
Efficient Policy Construction for MDPs
Represented in Probabilistic PDDL

Boris Lesner and Bruno Zanuttini
GREYC, Université de Caen Basse-Normandie, CNRS UMR 6072, ENSICAEN

Boulevard du Maréchal Juin 14 032 Caen Cedex, France

Abstract

We present a novel dynamic programming approach to com-
puting optimal policies for Markov Decision Processes com-
pactly represented in grounded Probabilistic PDDL. Unlike
other approaches, which use an intermediate representation as
Dynamic Bayesian Networks, we directly exploit the PPDDL
description by introducing dedicated backup rules. This pro-
vides an alternative approach to DBNs, especially when ac-
tions have highly correlated effects on variables. Indeed, we
show interesting improvements on several planning domains
from the International Planning Competition. Finally, we ex-
ploit the incremental flavor of our backup rules for designing
promising approaches to policy revision.

Introduction
Markov Decision Processes have become a standard frame-
work for modelling decision-theoretic planning tasks. While
classical approches rely on dynamic programming algo-
rithms such as Value Iteration, the AI community quickly fo-
cused on factored approches to solve MDPs, since practical
problems involves millons or even billions of states. Cen-
tral to such methods are avoiding to enumerate all states and
exploiting the structure present in most practical problems.
Factored MDP algorithms represent states and actions in a
symbolic way. States are described using valuations over a
set of variables and actions describe changes on variables.

The Probabilistic Planning Domain Description Lan-
guage (Younes and Littman 2004) is a widely adopted lan-
guage for specifying probabilistic and decision-theoretic
planning problems. However, state-of-the-art approaches
for computing optimal policies for MDPs rely on a represen-
tation by Dynamic Bayesian Networks (DBNs), and there-
fore, though very efficient on most problems, they require a
translation from PPDDL.

We propose a new approach for computing optimal poli-
cies for MDPs, which directly uses the PPDDL specifica-
tion. Our approach relies on classical dynamic program-
ming, but performs action backup using the new notion of
a “frameless” action-value. Using such backups in clas-
sical value iteration yields a new algorithm, which turns
out to be complementary to other factored approaches. We

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

demonstrate this on some International Planning Competi-
tion benchmarks. Finally, we show that frameless action-
values open promising perspectives for policy revision.

Preliminaries
Markov Decision Processes A Markov Decision Process
M = (S,A, T,R) involves finite sets of states S and ac-
tions A. For s, s′ ∈ S and a ∈ A, the transition probability
T (s′|s, a) denotes the probability of reaching state s′ after
taking action a in s. For states s, s′ and action a, the reward
function R(s, a, s′) determines the payoff of taking action a
in state s and ending up in state s′.

Given an MDP M , one can compute an optimal policy
πh : S → A which maximizes expected reward at some
given horizon h. πh can be derived from the optimal value
function at h, written Vh(s) = maxa∈AQ

a
Vh−1

(s) with

QaV (s) =
∑
s′∈S

T (s′|s, a) (R(s, a, s′) + γV (s′)) (1)

and V0(s) = 0 for all s ∈ S. The optimal policy πh is
then given by πh(s) = argmaxaQ

a
Vh−1

(s). The discount
factor γ ∈ [0, 1], reduces the importance of future rewards.
Infinite-horizon value functions can be approximated arbi-
trarily closely when γ < 1 : let V ∗ = limh→∞ Vh de-
note the infinite horizon value function, then as soon as
||Vh−Vh−1||∞≤ ε(1−γ)

2γ holds, ||Vh−V ∗||∞≤ε holds.

PPDDL The Probabilistic Planning Domain Description
Language (Younes and Littman 2004) allows to model prob-
abilistic and decision-theoretic planning problems. We
present here its components, domains and problems.

Planning domains consist of predicates and action
schemata. Predicates encode Boolean state variables1. Ac-
tion schemata represent both the transition and reward func-
tions. Each action schemata a consists in a precondition, that
is, a formula characterizing the states where a is applicable,
and an effect. The effect describes the changes that may be
applied to a state when taking action a. Importantly, PPDDL
actions obey the frame assumption: variables not explicitely
modified by an action remains the same after taking the ac-
tion. PPDDL1.0 defines the following types of effects:

1We omit functions, which represent numeric state-variables.

146

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

• Simple Effects specify the truth value update for a pred-
icate p; (p) (resp. (not p)) indicates that p will be true
(resp. false) after execution of the effect.

• Update Effects specify how the reward function is af-
fected. They are either (increase (reward) r) or
(decrease (reward) r) with obvious meaning.
• Conditional Effects of the form (when φ e), where φ is a

formula over the domain predicates and e an effect, mean
that e occurs only in states satifying φ.
• Probabilistic Effects of the form (probabilistic
p1 e1 . . . pk ek) mean that effect ei occurs with prob-
ability pi. We write (prob p1 e1 . . . pk ek) for short. In
case

∑
i pi < 1, the empty effect implicitely occurs with

probability 1−
∑
i pi.

• Conjunctive Effects of the form (and e1 . . . ek), make
all ei’s occur synchronously. Effects ei must be consistent
together, i.e., not contain (x) and (not x) (whatever the
combination of outcomes if ei’s are probabilistic).
A planning problem, on a given domain, defines a set of

objects used to instanciate predicates and action schemata.
In turn, instanciated predicates encode a set X of proposi-
tional state variables and instanciated action schemata de-
fine a set of actions A, each action a having precondition pa
and effect ea defined over X . A problem may also define
a formula Γ characterizing the set of goal states associated
with a reward RΓ. If the problem has no goal (like classical
MDPs), we assume Γ = ⊥. Goal-oriented problems can be
easily dealt with in the MDP framework, by ensuring the fol-
lowing for any goal state g |= Γ : no action can be taken in
g and for any horizon h, Vh(g) = RΓ. A problem may also
define an initial state, but since we focus on the more general
policy construction problem, the initial state is ignored. As
an example, Figure 1 presents the PPDDL description of the
move action of the well-known COFFEE problem.

For t, ` two sets of literals, write t . ` for the set of literals
matching t, and completed as in ` over other variables, that
is, t.` = t∪(`\{p | p̄ ∈ t}); e.g., xy.xȳz̄t = xyz̄t. Given
a state s (a full instanciation of states variables X), each ef-
fect e described by a PPDDL problem induces a probability
distribution D(e, s) over a set of pairs (t, r) (Younes and
Littman 2004, Sec. 4.1). Each such pair consists in a “basic
effet” t, that is, a consistent set of literals modified in state
s to obtain next state s′ = t . s, and an immediate reward
r. Writing (t, r) : p for “effect (t, r) occurs with probability
p”, D(e, s) is recursively defined as follows:
• D(x, s) = {(x, 0) : 1}
• D(not x, s) = {(x̄, 0) : 1}
• D(increase (reward) r, s) = {(∅, r) : 1}
• D(decrease (reward) r, s) = {(∅,−r) : 1}
• D(when φ e, s) = D(e, s) if s |= φ otherwise{(∅, 0) :1}
• D(prob p1 e1 . . . , s) =

⋃
i{(t, r) : pip | (t, r) : p ∈

D(ei, s)}
• D(and , s) = {(∅, 0) : 1}
• D(and e1 e2 . . . , s) = {(t′ ∪ t, r′ + r) : p′p |

(t′, r′) : p′ ∈ D(e1, s), (t, r) : p ∈ D(and e2 . . . , s)}

With this in hand, we can rewrite Equation 1 as:

QaV (s) = E
(t,r)∼D(ea,s)

[r + γV (t . s)]

Algebraic Decision Diagrams An Algebraic Decision Di-
agram (Bahar et al. 1997), or ADD for short, represents a
function {0, 1}n → R mapping the values of n Boolean
variables to a real value. ADDs are Directed Acyclic
Graphs, where each node is either a terminal node labelled
by a real-valued constant, or an internal node labelled with
some variable xi with one subgraph for each value of xi.
ADDs are expressionnally equivalent to decision trees, but
allow for a smaller representation since nodes share isomor-
phic subgraphs. Moreover, for any fixed variable ordering,
each function admits a unique ADD representation.

ADDs come with efficient algorithms for many opera-
tions. We use the following notation for functions and their
ADDs. Let V1, V2 : {0, 1}n → R, r ∈ R, s ∈ {0, 1}n, φ a
formula on {x1, . . . , xn} and t a conjunction of literals:

(V1 op V2)(s) = V1(s) op V2(s) for op∈{+,×,−}
max(V1, V2)(s) = max(V1(s), V2(s))

(V1 + r)(s) = V1(s) + r

(φ× V1)(s) = V1(s) if s |= φ, 0 otherwise
ITE(φ, V1, V2)(s) = V1(s) if s |= φ, V2(s) otherwise

(V1)[t](s) = V1(t . s)

(∃xiV1)(s) = (V1)[xi](s) + (V1)[x̄i](s)

In the factored MDP litterature (see below), ADDs re-
vealed to be candidate of choice for representing structured
transitions matrices and value functions, since in practical
problems many states have the same value, allowing mem-
ory savings and fast value function manipulation.

Related Work
Most work on computing policies for factored MDPs has
focused on DBN representations. Such representations use
conditional probability tables (CPTs), which give the prob-
ability of each x′ being made true or false by each ac-
tion, depending on the values of its parents in the DBN.
PPDDL descriptions can be converted to DBNs (Younes and
Littman 2004), and CPTs can be compactly represented us-
ing ADDs (Hoey et al. 1999; St-Aubin, Hoey, and Boutilier
2001; Feng and Hansen 2002; Feng, Hansen, and Zilberstein
2003; Guestrin et al. 2003). Then action regression is per-
formed by simple ADD operations.

Though this representation is natural when vari-
ables are independent, correlated effects such as (prob
0.5 xy 0.5 x̄ȳ) introduce dependencies between post-
action values. The usual trick is to introduce auxiliary
variables whose values encode which effect occurred, and
deterministic dependencies from them to post-action vari-
ables (Younes and Littman 2004, Sec. 5), but naturally, this
increases the size of diagrams manipulated. Another prob-
lem is independent conditions on the same variable, e.g.,
(and (when x1 (prob p1 x)) (when x2 (prob p2 x))),
which make CPTs blow up if auxiliary variables are not

147

(:action move
:effect (and (when (in-office) (probabilistic 0.9 (not (in-office))))

(when (not (in-office)) (probabilistic 0.9 (in-office)))
(when (and (raining) (not (has-umbrella)))

(probabilistic 0.9 (is-wet)
0.1 (when (not (is-wet)) (increase (reward) 0.2))))

(when (or (not (raining)) (has-umbrella))
(when (not (is-wet)) (increase (reward) 0.2)))

(when (user-has-coffee) (increase (reward) 0.8))))

Figure 1: PPDDL descritpion of the move action of the COFFEE problem. The three first “when” clauses read: with probability
0.9 the agent will change location; concurrently, starting from a state where it rains and the agent has no umbrella, with
probability 0.9 the agent will be wet in next state; otherwise, if it is not already wet, it will remain dry and receive a 0.2 reward.

used. Nevertheless, algorithms using such representations
can be very efficient, both in the exact (Hoey et al. 1999)
and approximative (St-Aubin, Hoey, and Boutilier 2001;
Guestrin et al. 2003) cases. Some work has also been done
at the relational level (Lang and Toussaint 2010).

A somehow intermediate representation between PPDDL
and DBNs is Probabilistic STRIPS Operators (Kushmerick,
Hanks, and Weld 1995). Under this representation, actions
have mutually exclusive conditions, each associated with
a probabilistic effect of the form (prob p1 e1 . . . pk ek)
where each ei is a conjunction of literals. As far as we know,
no work has focused on computing optimal MDP policies
for such representations in the grounded case. Nevertheless,
they are directly used by algorithms which work at the rela-
tional level (Boutilier and Sanner 2009).

When using ADDs, DBN representation can be exponen-
tially more succinct than PPDDL. Conversely, because of
nested effects, PPDDL may be exponentially more succinct
than DBNs or PSOs. For more details about these issues,
we refer the reader to (Boutilier, Dean, and Hanks 1999;
Rintanen 2003; Younes and Littman 2004).

Updating Value Functions
We now come to our new approach for exact backup of value
functions in MDPs, which we integrate in value iteration.

F-values The process of action backup refers to the task
of computing the value QaV from a value function V . We
propose to perform this task incrementally with respect to
a PPDDL description of actions, using an intermediate rep-
resentation of values as frameless action-values. As other
approaches, we use ADDs for efficient storage and manipu-
lation of real-valued functions of Boolean variables.
Definition 1 Let V : S → R be a value function and e be
an effect. The frameless action-value (F -value for short) of e
with respect to V is the function F eV : S×2X → R which for
s ∈ S and `′ ∈ 2X , gives the expected reward of applying e
in s and forcing the values of `′ on unaffected variables:

F eV (s, `′) = E
(t,r)∼D(e,s)

[r + V (t . `′)]

Intuitively, F -values are just like usual action-values QaV ,
but they make no frame assumption on the unmodified vari-
ables. As we will see, this allows to handle conjunctive ef-
fects in an incremental fashion.

Example 1 Let x be a variable and V (x) = 0, V (x̄) = 1.
Then the F -value F eV of e = (when x (not x)) wrt V is
given by F eV (x, ·) = 1, F eV (x̄, x′) = 0, F eV (x̄, x̄′) = 1. In
words, for s = x̄, the F -value leaves the possibility that x̄
persists, but also that it changes to x′. This is to be compared
with the action-value QeV (·) = 1.

Another example is given by the right branch of
the F -value depicted on Figure 2 (d) for e =
(when x (prob 0.6 x 0.4 y)): for s satisfying x and
`′ = x̄′ȳ′, the expected value is 5.2. Indeed, in s, either:

• effect x occurs, and y is not affected; hence the value of
y′ is taken from `′, resulting in state x′ȳ′, which has value
2 (Figure 2 upper left); this occurs with probability 0.6;
• or y occurs, resulting in state x̄′y′ with value 10; this

occurs with probability 0.4.

Hence the F -value of e in s, with unaffected variables mod-
ified as in `′, is 0.6× 2 + 0.4× 10 = 5.2.

An important feature of F -values is that they embed action-
values. Indeed, when discounting and enforcing the frame
assumption we get (see the proof in Theorem 2):

QaV (s) = F eaγV (s, s) (2)

Example 2 Considering Figure 2 (d) and s = xȳ, QeV (s)
is retrieved by evaluating the ADD in xȳx′ȳ′, yielding 3.2,
which is indeed the expected value of e in s (probability 0.6
of setting x to true, resulting in state x′ȳ′ with value 2, and
0.4 of setting y to true, resulting in x′y′ with value 5).

Backup rules Our rules take as input an F -value V ′ and
an effect e described in PPDDL, and produce a new F -value
BV ′(e) which accounts for the application of e on V ′. Since
F -values are functions of S×2X , we introduce a second set
of primed variables X ′ = {x′ | x ∈ X} to represent them
with ADDs. BV ′(e) is recursively defined as follows:

R1.1 BV ′(x) = V ′[x′]

R1.2 BV ′(not x) = V ′[x̄′]

R2.1 BV ′(increase (reward) r) = V ′ + r

R2.2 BV ′(decrease (reward) r) = V ′ − r
R3 BV ′(when φ e) = ITE(φ,BV ′(e), V

′)

R4 BV ′(prob p1 e1 . . . pk ek) =
∑k
i=1 pi ×BV ′(ei)

148

R5.1 BV ′(and) = V ′

R5.2 BV ′(and e1 e2 . . . ek) = BBV ′ (e1)(and e2 . . . ek)

Theorem 1 Given a, V , let V ′(·, s) = V (s) be the primed
version of V . Then the backup rule BV ′(ea) computes F eaV .
Proof. We show by induction on the PPDDL descrip-
tion of e that for any function W : S × 2X 7→ R,
BW (e)(s, `′) is E(t,r)∈D(e,s) [r +W (s, t . `′)]. The result
follows because V ′ depends on its second argument only,
hence V ′(s, t.`′) = V (t.`′). For brevity, we write E(t,r)[·]
for E(t,r)∼D(e,s)[·].

Let e = x. Then BW (e)(s, `′) = W[x′](s, `
′) (Rule 1.1).

Because D(e, s) = {(x, 0) : 1}, this is W (s, {x′} . `′) =
E(t,r) [r +W (s, t . `′)], as desired. Case (not x) is dual.

For e = (increase (reward) r), BW (e)(s, `′) is r +
W (s, `′). Since D(e, s) = {(∅, r) : 1}, this is indeed
E(t,r) [r +W (s, t . `′)]. Case decrease is dual.

Now let e = (when φ e′). If s |= φ, then BW (e)(s, `′) is
BW (e′)(s, `′), which is correct by the induction hypothesis
(IH). If s 6|= φ, we get BW (e)(s, `′) = W (s, `′), which is
E(t,r)∼D(e,s) [r+W (s, t . `′)] since D(e, s)={(∅, 0) :1}.

For e = (prob p1 e1 . . . pk ek), we have
BW (e)(s, `′) =

∑
i piBW (ei)(s, `

′). This is∑
piE(ti,ri) [ri +W (s, ti . `

′)] by IH, and correctness
follows by linearity of expectations.

The (and) case is obvious. Finally, for e = (and e1 e2)
we have BW (e)(s, `′) = BBW (e1)(e2)(s, `′). This
is E(t2,r2) [r2 +BW (e1)(s, t2 . `

′)] by IH on e2, and
E(t2,r2)

[
r2 + E(t1,r1) [r1 +W (s, t1 . (t2 . `

′))]
]

by IH on
e1. Now because effects are consistent we have t1 .
(t2 . `′) = (t1 ∪ t2) . `′, hence as desired we get
E(t1,r1),(t2,r2) [r1 + r2 +W (s, (t1 ∪ t2) . `′)]. �

At this point, we described how to compute F -values F eV
using ADDs. For a complete action backup, it remains to
compute QaV from F eaV . Equation 2 suggests to enforce the
frame assumption on the ADD BV (ea) by computing the
ADD Persist(BV (ea)), where Persist is defined by:

Persist(F) = ∃X ′ [x1 ↔ x′1 × · · · × xn ↔ x′n × F] (3)

Finally, given V ′(·, s) = γV (s) (discounted, primed version
of value function V), and accounting for the precondition pa
and the goal Γ, we get:

QaV = ITE(pa × ¬Γ, Persist(BV ′(ea)),−∞)

Assigning −∞ to states not satisfying pa and to goal states,
rules this action out when maximizing over actions. A com-
plete value function update example is given on figure 2.

Putting it all together, we propose the algorithm RBAB
(for “Rule-Based Action Backup”), whose pseudocode is
given in Algorithm 1. RBAB performs symbolic value it-
eration to compute value functions and eventually a policy.

Theorem 2 RBAB computes an ε-optimal infinite-horizon
policy.
Proof. We show by induction on h that after the
h-th iteration of the main loop, W is the optimal h-
steps-to-go value function Vh. Let a be an action. By

Algorithm 1: Rule-Based Action Backup (RBAB)
V ← Γ×RΓ

repeat
W ← −∞; V ′ ← γ × prime variables(V)
foreach action a do

Q← ITE(pa × ¬Γ, Persist(BV ′(ea)),−∞)
W ← max(W,Q)

W←ITE(Γ, RΓ,W) // Goal states 7→ RΓ

converged← ||V −W ||∞ ≤ ε(1−γ)
2γ

V ←W
until converged
// Extract policy π
W ← −∞; V ′ ← γ × prime variables(V)
π ← 0
foreach action ai, i = 1, . . . , |A| do

Q← ITE(pa × ¬Γ, Persist(BV ′(ea)),−∞)
G← Q > W// ∀s,G(s)⇔ Q(s) > W (s)
π ← max(π,G× i)
W ← ITE(G,Q,W)

return π × ¬Γ ; // Goal states 7→ action 0

Algorithm 2: Persist
Input: N , an ADD with primed and unprimed variables
Input: A, a set of literals to be forced (initially ∅)
if N is a constant ADD then return N
v ← var(N)
// Force literals.
if v ∈ A then return Persist(Then(N), A \ {v})
if v̄ ∈ A then return Persist(Else(N), A \ {v̄})
if (N,A)→ R is in cache then return R
x←swap(v)// swap(v′)=v;swap(v)=v′

T ← Persist(Then(N), A ∪ {x})
E ← Persist(Else(N), A ∪ {x̄})
// Merge over unprimed variable.
if v is primed then u← x else u← v
R← ITE(u, T,E)
insert (N,A)→ R into cache
return R

Theorem 1 and the induction hypothesis, BV ′(ea)(s, `′)
is E(t,r)∼D(ea,s)

[
r + γV ′h−1(s, t . `′))

]
. Since Persist

forces x′ ↔ x for all primed variables in BV ′(ea), we get
V ′h−1(s, t . `′) = Vh−1(t . s). Moreover, Persist ab-
stracts primed variables away, hence the function Q com-
puted by the algorithm depends on unprimed variables
only, so that when s satisfies pa × ¬Γ we have Q(s) =
E(t,r)∼D(ea,s) [r + γVh−1(t . s)] = QaVh−1

(s), as desired.
Observing that the remainder of the algorithm is classical
Value Iteration concludes the proof. �

Optimizations A critical step of Algorithm 1 is the com-
putation of Persist. While Equation 3 directly maps to
ADD operations, this requires several traversals of the ADD.
To circumvent this, we use the dedicated implementation

149

given as Algorithm 2, which requires a single pass.
One major drawback to ADDs is their sensitivity to vari-

able ordering. Indeed, the size of the diagrams may increase
dramatically if a wrong ordering is choosen, resulting in
poor performance. Reordering algorithms provided by ADD
packages may take some time to find a good, let alone opti-
mal, variable ordering which reduces diagrams sizes, hence
they must be used with caution. Experiments have shown
that forcing x, x′ to stay adjacent and using approximate re-
ordering at the end of each iteration provides the best results.

Finally, note that the backup of probabilistic effects may
benefit from a dedicated (possibly n-ary) multiply-and-add
operator, but we haven’t evaluated this empirically.

Empirical Results
RBAB was implemented as a client for the MDPsim server,
allowing us to use domains from the International Planning
Competition (IPC) and compare our approach with SPUDD.

Along with MDPsim is shipped MTBDDclient, an im-
plementation of SPUDD which first translates PPDDL to
DBNs. Since MTBDDclient is intended to be a demonstra-
tion program, we optimized it in two ways: first, a policy is
built only in a last iteration; second, we introduced variable
reordering heuristics to enhance its performance further. We
tested two versions of SPUDD: the one called “1 by 1” con-
siders variables one at a time (backup and abstraction) at
each iteration, and “matrix” precomputes the “complete ac-
tion diagram” (Hoey et al. 1999, Sec. 4.2).

We empirically compared the running times of all three
solvers on domains taken from the 5th and 6th IPC (proba-
bilistic track). Obviously enough, since we focused on the
problem of finding optimal control policies, the hardest in-
stances of the domains were out of reach for the solvers. We
kept the problems where at least one solver could produce
an ε-optimal discounted infinite-horizon policy with ε = 0.1
and γ = 0.9 in less than one hour.

Figure 3 shows the results on domains pitchcatch,
rectange-tireworld, search-and-rescue, drive, and drive-
unrolled. Clearly, these results show the complementarity
of the different solvers. Indeed, no algorithm is always bet-
ter (or worse, for that matter) than any other.

On the pitchcatch domain, RBAB behaves better than
“matrix”, but “1 by 1” is still better. On the other
hand, on the rectangle-tireworld domain RBAB outperforms
both. The most conclusive results are on search-and-rescue,
where RBAB appears to be exponentially faster than both.
Moreover this problem is one of the two we tested (along
with pitchcatch) for which the number of non exclusive con-
ditions under an and statement, was greater than 1 and in-
creasing linearily with the instance size. This suggests that
this is a good indicator to expect good RBAB performance.

The results for the drive domains (drive, drive-unrolled
and drive-unrolled2) are very interesting. Indeed, all three
domains express the same traffic intersection problem, but
in the “unrolled” version, actions are decomposed into a set
of smaller, equivalent ones. On the drive instances RBAB
is the worst algorithm, but its behavior clearly improves on
the “unrolled” version, exploiting a smaller PPDDL descrip-

tion of actions. Domain drive-unrolled2 is another vari-
ant which we designed, where we merged almost identi-
cal actions (look at light east with look at light west and
look at light north with look at light south) into more gen-
eral, but equivalent ones. The effects of these actions were
also simplified by moving up redundant effects in the effect
hierarchy. The resulting domain exploits as much as pos-
sible the succinctness of PPDDL. As depicted in Figure 3,
RBAB outperforms other solvers on this variant. This con-
firms that our approach is able to exploit the succinctness of
the problem specification in PPDDL.

For exhaustivity, the table on Figure 3 summarizes the re-
sults for domains where only a few instances were solved.
Interestingly, on these domains the “1 by 1” solver reaches
at least as many instances as the others, whereas it was al-
most always outperformed in the other domains. Apart from
this, each solver clearly outperforms both others on one of
these hard domains.

Policy revision using F-values
So far, F -values have been used as a tool for computing
usual action-values. We now describe how they can be used
for some forms of policy revision.

By “revision”, we mean here the general problem of com-
puting the new value of an action a, given its “old” value and
a modification of its description. More precisely, we write a
for an action, F aV for its F -value with respect to some value
function V , and a′ for another action intended to be a modi-
fied version of a. Our general goal is to compute F a

′

V given
F aV and the PPDDL descriptions of a, a′.

For instance, assuming V is the optimal infinite-horizon
value function for the problem at hand, with π an associated
optimal policy, we have that F aV is the optimal (frameless)
action-value function for a. Then the revised function F a

′

V
gives the expected value of performing a′, then following
the old policy π from the resulting state on. In equations, for
any state s, F a

′

V (s, s) = E(t,r)∼D(ea′ ,s)
[r + V (t . s))].

Notably, this revision problem arises in model-based re-
inforcement learning (RL), where action descriptions and
rewards are incrementally learnt by the agent, and hence
the corresponding action values need to be constantly re-
vised. In particular, Algorithms RTDP-RMAX and RTDP-
IE (Strehl, Li, and Littman 2006) perform a single backup
step, as above, when rewards and transitions are updated.
For instance, in an RL scenario, after it has gathered some
further experience an agent may want to revise the relative
probabilities of effects x and y in Figure 2, from 0.6/0.4 to
0.8/0.2, resulting in the diagram depicted on Figure 2 (j).

A natural way to solve revision problems is to store the
value function V and, when revision is required, to compute
Qa
′

V from scratch. We propose instead to store theF -value of
a (recall that at any time, QaV can be retrieved efficiently by
QaV (s) = F aV (s, s)). As we show next, using the richness of
information of F -values, we can save a substantial amount
of computation for revision. The counterpart is increased
memory needs, since F -values are bigger than usual action-
values. How this tradeoff speed/memory is ideally resolved
depends on the application at hand.

150

x′

2 4

7 5.2

y′

x′

y′

3.2

x′

y′

2

10

x

5

multiply by

0.6BV (x)

y′

3 1.2
(a)

7 5.2

y′

x′

5

y′

3.2

BV (probabilistic 0.6x 0.4y)

10y′

x′

5 2

BV (when x (probabilistic 0.6x 0.4y))

x↔ x′ × y ↔ y′

=

0.4BV (y)

(d)

(e)

(f)

(c)

(b)

x′

x

x′

y

y′ y′

10

y

5

y′

0

y′

3.2

+

(j)

y′

(g)

x′

(h)

+ − 4.17

(i)

=

6.67 4.27 2.5 3.5

x′

5

y′

2.6 6 3.6

y′

x

5 3.2

10y

primed variables
sum (∃x′, y′) over

primed value function V ′
p′
p × F[x′] α× F[x′∧y′]

Fa′
V

1−p′
1−p × F[y′]

Figure 2: (Left) Application of the backup rules on a value function V for the effect (when x (prob 0.6 x 0.4 y)). Diagrams
(a) and (b) present the backup of simple effects (weighted by their probabilities), (c) is the diagram for the probabilistic effect
and (d) for the conditional one. Diagram (e) is the intermediate diagram of Equation 3 and (f) is the final action-value function.
(Right) Revision of the F -value for the prob clause with 0.8/0.2 instead of 0.6/0.4.

 0

 500

 1000

 1500

 2000

 2500

 5 6 7 8 9 10 11 12 13 14

R
u
n
n
in

g
 T

im
e
 (

s)

Instance

pitchcatch

RBAB
matrix
1 by 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5 6 7 8 9 10 11 12

R
u
n
n
in

g
 T

im
e
 (

s)

Instance

rectangle-tireworld

RBAB
matrix
1 by 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5 6 7 8 9 10 11 12 13 14 15

R
u
n
n
in

g
 T

im
e
 (

s)

Instance

search-and-rescue

RBAB
matrix
1 by 1

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 6 7 8 9 10 11 12

R
u
n
n
in

g
 T

im
e
 (

s)

Instance

drive

RBAB
matrix
1 by 1

 0

 500

 1000

 1500

 2000

 2500

 5 6 7 8 9 10

R
u
n
n
in

g
 T

im
e
 (

s)

Instance

drive-unrolled

RBAB
matrix
1 by 1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 6 7 8 9 10 11

R
u
n
n
in

g
 T

im
e
 (

s)

Instance

drive-unrolled2

RBAB
matrix
1 by 1

Other reachable domains

domain #instances solved best solver worst solverRBAB matrix 1by1
schedule 3 3 3 RBAB matrix
sysAdmin-SLP 4 4 5 1by1 RBAB
triangle-tireworld 1 2 2 matrix RBAB

Figure 3: Solvers running times on International Planning Competition benchmarks

Adding an effect The first, simplest case is when the re-
vision of a consists in adding an effect e, namely, when
ea′ = (and ea e) (we assume that e is consistent with a).
Then it follows directly from Theorem 1 that F a

′

V can be
computed from F aV simply as BFa

V
(e).

Observe that no knowledge of V is needed, and that only
the “difference” between the revised and the old action has
to be treated. Moreover, we wish to emphasize that F -values
are necessary for this to be possible, in the sense that usual
action-values do not carry enough information.

Example 3 As shown in Example 1, for a =

(when x (not x)) and V (x) = 0, V (x̄) = 1,
we have QaV (·) = 1. Hence when revising a into
a′ = (and (when x (not x)) (when (not x) x)), usual
action values alone cannot distinguish between cases
V (x) = 0 as above, and, say, V (x) = 10, whereas
revision should yield Qa

′

V (x̄) = 0 in the former case, but
Qa
′

V (x̄) = 10 in the latter.

Revising rewards/costs It is straightforward to see that re-
vising the reward or cost of an action in a group of states
S can be handled by simply adding an effect of the form

151

(when φ (increase (reward) r)), where φ characterizes
S and r is the revision amount, and revising as in the previ-
ous paragraph. We however wish to note that this particular
case can be handled as well using usual action-values only
(in both cases, simply add φ× r to the old value function).

Revising probabilities We now consider the case when
the probabilities of some effects are revised, namely, when
(prob p e . . .) is revised into (prob p′ e . . .). We restrict
ourselves to the case where this clause occurs at the high-
est level in the description of the action, namely, when a
is of the form (and e1 . . . ek (when φ (prob p e . . .)))
(wlog, since and is commutative). We also assume that e
is a conjunction of simple effects (literals), as in PSO repre-
sentations. However, we place no restriction on other ei’s.

For clarity, we start with the case when there is only
one probabilistic effect, namely, when we want to revise
a = (and e1 . . . ek (when φ (prob p e))) to a′ =
(and e1 . . . ek (when φ (prob p′ e))). The next proposi-
tion shows that again, revision can be performed with the
sole knowledge of F aV . We omit the proof because it is a
special case of Proposition 2 (with f = ∅), but the intuition
in this particular case is that revising p to p′ amounts to add
the effect (when φ (prob δ e)) to a, because this means for
e not to occur with probability (1 − p)(1 − δ) = (1 − p′)
(Proposition 2 shows correctness for negative δ).

Proposition 1 Let a be an action of the form
(and e1 . . . ek (when φ (prob p e))), where e is a
conjunction of simple effects and p 6= 1. Let V be
a value function, let p′ 6= p, and let a′ be the action
(and e1 . . . ek (when φ (prob p′ e))). Then, with
δ = 1− 1−p′

1−p , F a
′

V can be computed from F aV as

ITE(φ, δ ×BFa
V

(e) + (1− δ)F aV , F aV)

We now turn to the more complex case where a clause of the
form (prob p e (1 − p) f) is revised. Again, we assume
that it occurs at the highest level of a and that e, f are con-
junctions of simple effects. Moreover, we assume that e, f
are mutually consistent (contain no opposite literals).

So assume p is revised to p′. We cannot simply “add” new
clauses, say (prob δe e) and (prob δf f), as in the case
of a single outcome, since this would incorrectly introduce
possible outcomes with e and f both occurring. Once again
however, it turns out that the F -value of a can be revised
without recomputing it from scratch.

Proposition 2 Let a be an action of the form
(and e1 . . . ek (when φ (prob p e (1 − p) f))),
where e, f are mutually consistent conjunctions of
simple effects and p, 1 − p 6= 0. Let V be a
value function, let p′ 6= p, and let a′ be the action
(and e1 . . . ek (when φ (prob p′ e (1− p′) f))). Then F a

′

V
can be computed from F aV as

ITE(φ,
p′

p
×F[e′] +

1− p′

1− p
×F[f ′]−α×F[e′∪f ′], F aV)

with α = p′(1−p)
p + p(1−p′)

1−p , F[e′] = (F aV)[e′] with e′ the
primed version of e, and similarly for F[f ′], F[e′∪f ′].

Proof. WriteW forBV ′(and e1 . . . ek). By Theorem 1 and
because e, f are conjunctions of simple effects, the correct
value is given by

F a
′

V = ITE(φ, p′ ×W[e′] + (1− p′)×W[f ′], W) (4)

Moreover, for the same reasons we have

F aV = ITE(φ, p×W[e′] + (1− p)×W[f ′], W) (5)

Clearly the result holds for states not satisfying φ. Now for
states satisfying φ we claim that

p′

p
× F[e′] +

1− p′

1− p
× F[f ′] − α× F[e′∪f ′] (6)

is the correct function.
Indeed, observing (W[e′])[e′] = W[e′], (W[f ′])[f ′] =

W[f ′], and (W[e′])[f ′] = (W[f ′])[e′] = W[e′∪f ′] (since e′, f ′
are consistent together), we get from Equation 5:

p′

p
× F[e′] = p′ ×W[e′] +

p′(1− p)
p

×W[e′∪f ′]

1− p′

1− p
× F[f ′] =

p(1− p′)
(1− p)

×W[e′∪f ′] + (1− p′)×W[f ′]

α× F[e′∪f ′] =

(
p′(1− p)

p
+
p(1− p′)
(1− p)

)
W[e′∪f ′]

Substituting these values in Equation 6 shows equivalence
with the “then” argument in Equation 4, as desired. �

When there are more than 2 effects or effects are not consis-
tent together, it can be shown that probabilities still can be
revised from old F -values alone, albeit with a potential com-
binatorial explosion (depending on how effects interact). For
space reasons however, we do not elaborate on this here.

It can also be easily seen that this contruction extends to
any deterministic effect e (possibly with nesting), albeit with
corrective terms proportional to the reward associated to e
(which is 0 for conjunctions of simple effects).

The construction of Proposition 2 is illustrated on the right
part of Figure 2 for revising (prob 0.6 x 0.4 y) to (prob
0.8 x 0.2 y).

Using F-values for control As we already insisted, F -
values represent the possible post-action combinations of
variables, taking into account explicit effects, but not en-
forcing any frame assumption on other variables. We now
briefly discuss an application to control.

Assume you want to embark a policy for some MDP, and
the evolution of some variables is stochastic, independent
of your actions, but might be known one step in advance.
To make things concrete, assume you know the probability
for rain to fall (rain) on each day, but you also have the
opportunity, at execution time, to know whether or not it will
rain in the next state (by watching weather forecast, say).

Precisely, assume that you have two deterministic actions,
namely taking an umbrella (take-umb), with cost 1 in all
states, and doing nothing (noop), with cost 0 in all states.
Assume moreover that in any state, rain falls with proba-
bility 0.2, and does not with probability 0.8, independently

152

of whether it was falling before. Finally, in any state, if it
rains and you do not carry your umbrella (umb) you incur a
penalty of −10, while in other cases you incur no penalty.

Now let s = rain umb. Under the usual seman-
tics, action take-umb has a (1 step-to-go) value of −1 +
0.2 × 0 + 0.8 × 0 = −1 in s, and noop has a value of
0 + 0.2×−10 + 0.8× 0 = −5. Hence the best action in s
is to take the umbrella.

Now assume that at execution time, in state s you learn
that it will not rain in the next state (say, tomorrow), that
is, you learn that rain ′ is false. Then action-values will not
tell you what the best action is with this new information,
since they do not make explicit the role of rain in expected
values. Constrastingly, assume you have F -values available,
namely, values F aV (a ∈ {take-umb,noop}), where V is
an optimal value function and F aV is computed wrt V with-
out taking into account the probability of rain. Then you
can simply evaluate them in s with `′ = rain . s. This will
tell you exactly the expected value of actions knowing that
it will not rain tomorrow (and using probabilities 0.2/0.8
from tomorrow on). Precisely, in this case, the F -value for
take-umb will still be −1, but that for noop will become
0, making noop now the best action.

We insist that F -values embed action-values. In this case,
if you miss the weather forecast at execution time, you can
simply add the effect (prob 0.2 rain 0.8 rain) to both ac-
tions, update their F -values, and retrieve the action-values.

Another case where such control is particularly relevant
is in multi-agent systems. Here you may know at execution
time whether some other agents will help you by setting the
values of some variables which you do not control. We leave
a detailed investigation of such applications to multi-agent
systems and cooperation for future work, but we think that
they are very promising.

As a final note, we remark that this problem can alterna-
tively be solved by introducing specific fluents with an epis-
temic flavor, say, two fluents coding whether you know the
forecast, and what it is in case you know. Then action de-
scriptions can be conditional on their values, and here usual
action-values are enough. Nevertheless, it is clear that this
makes the state space blow up, in particular if there are many
such “short-term predictable” fluents.

Conclusion
We presented RBAB, an algorithm for computing optimal
policies for MDPs described in PPDDL. To that end, we in-
troduced the notion of a frameless action-value, and showed
that using them for action backup in a value iteration scheme
yields an algorithm which is complementary to previous ap-
proaches, and interesting in particular for correlated action
effects and compact PPDDL descriptions. We also discussed
some promising applications of this notion to some policy
revision and control problems.

Our future work will focus on goal-oriented problems,
especially using reachability analysis for computing partial
policies over the set of reachable states, as in the LAO* fam-
ily of algorithms. Also promising is the adaptation of our
techniques to PPDDL at the relational level, for which there

has been a lot of excitement recently (Boutilier and Sanner
2009; Lang and Toussaint 2010). To that end we plan to use
First-Order ADDs (Wang, Joshi, and Khardon 2008). On
the short term, we also plan to enrich our approach with the
use of Affine ADDs (Sanner and McAllester 2005), which
we believe will improve the behaviour of our algorithm just
as it does for SPUDD and other solvers.

References
Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii, E.;
Pardo, A.; and Somenzi, F. 1997. Algebric decision di-
agrams and their applications. Formal methods in system
design 10:171–206.
Boutilier, C., and Sanner, S. 2009. Practical Solution
Techniques for First-Order MDPs. Artificial Intelligence
173:748–788.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision the-
oretic planning: Structural assumptions and computational
leverage. J. Artificial Intelligence Research 11:1–94.
Feng, Z., and Hansen, E. 2002. Symbolic heuristic search
for factored Markov decision processes. Proc. AAAI 2002
455–460.
Feng, Z.; Hansen, E. A.; and Zilberstein, S. 2003. Symbolic
generalization for on-line planning. In Proc. UAI 2003, 209–
216.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Effcient Solution Algorithms for Factored MDPs. J.
Artificial Intelligence Research 19:399–468.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. Proc.
UAI 1999 279–288.
Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An al-
gorithm for probabilistic planning. Artificial Intelligence
76:239–286.
Lang, T., and Toussaint, M. 2010. Planning with Noisy
Probabilistic Relational Rules. J. Artificial Intelligence Re-
search 39:1–49.
Rintanen, J. 2003. Expressive Equivalence of Formalism for
Planning with Sensing. In Proc. ICAPS 2003, 185–194.
Sanner, S., and McAllester, D. 2005. Affine algebraic deci-
sion diagrams (AADDs) and their application to structured
probabilistic inference. In Proc. IJCAI 2005, 1384–1390.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2001. APRICODD:
Approximate policy construction using decision diagrams.
NIPS 2000 1089–1095.
Strehl, A. L.; Li, L.; and Littman, M. L. 2006. Incremental
model-based learners with formal learning-time guarantees.
In Proc. UAI 2006.
Wang, C.; Joshi, S.; and Khardon, R. 2008. First order deci-
sion diagrams for relational MDPs. J. Artificial Intelligence
Research 31:431–472.
Younes, H., and Littman, M. 2004. PPDDL1.0: An Ex-
tension to PDDL for Expressiong Planning Domains with
Probabilistic Effects. Tech. Rep. CMU-CS-04-167.

153

