 and 2 are in fact special cases of
Theorem 3. Table 1 presents a number of examples of how
Theorem 3 can be used to obtain cost functions for various
h-models. These cost functions can then be used in a best-
first search to implement PTS.

The exact h-model is domain dependent. Analyzing a
heuristic in a given domain and identifying its h-model may
be done analytically in some domains with explicit knowl-
edge of the domain attributes. Another option for identifying
a h-model is by adding a preprocessing stage in which a set
of problem instances are solved optimally, and the h-model
is discovered using curve fitting methods.

Experimental Results: 15-Puzzle
To show the applicability and robustness of PTS we present
experimental results on two domains: the 15-puzzle and the
Key Player Problem in Communication (KPP-COM).

y = 1.34x - 2.47

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

O
p

ti
m

al
 p

at
h

 (
h

*)

Manhattan Distance (h)

Figure 2: Manhattan distance heuristic Vs. true distance.

There are many advanced heuristics for the 15-puzzle, but
we chose the simple Manhattan distance heuristic (MD) as
our goal is to compare search algorithms and not different
heuristics. In order to choose the correct h-model for MD,
we sampled 50 of the standard 100 random instances (Korf
1985) and solved each instance optimally. For every such
instance we considered all the states on the optimal path, to
a total of 2,507 states. Each of these states were assigned
a 2-dimensional point, where the x value denotes the MD
of the state and the y value denotes its optimal cost to the
goal. The plot of these points is presented in Figure 2. The
dashed red line indicates the best linear fit for the plot, which
is the line y = 1.34 × x − 2.47. It is easy to observe that
linear fit is very close and therefore we solved the 15-puzzle
with Potential Search using a linear relative h-model and its
corresponding implementation using flnr (Theorem 2).

PTS was implemented on the 15-puzzle to solve the
bounded-cost search problem. In addition, we also imple-
mented a number of state-of-the-art anytime algorithms but
focus here on the two anytime algorithms that performed
best: Anytime Weighted A* (Hansen and Zhou 2007) and
Optimistic Search (Thayer and Ruml 2008), denoted as
AWA* and OS respectively. AWA* and OS are anytime
algorithms but they can be easily modified to solve the
bounded-cost search problem by halting these algorithms
when a solution with cost less than or equal to the desired
cost C was found, and pruning nodes with g + h > c.

AWA* is a simple extension of Weighted A* (Pohl 1970)
(WA*). WA* orders the nodes in OPEN according to the
cost function f = g + w · h, were w is a predefined param-
eter. After the first solution has been found AWA* simply
continues to run WA*, finding goals with better costs. OS
is a suboptimal search algorithm which uses two cost func-
tions: an admissible heuristic h and an inadmissible (but
possibly more accurate) heuristic ĥ. In our experiments, ĥ
was implemented as a weighted version of h, i.e. ĥ = w · h
where w is a predefined parameter. OS chooses to expand
the node with the lowest g + ĥ but switches to using g + h

237



C OS-1.50 OS-2.00 OS-3.00 PTS AWA*-1.50 AWA*-2.00 AWA*-3.00
55 13% 28% 63% 23% 14% 29% 68%
60 11% 21% 74% 12% 11% 25% 60%
65 6% 17% 40% 4% 6% 14% 41%
70 6% 3% 9% 3% 6% 4% 9%
75 6% 3% 3% 2% 6% 3% 4%
80 6% 3% 3% 2% 6% 3% 2%
85 6% 3% 2% 1% 6% 3% 2%
90 6% 3% 2% 1% 6% 3% 1%

Table 2: Expanded nodes as a percentage of nodes expanded by A∗. Fixed desired cost C.

if all the nodes in OPEN will not improve the incumbent so-
lution (=best solution found so far) according to ĥ. OS was
shown to be highly effective for many domains (Thayer and
Ruml 2008). In its basic form, OS is a suboptimal algorithm,
halting the search when the ratio between the lowest g + h
in the openlist and the incumbent solution is below a desired
suboptimality. However, it can easily be extended to an any-
time algorithm by simply continuing the search process until
the desired goal cost is found.

We performed two sets of experiments which differ in the
way the desired cost C was calculated. In the first set of
experiments we ran PTS, OS and AWA* (with different w)
on 75 random 15-puzzle instances with a fixed desired cost
C of 90, 85, 80 down to 55. The exact same cost C was
set to all instances, no matter what was the optimal solu-
tion cost. Table 2 presents the average number of nodes ex-
panded until a goal with a cost equal to or under the desired
cost was found, as a percentage of the number of nodes ex-
panded by A* when finding the optimal solution. Every row
corresponds to different desired goal cost. The algorithm
with the lowest number of expanded nodes in every row is
marked in bold. For OS and AWA*, we experimented with
w=1.5, 2 and 3. As can be seen, for desired goal costs of
55 and 60, OS-1.5 expands the fewest nodes. In all other
cases PTS outperforms both algorithms. Furthermore, even
for cost 55 and 60, PTS performs relatively well, expanding
only 23% and 12% of nodes expanded by A*, respectively.
This demonstrates the robustness of PTS.

In the second set of experiments the desired cost C was
different for each individual instance and was based on the
optimal solution cost as follows. First, we found the optimal
solution with A* and MD for 75 random instances. Then,
for every instance we ran PTS, OS and AWA* with a de-
sired cost C that was set to be a factor of 1.1,..,1.9 times
the optimal cost. All algorithms were halted when a solu-
tion of cost less than or equal to C was found. Both OS and
AWA* have a parameter w which was set to 1.5, 2 and 3.
Table 3 presents the average number of expanded nodes, for
the different algorithms (using MD as a heuristic) and differ-
ent bounds. Bold fonts mark the best algorithm in terms of
minimum number of nodes expanded. SinceC was different
for each instance, the C column in the table gives the degree
of suboptimality (1 + w × optimal) that was used to calcu-
late C. Runtime results are omitted since they show exactly
the same trends as the number of expanded nodes. This is
reasonable since all algorithms use a cost function that is a
simple arithmetic operation of g and the same heuristic func-
tion (MD), and all algorithms are best-first searches, imple-

mented using a priority queue based openlist, and thus the
time per expanded node is practically the same for all the
algorithms.4

As can be seen, for different desired cost bounds C dif-
ferent algorithms perform best. For constants that are close
to 1 (suboptimality of 1 up to 1.3), OS-1.50 or OS-2.00 are
the best. For large constants (of high suboptimality levels),
either PTS or OS-3.00 performs best.

All this is meaningful if we know the cost of the opti-
mal solution and one can therefore choose the best variant
of either OS or AWA*. However, the bounded-cost problem
assumes that there is no knowledge about the optimal cost,
as is often the case in reality. Therefore, in such cases one
would not know how to choose the weight that will result in
best performance. One is thus forced to guess a value for
w without knowing the cost of the optimal solution and as
a consequence without knowing the degree of suboptimal-
ity. This means that each individual column should be com-
pared as a stand alone algorithm to any other column. The
table clearly shows that for both OS and AWA* any given
value of w we tried (individual columns) performs best or
reasonable in only a very limited range. For example, OS-
2 performs well only when the desired solution is within a
degree of suboptimality of 1.2 or 1.3. Guessing w = 2 and
thus using OS-2 will only perform well in such ranges of
solutions but will perform much worse in other ranges.

By contrast, PTS is much more robust. PTS is clearly
superior when compared to any given fixed setting (any pos-
sible column) for both OS and AWA* across the different
values of the desired cost C (rows). It is only outperformed
by OS-1.50 for C that corresponds to suboptimality of 1
and 1.1, by OS-2.00 for suboptimality of 1.2 and 1.3 and by
AWA*-3.00 for suboptimality of 1.6-1.8. In all other cases
PTS outperforms all other variants. Furthermore, PTS was
the best variant and outperformed all other variants for sub-
optimality levels 1.4, 1.5 and 1.9. In all other suboptimal-
ity levels PTS was relatively close to the best algorithms.
Therefore, we can conclude from this set of experiments that
if the suboptimality level is not known PTS is clearly the al-
gorithm of choice.

Note that PTS is the only algorithm where the number
of expanded nodes continues to decrease as the desired cost
bound increases, speeding up the search with respect to the
desired bound. By contrast, for any weight shown in Ta-
ble 3, the number of nodes expanded by either AWA* or OS

4OS is a slight exception, since it maintains two openlists. How-
ever, we have seen that the overall runtime trends remain the same
for OS as well.

238



C OS-Oracle AWA*-Oracle PTS OS-1.50 OS-2.00 OS-3.00 AWA*-1.50 AWA*-2.00 AWA*-3.00
1 4,538,762 2,555,737 2,048,601 881,563 1,408,569 2,162,069 1,437,363 2,554,212 3,857,002
1.1 1,792,151 1,648,738 258,883 114,619 283,863 1,125,460 124,218 553,348 1,261,070
1.2 833,784 819,627 78,949 108,557 45,760 631,379 124,562 66,514 696,098
1.3 458,601 396,407 42,607 108,557 28,372 275,422 124,619 30,949 196,723
1.4 198,933 218,323 25,764 108,557 26,226 38,259 124,619 26,859 69,824
1.5 108,557 124,619 18,394 108,557 26,227 20,199 124,619 26,948 24,060
1.6 76,211 86,035 17,069 108,557 26,227 13,777 124,619 26,948 11,803
1.7 62,198 61,545 12,763 108,557 26,227 10,970 124,619 26,948 12,107
1.8 48,243 46,965 11,896 108,557 26,227 10,833 124,619 26,948 10,998
1.9 43,345 40,782 10,559 108,557 26,227 10,834 124,619 26,948 10,996

Table 3: 15-puzzle expanded nodes. The desired cost C was based on a suboptimality degree.

decreases with the cost bound only until a certain point, af-
ter which the number of expanded nodes remains constant
(excluding the “oracle” variants which will be discussed in
the next paragraph).5 The explanation is as follows. Let
AWA*(w) be AWA* with weight w, and let Cw be the cost
of the first goal found by AWA*(w). Clearly, AWA*(s) will
expand the same set of nodes until the first goal is found, re-
gardless of the desired bound C. Thus the number of nodes
expanded by AWA*(w) will be exactly the same, for any de-
sired cost C ≥ Cw. Similar argument applies for OS.

Assume an oracle that provides the optimal solution cost.
In this case, one could calculate the exact ratio between C
and the optimal cost and then set this ratio as input for a
suboptimal algorithm. The OS-Oracle and AWA*-Oracle
columns in Table 3 present the results where we set w for
AWA* and OS to be exactly the desired suboptimality, e.g.,
for suboptimality of 1.5 we setw = 1.5. PTS clearly outper-
forms this “oracle” variants. The reason can be explained by
the known phenomenon for WA* variants, where for a given
weight w, the quality of the returned solution is much better
than just w times optimal (Hansen and Zhou 2007). There-
fore, if one wants to find a solution of suboptimality of w
then a parameter larger than w should be used in order to get
the best performance. For example, if one wants a solution
with guaranteed suboptimality of 1.5 then OS with w = 3
(displayed in the column OS-3.00) is a better choice (20,199
nodes) than OS with w = 1.5 (108,557 nodes).

Experimental Results: Key Player Problem
Our first domain (the 15-puzzle) represents the class of do-
mains where one wants to find a path (or solution) of mini-
mal cost. In order to test the algorithms on a diversity of do-
mains, for our second domain we chose a problem where the
search is aimed at finding a solution with the maximal utility.
We thus implemented the three algorithms on the Key Player
Problem in Communications (KPP-COM) (Puzis, Elovici,
and Dolev 2007) which was shown to be NP-Complete.

KPP-COM is the problem of finding a set of k nodes in a
graph with the highest group betweenness centrality (GBC).
(GBC) is a metric for centrality of a group of nodes (Ev-
erett and Borgatti 1999). It is a generalization of the be-
tweenness metric that measures the centrality of a node with
respect to the number of shortest paths that pass through

5For OS-3.0 and AWA*-3.0 the number of expanded nodes for
C = 1.8 and C = 1.9 are practically the same.

y = 0.73x + 8799.70 

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100000 200000 300000 400000 500000 600000

O
p

ti
m

al
 p

at
h

 (
h

*
) 

Heuristic function (h) 

Figure 3: KPP-COM optimal solution vs. heuristic.

it (Freeman 1977). Formally, the betweenness of a node n
is Cb(n) =

∑
s,t∈V s,t6=n

σst(n)
σst

, where σst is the number of
shortest paths between s and t and σst(n) is the number of
shortest paths between s and t that passes through n. The
betweenness of a group of nodes A, termed group between-

ness, is defined as Cb(A) =
∑

s,t∈V \A

σst(A)

σst
where σst(A)

is the number of shortest paths between s and t that pass
through at least one of the nodes in A.

KPP-COM can be solved as a search problem. Let G =
(V,E) be the input graph in which we are searching for a
group of k nodes with highest GBC. A state in the search
space consists of a set of vertices N ⊆ V which are consid-
ered to be the group of vertices with the highest GBC. The
initial state of the search is an empty set, and a children of a
state correspond to adding a single vertex to the set of ver-
tices of the parent state. Instead of a cost, every state has a
utility, which is the GBC of the set of vertices that it con-
tains. Note that since in this problem the optimal solution
has the maximal GBC, an admissible heuristic is required to
be an upper bound on the optimal utility. Similarly, a sub-
optimal solution is one with smaller utility than the optimal.

A number of efficient admissible heuristics for this prob-
lem exist (Puzis, Elovici, and Dolev 2007) and in our ex-
periments we used the best one, which is calculated as fol-
lows. Consider a node that consists of a set of m vertices
Vm. First, the contribution of every individual vertex v ∈ V
that is not in Vm is calculated. This is the GBC of Vm ∪ {v}
minus the GBC of Vm. Then, the contribution of the topmost

239



C PTS DFBnB OS-0.7 OS-0.8 OS-0.9 AWA*-0.7 AWA*-0.8 AWA*-0.9 AWA*-1.0
280,000 329 347 338 439 803 336 438 796 1,750
290,000 408 422 429 584 1,167 424 580 1,155 2,729
300,000 556 562 575 770 1,547 569 758 1,528 4,118
310,000 727 735 749 989 1,876 751 972 1,850 4,389
320,000 1,194 1,117 1,145 1,396 2,746 1,138 1,391 2,713 7,229

Table 4: Average runtime in seconds on KPP-COM instances.

k−m vertices is summed and used as an admissible heuris-
tic. We denote this heuristic as hGBC (see (Puzis, Elovici,
and Dolev 2007) for more detailed discussion on this heuris-
tic). Since the main motivation for the KPP-COM problem
is in communication network domains, all our experiments
were performed on graphs generated by the model provided
by (Barabasi and Albert 1999). This model is a well-used
model of Internet topology and the web graph. First, we
searched for a fitting h-model for the hGBC heuristic. Fig-
ure 3 shows the h∗ (which is the maximum utility that can
be added to a node) as a function of the hGBC heuristic.
This was calculated by solving 100 random instances opti-
mally, and backtracking from the solution node to the root
node. The real distance to the goal (in terms of utility) of the
nodes on the optimal paths as a function of their heuristic
values is plotted in Figure 3. The dashed red line is a linear
fit of the data. As can be seen, this heuristic also exhibits a
clear linear relative h-model. Thus, we used the flnr cost
function for implementing PTS.

We performed the following experiments on this problem.
First, a graph with 600 nodes was generated according to the
Barabási-Albert model, with a density factor of 2. Then we
ran PTS, AWA* and OS (both with different weights) given a
desired costs of 250,000, 260,000, ... , 320,000, limiting the
size of the searched group of vertices to be 20 (i.e., k = 20).
The average optimal utility was 326,995. Since the depth of
the solution is known in advance (the size of the searched
group k), we also ran Depth-first branch and bound (DF-
BnB), which is known to be highly effective when the depth
of the solution is known and many solutions exist. This ex-
periment was repeated 25 times and Table 4 presents the av-
erage runtime in seconds until a node with utility larger than
or equal to the desired utility was found.

Indeed, PTS is shown to be effective for all of the desired
utilities, performing slightly better than DFBnB, which is
known to perform very well on this domain (Puzis, Elovici,
and Dolev 2007). Notice that in this problem, low weights,
used by AWA* will also achieve very good performance and
converge to DFBnB. This is because a low weight to the
heuristic causes the search to focus more the g part of the
cost function f = g + w · h, resulting in a DFBnB-like
behavior where deeper nodes are preferred.

Potential Search as an Anytime Algorithm
PTS can be modified to be an anytime search algorithm
which we call anytime potential search (APTS). APTS uses
the following greedy approach to anytime search: focus on
finding a solution that is better than the incumbent solution
(=best solution found). This can be naturally implemented
using PTS. Simply set C to be the cost of the incumbent

solution, minus a small constant ε, which can be the small-
est edge cost in the graph. This is iteratively repeated until
APTS fails to find better solutions, in which case the optimal
path to a goal has been found. It is even possible to transfer
the OPEN and CLOSED lists of APTS between iterations,
recalculating the potential cost function for all the nodes in
OPEN, when a new goal node with better cost is found. Of
course, this has time overhead as all the nodes must be rein-
serted to OPEN with their new cost (e.g., flnr).

Experimental Results

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

So
lu

ti
o

n
 q

u
al

it
y 

(d
e

p
th

/o
p

ti
m

al
) 

Runtime (seconds) 

PTS-2.0

OS-2.0

PTS-1.3

OS-1.3

PTS-1.1

OS-1.1

Figure 4: 15-puzzle, solution quality Vs. Runtime.

We experimented on all the standard 100 random 15-
puzzle instances. Figure 4 shows the results of APTS Vs.
OS. The x-axis denotes the runtime and the y-axis displays
the solution quality (the depth of goal found divided by the
optimal goal depth). The rightmost point in the x-axis de-
notes the average runtime required for A∗ to find the optimal
solution. Again, we used f = g + w · h as an inadmissible
cost function for OS. As explained above, APTS performs
a series of PTS iterations, each with a different desired cost
C. To initiate C for the first iteration, we first ran WA* with
the same parameter w used for OS until the first solution
was found. Then, APTS was activated. As can be seen in
Figure 4, when using the same weight APTS always outper-
forms OS. We also compared APTS to AWA* with various
weights, and found that AWA* and APTS have very similar
performance in this domain.

We also performed experiments with APTS on the KPP-
COM problem. Since any subset of vertices has a GBC, then
every node generated induces a (probably suboptimal) util-
ity. Thus even before A∗ expands a goal (and returning the
optimal solution), it can return suboptimal solutions. There-
fore in KPP-COM APTS does not require any parameter in
order to find an initial goal fast (as opposed to the 15-puzzle,

240



in which an initial WA* was performed).

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9

So
lu

ti
o

n
 q

u
al

it
y 

(u
ti

lit
y/

o
p

ti
m

al
) 

Runtime (seconds) 

PTS

OS-0.78

DFBnB

AWA*-0.78

A*

AWA*-1.1

OS-1.3

Figure 5: Anytime KPP-COM, 600 nodes, density 2.

Figure 5 displays average results on 100 different graphs
with 600 nodes, density of 2 and a desired group size of 20.
The x-axis denotes the runtime and the y-axis the solution
quality (best utility found divided by the optimal utility). As
can be seen in Figure 5 APTS (without any parameter) out-
performs any other algorithm. OS with a weight of 0.78
was relatively very close. Note that while in the 15-puzzle
the overhead per node of calculating the heuristic was very
small, the hGBC heuristic described above requires signifi-
cant time. This reduces the relative overhead of maintaining
two OPEN lists required by OS. This explains the improved
runtime of OS in comparison with the 15-puzzle results. It
is important to note that APTS does not use any parameter
while both AWA* and OS are very sensitive to the weight of
the heuristic.6 This can be seen in the degrading results of
AWA*-1.3 and OS-1.3.

Conclusion and Future Work
In this paper we introduced a best-first search algorithm, Po-
tential search (PTS), which is specifically designed to solve
a bound-cost search problems. PTS orders the nodes accord-
ing to their potential. Several ways to estimate the potential
of a node are described. Specifically, we use the relation
between a given heuristic and the optimal cost to a develop
a cost function that can order the OPEN node according to
their potential, without actually calculating it. In addition,
PTS can be modified to an anytime search algorithm variant,
APTS. Empirical results show both PTS variants are very ef-
ficient and outperformed other algorithms in most settings of
our experiments.

The main advantage of PTS over the other algorithms we
tried is that it does not require parameter tuning (such as w
in the WA*-based algorithms) and is thus much more robust
across different instances. Other algorithms were shown to
be very sensitive to the parameter used. In many cases, e.g.,
when the optimal solution is unknown, one would not be

6Although OS can be used with any inadmissible heuristic, find-
ing an efficient aparametric inadmissible heuristic is challenging.

able to determine the correct value for the parameter for
these algorithms.

Future work will investigate how to incorporate an esti-
mate of the search effort until the desired solution is found,
in addition to the potential of a node. For example, a node
that is very close to a goal might be preferred to a node that
has a slightly higher potential but is farther from a goal. In
addition, we are currently pursuing the use of machine learn-
ing technique to learn the potential function, instead of the
indirect potential calculation described in this paper.

Acknowledgments
This research was supported by the Israeli Science Founda-
tion (ISF) grant no. 305/09 to Ariel Felner. We thank Robert
Holte and Wheeler Ruml for their helpful discussion on a
preliminary version of this paper.

References
Barabasi, A. L., and Albert, R. 1999. Emergence of scaling in
random networks. Science 286(5439):509–512.
Everett, M. G., and Borgatti, S. P. 1999. The centrality of groups
and classes. Journal of Mathematical Sociology 23(3):181–201.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. J. Artif. Intell. Res. (JAIR) 22:279–318.
Freeman, L. C. 1977. A set of measures of centrality based on
betweenness. Sociometry 40(1):35–41.
Furcy, D., and Koenig, S. 2005. Limited discrepancy beam search.
In IJCAI, 125–131.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search. J.
Artif. Intell. Res. (JAIR) 28:267–297.
Katz, M., and Domshlak, C. 2010. Optimal admissible composi-
tion of abstraction heuristics. Artif. Intell. 174(12-13):767–798.
Korf, R. E. 1985. Depth-first iterative-deepening: An optimal
admissible treesearch. Artif. Intell. 27(1):97–109.
Larsen, B. J.; Burns, E.; Ruml, W.; and Holte, R. 2010. Searching
without a heuristic: Efficient use of abstraction. In AAAI.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*: Any-
time A* with provable bounds on sub-optimality. In NIPS.
Pearl, J. 1984. Heuristics: Intelligent search strategies for com-
puter problem solving. Addison-Wesley Pub. Co., Inc.,Reading,
MA.
Pohl, I. 1970. Heuristic search viewed as path finding in a graph.
Artificial Intelligence 1(3-4):193 – 204.
Puzis, R.; Elovici, Y.; and Dolev, S. 2007. Finding the most promi-
nent group in complex networks. AI Commun. 20(4):287–296.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and Burch,
N. 2009. Memory-based heuristics for explicit state spaces. In
IJCAI, 609–614.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted A*: An
optimistic approach to bounded suboptimal search. In ICAPS, 355–
362.
Zanarini, A., and Pesant, G. 2009. Solution counting algorithms
for constraint-centered search heuristics. Constraints 14:392–413.
Zhang, W., and Korf, R. E. 1995. Performance of linear-space
search algorithms. Artificial Intelligence 79:241–292.
Zilberstein, S. 1996. Using anytime algorithms in intelligent sys-
tems. AI Magazine 17(3):73–83.

241




