
Heuristic Search for Generalized Stochastic Shortest Path MDPs

Andrey Kolobov Mausam Daniel S. Weld Hector Geffner
{akolobov, mausam, weld}@cs.washington.edu hector.geffner@upf.edu

Dept of Computer Science and Engineering Departamento de TIC (DTIC)
University of Washington ICREA & Universitat Pompeu Fabra
Seattle, USA, WA-98195 Barcelona, Spain, E-08018

Abstract

Research in efficient methods for solving infinite-horizon
MDPs has so far concentrated primarily on discounted MDPs
and the more general stochastic shortest path problems
(SSPs). These are MDPs with 1) an optimal value function
V ∗ that is the unique solution of Bellman equation and 2)
optimal policies that are the greedy policies w.r.t. V ∗.
This paper’s main contribution is the description of a new
class of MDPs, that have well-defined optimal solutions
that do not comply with either 1 or 2 above. We call
our new class Generalized Stochastic Shortest Path (GSSP)
problems. GSSP allows more general reward structure than
SSP and subsumes several established MDP types includ-
ing SSP, positive-bounded, negative, and discounted-reward
models. While existing efficient heuristic search algorithms
like LAO∗ and LRTDP are not guaranteed to converge to
the optimal value function for GSSPs, we present a new
heuristic-search-based family of algorithms, FRET (Find,
Revise, Eliminate Traps). A preliminary empirical evalua-
tion shows that FRET solves GSSPs much more efficiently
than Value Iteration.

Introduction
Research in efficient methods for solving infinite-horizon
undiscounted MDPs has so far concentrated primarily on a
particular subclass of these models, the stochastic shortest
path (SSP) problems. According to their most general def-
inition (Bertsekas 1995), in SSPs there must exist at least
one proper policy, one that reaches the goal with probability
1, and all improper policies must have a reward of −∞ in
some state. Since the second condition is hard to verify, in
practice it is replaced with a slightly stronger version that
forbids 0- or positive-reward actions.

The baseline algorithm for solving SSP MDPs, Value It-
eration (VI) (Bellman 1957), is a dynamic programming ap-
proach that starts with an initial estimate of the states’ val-
ues, V0, and iteratively applies the Bellman backup opera-
tor to them. The optimal value function V ∗ is the unique
fixed point of Bellman backup on SSPs, and repeated appli-
cation of this operator provably forces VI to converge to V ∗
irrespectively of the initializing value function V0. Unfor-
tunately, since VI stores values for the entire state space, it
runs out of memory on all but the smallest MDPs.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

State-of-the-art optimal SSP MDP algorithms have a
much smaller memory consumption. Many of them, e.g.
LRTDP (Bonet and Geffner 2003b) and LAO∗ (Hansen and
Zilberstein 2001), fall under the heuristic search paradigm,
conceptually described by the Find-and-Revise (F&R)
framework (Bonet and Geffner 2003a). F&R algorithms use
the knowledge of the initial state and an admissible heuristic
(an initial estimate for the value function doesn’t underesti-
mate the values of any states under V ∗) to compute the op-
timal policy for an SSP while avoiding visits to many of the
states that are not part of that policy. Besides saving space,
this makes them significantly faster than VI. Crucially, how-
ever, F&R algorithms use the Bellman backup operator, and
their optimality, like that of VI, also hinges on this operator
having a single fixed point on SSP MDPs.

Although SSP MDPs cover a lot of scenarios, many are
left out. For instance, consider planning the process of pow-
ering down a nuclear reactor. In this scenario, one is in-
terested in choosing the sequence of actions that maximizes
the probability of a successful shutdown; accordingly, we
set the costs of actions to 0 and assign a reward of 1 for
attaining the goal state. Probability optimization is more ad-
vantageous than cost optimization in this case. Actual ac-
tion costs (insertion of control rods, adjusting coolant level,
etc.) and especially the penalty for unsuccessful shutdown,
required for the latter approach, are difficult to estimate, and
optimizing probability obviates the need for them. However,
the resulting MDP contains “loops” of 0-cost actions (e.g.,
insert control rods, raise control rods) and is thus not an SSP.

Perhaps unexpectedly, known optimal algorithms that
work on SSPs break down on the described problem and,
more generally, when rewards are allowed to take on all real
values. On MDPs with arbitrary-valued rewards, the Bell-
man backup operator may have multiple suboptimal fixed
points. As a consequence, VI is not guaranteed to converge
to the optimal one if initialized admissibly. More impor-
tantly, F&R algorithms are not guaranteed to converge to the
optimal solution either, leaving us with no efficient methods
to solve such MDPs.

To remedy the situation, we present the first heuristic
search scheme that, when paired with an informative admis-
sible heuristic, allows solving goal-oriented MDPs with a
more general reward model than SSP admits optimally and
efficiently. This paper makes the following contributions:

• We define a new class of MDPs, the generalized stochas-

130

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

tic shortest path MDPs (GSSP), and the semantics of opti-
mal solutions for it. GSSP allows a general action reward
model, properly containing several notable classes of
infinite-horizon problems, e.g. SSP, discounted, positive-
bounded, and negative MDPs (Puterman 1994).

• We analyze the properties of GSSPs and show that Bell-
man backups fail to converge to the optimal value function
on GSSPs when initialized admissibly, defeating existing
heuristic search methods. The cause of this failure are
multiple suboptimal fixed points for the Bellman backup
operator on this MDP class.

• We introduce a new framework, FRET (Find, Revise,
Eliminate Traps), capable of solving GSSP MDPs op-
timally and efficiently with the help of an admissible
heuristic. It does so by not only improving the value func-
tion with Bellman backups but also by escaping this op-
erator’s suboptimal fixed points in a novel way that pre-
serves the value function’s admissibility. Besides describ-
ing the framework, we outline the proof of FRET’s opti-
mal convergence.

• We present an empirical evaluation on an interesting sub-
class of GSSP called MAXPROB to demonstrate that
FRET significantly outperforms VI in both memory con-
sumption and speed even when the latter is aided by
reachability analysis.

Background
MDPs. In this paper, we focus on probabilistic planning
problems that are modeled by undiscounted-reward infinite-
horizon MDPs with a start state, defined as tuples of the form
〈S,A, T ,R, s0〉 where
• S is a finite set of states,
• A is a finite set of actions,
• T is a transition function S × A × S → [0; 1] that gives

the probability of moving from si to sj by executing a,
• R is a map S ×A → R that specifies action rewards,
• s0 is the start state.
Solving an MDP means finding a policy whose execution
from a given state results in accumulating the largest ex-
pected reward. A more precise definition is below.

The presence of a start state goes hand-in-hand with
heuristic search methods because if one needs to find a solu-
tion for the entire S these methods’ ability to save memory
by avoiding visits to some of the states becomes irrelevant.
Therefore, for all MDP classes discussed in this paper the
knowledge of the start state will be assumed, even for those
whose standard definition omits it.

A value function is a mapping V : S → R. A policy is a
rule π that prescribes an action to take for any given state.

Letting random variables St and At denote respectively
the state of the process after t steps and At the action se-
lected in St, the expected value V π of policy π is

V π(s) = Eπs

[∞∑
t=0

R(St, At)

]
(1)

In other words, the value of policy π at a state s is the expec-
tation of total reward the policy accumulates if the execution

of π is started in s. In turn, every value function V has a pol-
icy πV that is greedy w.r.t. V , i.e. that satisfies

πV (s) = argmax
a∈A

[
R(s, a) +

∑
s′∈S
T (s, a, s′)V (s′)

]
(2)

Note, however, that V π
V

is not necessarily equal to V .
Optimally solving an MDP means finding a policy that

maximizes V π . Such policies are denoted π∗, and their
value function V ∗ = V π

∗
, called the optimal value function,

is defined as V ∗ = maxπ V
π . For all MDPs we will discuss

in this paper, V ∗ also satisfies the following condition, the
Bellman equation, for all s ∈ S:

V (s) = max
a∈A

[
R(s, a) +

∑
s′∈S
T (s, a, s′)V (s′)

]
(3)

In general, the expectation in (1) may diverge. This
makes the definition of π∗ not very meaningful, since it
potentially has to choose among policies with infinitely
high reward. To ensure that every policy’s value is bounded
from above, we need additional constraints on the problem
specification. Next, we discuss a class of infinite-horizon
MDPs that illustrate what these constraints may be.

Stochastic Shortest Path Problems. Perhaps the best-
known class of undiscounted infinite-horizon MDPs are the
stochastic shortest path (SSP) MDPs. They are defined as tu-
ples 〈S,A, T ,R,G, s0〉, where G is a set of (absorbing) goal
states and other components are as above. For each g ∈ G,
T (g, a, g) = 1 and R(g, a) = 0 for all a ∈ A, which forces
the agent to stay in g forever while accumulating no reward.

The SSP definition also has the following restrictions:

• Each s ∈ S must have at least one proper policy, one that
reaches a goal state from any state s with probability 1.
• Every improper policy must get the reward of −∞.

The second requirement is hard to verify in the presence
of arbitrary action rewards, so most optimal SSP solvers as-
sume a stronger version that requires R(s, a) < 0 for all
states and actions.

This definition guarantees that V π <∞ for all π, and that
for at least one policy V π > −∞. Thus, such MDPs always
have at least one finite-valued policy.

The baseline method for solving SSPs, Value Iteration
(VI), starts by initializing state values with an arbitrary V0.
Afterwards, it executes several sweeps of the state space and
updates every state during every sweep by using the Bell-
man equation as an assignment, the Bellman backup opera-
tor. Viewing Vi as the value function operated upon in the
i-th sweep of VI and denoting the Bellman backup operator
as B, the i-th update round can be expressed as

Vi+1 = BVi (4)

Another way to view this update is to define the Q-value
of an action a in a state s w.r.t a value function V to be

QV (s, a) = R(s, a) +
∑
s′∈S
T (s, a, s′)V (s′)

131

Figure 1: Hierarchy of infinite-horizon MDP classes.

and observe that for each s, B sets Vi+1(s) to be the highest
Q-value of any action in s w.r.t. Vi.
Find-and-Revise Framework. Because it stores and up-
dates the value function for the entire S, VI can be slow and
lack memory for solving even relatively small SSPs. How-
ever, thanks to B’s convergence to V ∗ on SSPs indepen-
dently of initialization, VI has given rise to several much
more efficient algorithms for this MDP class. An assump-
tion they make is that the initial state s0 is known in ad-
vance, and one is interested in a policy originating in s0 only.
With this small caveat, it was shown that if the initialization
function V0 (called a heuristic) is admissible, i.e. satisfies
V0 ≥ V ∗ under componentwise comparison, then one can
compute V ∗ for the states relevant to reaching a goal from
s0 without updating or even memoizing values for many of
the other states (Barto, Bradtke, and Singh 1995). The Find-
and-Revise (F&R) framework (Bonet and Geffner 2003a)
generalizes this idea by comprising the algorithms that start
with an admissible V0 and iteratively build the graph of the
policy greedy w.r.t. the current V (i.e., the policy derived
from V via (2)), finding those of the graph whose values
haven’t converged and updating them using B. Since an ad-
missible heuristic, computable on the fly, makes some states
look bad a-priori and the policy is greedy, they may never
end up in the policy graph, making F&R algorithms (e.g.,
(Bonet and Geffner 2003b)) both speedy and frugal in mem-
ory use. Nonetheless, the policies F&R yields under an ad-
missible heuristic are provably optimal upon convergence.

Generalized Stochastic Shortest Path MDPs
Although the SSP model is fairly general, it disallows inter-
esting problem types, e.g. those concerned with maximizing
the probability of reaching the goal. The key reason is the
SSPs’ reward model, which excludes MDPs with “cycles”
of actions that the agent can execute forever without paying
any cost and without reaching the goal. In this section, we
define generalized stochastic shortest path MDPs (termed
GSSPs for conciseness), a class of problems that relaxes the
limitations both on action rewards. Exploring GSSPs mathe-
matical properties will suggest the main idea behind efficient
methods for handling this class of MDPs. It will also demon-
strate that besides SSP, GSSP contains several other im-
portant MDP classes, including discounted-reward (DISC),
positive-bounded (POSB), and negative (NEG) problems.
See Figure 1 for a graphical representation of the hierarchy.

Definition A generalized stochastic shortest path (GSSP)
MDP is a tuple 〈S,A, T ,R,G, s0〉 with the same compo-
nents as SSP under the following conditions:

1. There exists a policy π that is proper w.r.t. s0, i.e. reaches
a goal state from s0 with probability 1.

2. V π+ (s) ≡ Eπs [
∑∞
t=0 max{0,R(St, At)}] < ∞ for

all policies π for all states s reachable from s0 under
any policy. V π+ (s) is the expected sum of nonnegative

rewards yielded by the given policy; in GSSPs this sum
must always be bounded from above.
The objective is to find a reward-maximizing policy π∗

that reaches the goal from s0 with probability 1, i.e.

π∗ = argmax
π proper w.r.t. s0

V π (5)

Accordingly, we define V ∗(s) to be

V ∗ = sup
π proper w.r.t. s0

V π (6)

Note an important subtlety in Equation 5. When select-
ing the optimal policy, it considers only proper policies,
whereas SSP’s optimal policy is selected among all exis-
ting policies. Why do we need to make this distinction? The
simple answer is that in SSP MDPs, the reward-maximizing
policy is always proper, whereas in GSSP this may not be
so. Intuitively, since SSPs disallow 0- and positive-reward
cycles, the faster the agent reaches a goal state, the less cost
it will incur, i.e. going for the goal is the best thing to do in
an SSP. In GSSPs, 0-reward cycles are possible. As a con-
sequence, if reaching the goal requires incurring a cost but a
0-reward cycle is available, the reward-optimal course of ac-
tion for the agent is to stay in the 0-reward cycle. However,
semantically we may want the agent to go for the goal. Con-
sidering only proper policies during optimization, as Equa-
tion 5 requires, enforces this semantics.

One may ask whether it is natural in a decision-theoretic
framework to prefer a policy that reaches the goal over one
maximizing reward, as the presented semantics may do.
However, it is intuitively clear and can be shown formally
that in any MDP if attaining the goal has a sufficiently high
reward, the best goal-striving policy will also be reward-
maximizing. In this case, both optimization criteria will
yield the same solution. At the same time, determining the
“equalizing” goal reward value can be difficult, and GSSP
removes the need for doing this. To sum up, the GSSP and
the traditional solution semantics are largely equivalent, but
the former makes the modeling process simpler by needing
fewer parameters to be estimated.

As another consequence of the optimal solution, for any
state s from which no proper policy exists, V ∗(s) = −∞.
This follows from Equation 6 and the fact that sup ∅ = −∞.
Moreover, no such state is reachable from s0 by any policy
proper w.r.t. s0. Also, for any goal state g, V ∗(g) = 0, since
from the moment of reaching the goal onwards the system
accumulates no reward.

Only conditions (1) and (2) of the GSSP definition prevent
it from covering all MDPs with arbitrary action rewards.
However, MDPs that violate (1) have V ∗(s0) = −∞ and
hence, by Equation 6, V π(s0) = −∞ under any π. For
such MDPs, the total undiscounted expected reward crite-
rion fails to distinguish between the quality of different poli-
cies. The average reward (Puterman 1994) or the probability
maximization criterion, mentioned previously and formal-
ized later in this paper, is more preferable. Condition (2) is
in place for technical reasons explained in later sections.

GSSPs have the following mathematical properties, illus-
trated by the MDP in Figure 2, some of which drastically
change the behavior of known SSP solution techniques:

132

Figure 2: An example GSSP MDP presenting multiple chal-
lenges for computing the optimal value function and policy
efficiently. State g is the goal.

• V ∗ is a fixed point of Bellman Backup. E.g., for the GSSP
in Figure 2, V ∗(s0) = −0.5, V ∗(s1) = V ∗(s2) = −∞,
V ∗(s3) = V ∗(s4) = −1, V ∗(g) = 0, which satisfies the
Bellman equation.

• Bellman backup has multiple suboptimal fixed points V >
V ∗. This property invalidates optimality guarantees that
Bellman backup-based algorithms give on SSPs. Con-
sider an admissible V (s0) = 4, V (s1) = V (s2) = 2,
V (s3) = V (s4) = 1, V (g) = 0. All policies greedy w.r.t.
V are clearly suboptimal, but V stays unchanged under
B. For s1 and s2 the value of V ∗ should be set to −∞,
since no policy can reach the goal from them, but B is
unable to do it. The situation with s3 and s4 is even trick-
ier. They are also part of a “vicious cycle”, but reaching
the goal from them is possible. However, staying in the
loop forever accumulates more reward (0) than going to
the goal (-1), frustrating B as well.

• Not every policy greedy w.r.t. V ∗ is proper. This fact
further complicates finding the optimal policy for GSSPs,
even if V ∗ is known. Consider the policy that loops from
s3 to s4 in Figure 2 indefinitely. It is greedy w.r.t. V ∗ but
never reaches the goal.

Due to multiple fixed points, Bellman backup initialized
admissibly will generally converge to a suboptimal one.
Since this operator is the basis for heuristic search algo-
rithms, they will yield suboptimal solutions as well.

A potential optimal approach for tackling GSSP MDPs
would first find the problematic sets of states like {s1, s2}
and {s3, s4}, replace each of them with a single state, and
then consider the resulting (SSP) MDP. As we later show
more formally, “collapsing” such regions of the state space
is sound — all states within them must be connected with
0-reward actions, so the values of all states in a given re-
gion are equal under V ∗. Unfortunately, discovering these
regions generally involves visiting the entire state space, i.e.
would take as much memory as the more straightforward
approach, VI initialized with V0 ≤ V ∗. Both approaches,
though optimal, are much too expensive in practice.

Thus, the failure of Bellman backup leaves us with no
optimal but space- and time- efficient techniques capable of
solving GSSPs. In the next section, we present an algorithm
that resolves this difficulty.

The FRET Framework
In this section, we introduce a framework called FRET
(Find, Revise, Eliminate Traps) that encompasses algo-
rithms capable of solving GSSPs with a known starting state
when initialized with an admissible heuristic. At the highest
level, FRET starts with an admissible Vi = V0 and

• In the Find-and-Revise step, finds the next largest V ′i that
satisfies V ′i = BV ′i . This V ′i may have problematic re-
gions described in the previous section (Figure 2).

• In the Eliminate Traps step, changes V ′i to remove the
problematic regions. The result is a new admissible Vi+1

s.t. Vi+1 < V ′i .
• Iterates the two steps above until convergence to V ∗. V ∗

has no problematic regions.
• Extracts a proper optimal policy from V ∗.

To explain the technique in more detail, we need to intro-
duce several additional definitions.

Definition A policy graph of a policy π rooted at s0 is
a directed graph Gπ = {Sπ, Aπ}, whose set of nodes
Sπ is the set of all states reachable from s0 under π and
Aπ = {(si, sj)|si, sj ∈ Sπ and ∃a ∈ A s.t. π(si, a) >
0 and T (si, a, sj) > 0}.
Definition A greedy graph of value function V rooted at s0
is a directed graph GV = ∪πV (Gπ

V

).

Put simply, GV is the combined reachability graph of
all policies greedy w.r.t V . GV will play a critical role in
FRET. It allows efficiently determining whether any greedy
policy under the current V has a chance of reaching a goal
from a given state s and adjusting V accordingly. Impor-
tantly, GV is very easy to construct; its edges correspond
precisely to the set of actions greedy w.r.t. V in any state.

Definition A reachability graph rooted at s0 is a directed
graph G = ∪VGV .

Definition A trap is a maximal strongly connected compo-
nent (SCC) C = {SC , AC}, ofGV with the following prop-
erties:

• For all g ∈ G, g /∈ SC .
• GV has no edges (si, sj) s.t. si ∈ SC but sj /∈ SC . In

particular, there is no path in GV from any state s ∈ SC
to a goal g ∈ G.

Definition A permanent trap is a trap C = {SC , AC} s.t.
for every si ∈ SC , every edge (si, sj) of G is also in AC .

Definition A transient trap is a trap C = {SC , AC} s.t. for
some si ∈ SC , there is an edge (si, sj) of G s.t. sj /∈ SC .

Informally, a trap is just a strongly connected component of
GV with no outgoing edges inGV and no goal states, a goal-
free leaf in the DAG of maximal SCCs. A permanent trap
consists of a set of states from that doesn’t have any outgoing
edges not only inGV but also inG. Therefore, no policy can
ever reach a goal from any of the states in a permanent trap,
i.e. all states in permanent traps are dead ends. For states
in transient traps, a proper policy may exist, but it can’t be
greedy w.r.t. the current V . In Figure 2, {s1, s2} form a
permanent trap, and {s3, s4} a transient one.

We can now cast the operation of FRET in terms of these
definitions. Throughout the explanation, we will be referring
to the pseudocode in Algorithm 1. As already described,
FRET iteratively applies two transformations (lines 12-16
of Algorithm 1) to an admissible V0. The first of them, Find-
and-Revise, behaves almost exactly as described in (Bonet
and Geffner 2003a); it iteratively searches Gπ of the cur-
rent policy π for states whose values havent converged yet
and updates them, possibly changing π in the process. In
essence, it is performing asynchronous VI (Bertsekas 1995)

133

Algorithm 1 FRET
1: Input: GSSP MDP M , admissible value function V0.
2: Output: Optimal policy π∗.
3:
4: declare G = {SG, AG} ←Ms reachability graph
5:
6:
7: function FRET(M , V0)
8: declare Vi ← V0
9: declare V ′i ← Find-and-Revise(M,Vi)

10: declare Vi+1 ← Eliminate-Traps(M,V ′i)
11:
12: while Vi+1 6= V ′i do
13: Vi ← Vi+1

14: V ′i ← Find-and-Revise(M,Vi)
15: Vi+1 ← Eliminate-Traps(M,V ′i)
16: end while
17:
18: declare V ∗ ← Vi+1

19: declare π∗ ← the optimal policy
20: declare Processed← G
21: declare GV

∗
= {SGV ∗ , AGV ∗ } ← greedy graph of V ∗

22:
23: while Processed 6= SGV ∗ do
24: choose s ∈ SGV ∗ r Processed
25: choose a ∈ A s.t. T (s, a, s′) > 0 for some s′ ∈ Processed
26: Processed← Processed ∪ {s}
27: π∗(s)← a
28: end while
29:
30: return π∗
31:
32:
33: function Eliminate-Traps(M , V)
34: declare Vnext ← V
35: declare GV = {SV , AV } ← V s greedy graph
36: declare SCC ← Tarjan(GV)
37: declare C ← ∅
38:
39: for all SCC C = {SC , AC} ∈ SCC do
40: if (@(si, sj) ∈ AG : si ∈ SV , sj /∈ SV) and (@g ∈

G : g ∈ SC) then
41: C ← C ∪ {C}
42: end if
43: end for
44:
45: for all Trap C = {SC , AC} ∈ C do
46: if @a ∈ A, s ∈ SC , s′ /∈ SC : T (s, a, s′) > 0 then
47: for all s ∈ SC do
48: Vnext(s)← −∞
49: end for
50: else
51: declare Ae ← {a ∈ A | ∃s ∈ SC ; s

′ /∈ SC :
T (s, a, s′) > 0}

52: for all s ∈ SC do
53: Vnext(s)← maxs∈SC ,a∈Ae

QV (s, a)
54: end for
55: end if
56: end for
57:
58: return Vnext

until convergence — this is the view of F&R algorithms we
are going to adopt in this paper. Properties of F&R guar-
antee that if F&R’s initialization function for the (i + 1)-th
iteration, Vi, is admissible, so is its output function in that it-
eration, V ′i . However, the examples in the previous section
have demonstrated that in the presence of 0-reward actions
F&R may not reach V ∗, and that GV

′
i may contain perma-

nent and transient traps.
The second step, Eliminate Traps (ET) (lines 33-56),

searches GV
′
i for traps and changes V ′i (s) for states s in

them to Vi+1(s) < V ′i (s) in such a way that Vi+1(s) is still
admissible. For states not in any trap, it sets Vi+1(s) =
V ′i (s) (line 34). To find traps, ET employs Tarjan’s algo-
rithm (Tarjan 1972) (its pseudocode is omitted) to identify
all SCCs of GV

′
i and considers only those that have no goal

states and outgoing edges in this graph (lines 39-43), i.e.
satisfy the definition of a trap. For each such SCC C:
• If no si ∈ SC has actions that may transition to a state
sj /∈ SC , C is a permanent trap. (Note that this check is
equivalent to verifying the definition of a permanent trap
but avoids building the full reachability graph G.) There-
fore, ET sets Vi+1(s) = −∞ for all s ∈ SC (lines 46-49).
• Else, C is a transient trap. The intuition behind our analy-

sis of this case is as follows. Currently, we can’t tell with
certainty whether some policy can actually reach a goal
state from the states of C. However, if such a policy ex-
isted, it would inevitably have to exit C via some action.
Therefore, we can set the next estimate for these states’
values to be the Q-value of the best such “exit” action
under the current value function estimate, in the view of
the latter’s admissibility. More formally, since V ′i is ad-
missible but none of its greedy policies can reach a goal
from any s ∈ SC , two options are possible. All s ∈ SC
may in fact be dead ends, but the current V ′i doesn’t
show it. Alternatively, there does exist a policy π that
reaches a goal from all s ∈ SC (recall that C is a strongly
connected component, so any state in it can be reached
from any other with probability 1) but for each s ∈ SC ,
V π(s) < V ′i (s). To preserve the admissibility of the value
function through the iterations, FRET assumes the latter
and produces Vi+1(s) s.t. V ∗ ≤ Vi+1(s) < V ′i (s) for
these states (lines 51-54). Namely, it sets Vi+1(s) for all
the states in a trap to the highest Q-value of any action
in any of C’s states that has a chance of transitioning to
some s′ /∈ SC .
To understand the reason behind this step, we need the
following proposition (proved in the next section):
Proposition (Lemma 1 in the Convergence Proof sec-
tion). All actions that transition from a state of a transient
trap only to states of the same trap have the reward of 0.
Now, suppose a goal-reaching policy π from one of the
states s ∈ SC exists. Then, in some se ∈ SC it must
use an exit action ae whose edges aren’t part of GV

′
i and

that transitions to a state outside of SC . If Ae is the set
of all actions that have a chance of transitioning to the
outside of SC from a state in SC (line 46), then since V ′i
is admissible, we have

QV
∗
(se, ae) ≤ QV

′
i (se, ae) ≤ max

s∈SC ,a∈Ae

QV
′
i (s, a)

134

Since for every a in Ae at least one of a’s edges does not
belong toGVi , we must have maxs∈SC ,a∈Ae

QV
′
i (s, a) <

V ′i (s
′) for all s′ ∈ SC . Thus, maxs∈SC ,a∈Ae

QV
′
i (s, a)

provides both an admissible Vi+1(se) and an improve-
ment over V ′i (se). But what about other states in C? Ac-
cording to the above proposition, traveling among states
within C is “free”. Therefore, π can get from any s ∈ SC
to se without accumulating additional reward, and we can
set Vi+1(s) = Vi+1(se) for all s ∈ SC .
Thus, ET always makes an improvement to a strictly ad-
missible value function and produces a new admissible
Vi+1 for use in the next iteration of FRET.

Upon convergence, FRET constructs a proper policy as
in lines 18-28 of the pseudocode.

The pseudocode in Algorithm 1 is only meant as a
conceptual description of FRET and omits many opti-
mizations. For instance, as Lemma 1 implies, all states
in a given transient trap are connected with 0-reward
actions. Hence, all of them must have the same value
under V ∗. Therefore, once a trap has been identified,
F&R can treat all its states as one in Bellman backups.
This is equivalent to “collapsing” a trap into one state,
which makes both the subsequent F&R and ET steps faster
than in a straightforward implementation of the pseudocode.

Example. Consider the GSSP in Figure 2 and suppose
FRET starts with V0(s0) = 4, V0(s1) = V0(s2) =
2, V0(s3) = V0(s4) = 1, V0(g) = 0. This function al-
ready satisfies V0 = BV0, so the F&R step in the first
iteration finishes immediately with V ′0 = V0. ET then
builds GV

′
0 , which includes only states s0, s1, and s2. The

only (permanent) trap is formed by s1, s2. Thus, ET pro-
duces V1(s0) = 4, V1(s1) = V1(s2) = −∞, V1(s3) =
V1(s4) = 1, V1(g) = 0. In the second round, F&R starts
with V1 and converges to V ′1(s0) = 1.5, V ′1(s1) = V ′1(s2) =

−∞, V ′1(s3) = V ′1(s4) = 1, V ′1(g) = 0. GV
′
1 , consisting

of s0, s3, s4, and g, again contains a trap, this time a tran-
sient one formed by s3, s4. The best exit out of it (and the
only one in this case) is the action that goes from s4 to g
with QV

′
1 = −∞. The ET step in the second round real-

izes this and produces V2(s0) = 1.5, V2(s1) = V2(s2) =
−∞, V2(s3) = V2(s4) = −1, V2(g) = 0. Finally, in the
third round, F&R converges to V ′3(s0) = −0.5, V ′3(s1) =

V ′3(s2) = −∞, V ′3(s3) = V ′3(s4) = −1, V ′3(g) = 0. GV
′
3

contains no traps, so FRET has converged: V ′3 = V ∗.

FRET Convergence Proof
Due to the lack of space, this section presents only a proof
outline. The main idea of the proof is to observe that in every
iteration, both the F&R and the Eliminate Traps step either
lowers the value function or leaves it unchanged, and both
steps preserve its admissibility. Thus, the sequence of value
functions at the ends of FRET’s iterations, V = {Vi}∞i=1 is
monotonically decreasing and bounded from below by V ∗.
Therefore, this sequence converges to some value function
VL ≥ V ∗. VL satisfies VL = BVL over the states in GVL

and has a greedy proper policy. These facts allow us to com-
plete the proof by demonstrating that VL = V ∗.

The key step in the proof is showing that the elimina-
tion of transient traps preserves admissibility. Conceptually,
once FRET detects a transient trap, it collapses all the states
in the trap into one “superstate” and performs a Bellman
backup on it. The following lemma, referred to in the pre-
vious section, shows that, by itself, collapsing a trap doesn’t
affect admissibility of a value function:

Lemma 1. Suppose V is admissible and satisfies V = BV .
For every state s in a transient trap C = {SC , AC} of GV ,
for every action a ∈ A, if for every s′ s.t. T (s, a, s′) 6= 0 s′

is also in C thenR(s, a) must be 0.

Proof Sketch. The lemma postulates that all intra-trap ac-
tions must carry 0 reward. To prove it, consider a policy
πVu that on every visit to a given state s of C chooses an
action a uniformly at random from the set of all greedy ac-
tions in s. Since C is a trap, an agent that ended up in C and
uses a greedy policy (such as πVu) will remain in C forever.
Moreover, if the agent uses πVu it will visit every s ∈ SC an
infinite number of times in expectation.

Therefore, if some s, a had R(s, a) > 0 then πVu would
pick a an expected infinite number of times and we would
have V π

V
u

+ (s) =∞. This violates condition (2) in the GSSP
definition. In the light of this, R(s, a) ≤ 0 for all s, a of
C. However, if some s, a had R(s, a) < 0 then πVu would
accumulate a reward of −∞. It can be shown that in this
case trap C would not be part of GV , leading to another
contradiction. Thus,R(s, a) = 0.

Since transitions within a transient trap incur no cost, un-
der V ∗ all states of the trap have the same value. Therefore,
they can be merged and updated as one from the moment the
trap is discovered. Thus, FRET’s execution can be viewed
as a sequence of Bellman backups intertwined with merg-
ing of states, both of which preserve admissibility. The se-
quence starts from an admissible V0, so for all i > 0, Vi is
also admissible.

With some additional work, we can establish the main re-
sult regarding convergence of FRET on GSSPs:

Theorem 2. FRET converges to V ∗ on GSSP MDPs when
initialized with an admissible V0.

GSSP and Other MDP Classes
Despite GSSP relaxing the conditions on action rewards and
thus covering a very diverse class of problems, one might
view the requirements of goal and proper policy existence as
too restrictive. In this section, we try to allay these concerns
by showing that, besides SSP, at least two major established
classes of MDPs free of these requirements can be viewed
as subclasses of GSSP, with the benefit of FRET being ap-
plicable to them as well. Figure 1 displays the hierarchy of
MDP classes derived in this section.

Our proofs of class containment involve constructing an
MDP M ′ from the original MDP M . To distinguish the
components of these MDPs, we will denote the former as
SM ′ ,RM ′ , etc., and SM ,RM , etc., respectively.

Positive-Bounded MDPs. Positive-bounded (POSB) MDPs
(Puterman 1994) are defined as having no goal states and
imposing the following model restrictions:

135

• Actions are allowed to have arbitrary rewards, but for ev-
ery state s there must exist a ∈ As s.t. R(s, a) ≥ 0.

• V π+ (s) = Eπs
∑∞
t=0 max{0, R(St, At)} <∞ for all poli-

cies π for all states s (GSSP has an identical requirement).
POSBs are interesting to us in this context because they

are not only non-goal-oriented but also don’t explicitly re-
quire the existence of a proper policy (every policy in them
is proper, see Proposition 7.2.1b in (Puterman 1994)) while
nonetheless allowing a mix of positive-, 0-, and negative-
reward actions.
Theorem 3. POSB ⊂ GSSP , i.e. for every MDP M ∈
POSB there exists an MDP M ′ ∈ GSSP s.t. optimal pol-
icy sets of M and M ′ are equal.

Proof. As in the previous section, we provide only the main
proof idea. Construct M ′ by letting SM ′ ,AM ′ , TM ′ ,RM ′ ,
and s0 be the same as for M . Suppose GM is the full reach-
ability graph of M rooted at s0. Build a DAG of SCCs of
GM and identify SCCs with no outgoing edges whose inter-
nal edges correspond to 0-reward actions inAM (at least one
such SCC must exist because of the V π+ <∞ requirement).
Let GM ′ be the set of states in these SCCs.
M ′ is a GSSP whose goals are states in 0-reward regions

of M . Both in M ′ and in M , the optimal policy will try to
reach these states while getting maximum reward, i.e. the
sets of optimal solutions for these MDPs are identical.

Negative MDPs. Negative MDPs (NEG) (Puterman 1994)
are non-goal-oriented and have the following model restric-
tions:
• For all s ∈ S, a ∈ A the model must haveR(s, a) ≤ 0.
• At least one proper policy must exist.

While requiring the existence of a proper policy, similarly
to POSBs NEGs have no goal and allow 0-reward actions
in addition to negative-reward ones. A result similar to the
above holds for them too, with an analogous proof.
Theorem 4. NEG ⊂ GSSP .
MAXPROB MDPs. Last but not least, we turn to another
problem that FRET can solve, finding the “best” policy in
MDPs that do not have a proper policy but otherwise fall
under the definition of SSP. In these MDPs, all policies ac-
cumulate a reward of −∞. One way to distinguish between
them is to use the average reward optimality criterion (Put-
erman 1994) instead of the undiscounted total expected re-
ward discussed in this paper. However, to our knowledge,
there are no efficient methods (e.g., akin to heuristic search)
to optimize according to the former.

An alternative evaluation measure is used at the Inter-
national Probabilistic Planning Competition (IPPC) (Bryce
and Buffet 2008) to judge the performance of various MDP
solvers. It judges policy quality by its probability of even-
tually reaching the goal as opposed to hitting a dead end,
preferring policies with the highest probability of doing the
former. Observe that this is also the optimization criterion of
the nuclear reactor shutdown mentioned in the Introduction
section. We’ll call this optimization criterion MAXPROB.

To find the best policy of an SSP M according to this
criterion, we need to solve a version M ′, which we call the
MAXPROB MDP, of the original SSP MDP M ’s. M ′ is

derived fromM by assigning 0 reward for all ofM ’s actions
in all states and giving a reward of 1 for visiting M ’s goal.
(Formally, M ′ adds a special action ag that carries a reward
of 1 in all of M ’s goal states and 0 elsewhere, and leads to
a new state g that has a 0-reward self-loop.) In other words,
in M ′ the agent gets a reward only for visiting a former goal
of M and executing ag in it.

Crucially, MAXPROB is not a subclass of SSP, since the
former, unlike the latter, admits the existence of traps. In
fact, the following two results are easily verified:
Theorem 5. MAXPROB ⊂ POSB ⊂ GSSP .
Theorem 6. V ∗(s0) of MAXPROB MDP M ′ derived from
an SSP MDP M is the probability with which the optimal
policy of M eventually reaches a goal state of M from s0.

To give a flavor of FRET’s effectiveness, we concentrate
further on MAXPROB MDPs derived from hard problems
used at IPPC that lack a proper policy. We show that in
terms of the MAXPROB criterion, FRET can solve them
optimally and much more efficiently than the only other op-
timal algorithm available for solving them, VI.

Heuristics for GSSP
Unsurprisingly, due to the complete prior lack of heuristic
search methods for solving MDPs with traps (such MDPs
are abound even in previously established classes like POSB
and NEG), research in admissible heuristics for them has
also been nonexistent. To prompt it, we suggest a technique
that can both augment an admissible heuristic and serve as
such on its own in factored GSSP MDPs, where states are
represented as vectors of variable values.

SixthSense (Kolobov, Mausam, and Weld 2010) has been
proposed recently as an algorithm for identifying dead ends
in factored SSPs of the kind used in IPPC. It operates by
learning sound but incomplete rules that identify states as
dead ends by the values of state variables in them while the
host MDP solver is running.

The following observation leads us to suggest SixthSense
for GSSPs as well. In GSSPs, many of the dead ends are
located in permanent traps. As demonstrated, permanent
traps are the regions of the state space difficult for Bellman
backups to improve. Consequently, an admissibly initial-
ized F&R algorithm is likely to visit them and enter them
in the state value table before Eliminte Traps corrects their
values. Employing SixthSense during the Find-and-Revise
step should change values of many dead-end states early,
thereby helping F&R avoid actions that may lead to them.
These actions typically have other states as their potential
outcomes as well, so in the long run identifying dead ends
helps prevent unnecessary visits to large parts of the state
space. Moreover, since SixthSense’s rules efficiently iden-
tify a dead end on-the-fly, these states’s values don’t need
to be memorized. The empirical evaluation presented next
supports the validity of this reasoning.

Experimental Results
In this section, we provide a preliminary experimental evalu-
ation of FRET by comparing it to VI. VI and policy iteration
(PI) are the only two other major algorithms able to solve
GSSPs optimally. However, since they do not use heuristics

136

1 2 3 4 5 6
0

5
x 106

S

T
A

T
E

S
M

E
M

O
R

IZ
E

D

EBW PROBLEM #

FRET

VI

Figure 3: Under the guidance of an admissible heuristic,
FRET uses much less memory than VI.

to exclude states from consideration, they necessarily mem-
orize the value of every state in S. Therefore, their space
efficiency, the main limiting factor of MDP solvers’ scala-
bility, is the same, and for this criterion the results of the
empirical comparison of FRET and VI apply to PI as well.

In the experiments, we use problems from the Exploding
Blocks World (EBW) set of IPPC-2008 (Bryce and Buffet
2008). MDPs in this set are interesting because although
they have strictly negative rewards they do not necessarily
have a proper policy. Under the IPPC rules, competition
participants were given some time to find a policy for each
of the 15 problems of the EBW set and made to execute the
policy 100 times on each problem. The winner on the EBW
set was deemed to be the solver whose policy achieved the
goal in the largest percentage of these trials on average.

Note that the participants’s policies were effectively
judged by the MAXPROB criterion — the planner whose
policy maximized MAXPROB would win in the expecta-
tion. As FRET provides a technique to optimize for this
criterion exactly, the objective of our experiments was com-
paring FRET’s performance on MAXPROB with that of VI.

In the experiments, we use LRTDP in the Find-and-
Revise step of FRET, aided by the following heuristic V0.
Recall that SixthSense is a mechanism for quickly identify-
ing dead ends in MDPs. In the MAXPROB MDP M ′ de-
rived from an SSP MDP M , the former dead ends of M
are states from which getting to the former goals of M , and
hence getting any reward other than 0, is impossible. There-
fore, their value under V ∗ in M ′ is 0. Since SixthSense can
point out a large fraction of M ’s dead ends, we can assign
V0 for these states to be 0. Similarly, V0 will be 0 at the spe-
cial state g of M ′, where the action ag leads. For all other
states, V0 will assign 1, the highest reward any policy possi-
bly can obtain in M ′. Since SixthSense is provably sound,
V0 is guaranteed to be admissible.

All MDPs in EBW have a specified initial state s0. FRET
can use this information to its advantage but VI by default
will still try to compute the value function for all states, even
those not reachable from s0. To make the comparison fair,
we modify VI to operate only on states reachable from s0 as
well. In the experiments, VI uses an inadmissible heuristic
that assigns value 0 to all the states.

The experiments were run with 2GB of RAM. The results
are presented in Figures 3 and 4. EBW problems increase in
state space size from the lowest- to highest-numbered one.
Out of the 15 available, FRET solved the first 6 before it ran
out of memory, whereas VI managed to solve only 4. (As
a side note, some IPPC participants managed to solve more
problems; however, this is not surprising because these al-
gorithms are suboptimal). Also, FRET solved problem 6
faster than VI solved problem 4. These data indicate that
even with a crude heuristic, FRET significantly outperforms
VI in time and memory consumption. Moreover, no heuris-

1 2 3 4 5 6
0

1

2
x 104

C
P

U
 T

IM
E

IN
 S

E
C

O
N

D
S

EBW PROBLEM #

FRET

VI

Figure 4: VI lags far behind FRET in speed.

tic can help VI avoid memorizing the entire reachable state
space and thus allow it to solve bigger problems, whereas
with the advent of more powerful admissible GSSP heuris-
tics the scalability of FRET will only increase.

Conclusion
We presented GSSP, a new class of goal-oriented infinite-
horizon MDPs whose main advantage is the lack of re-
strictions on action reward values. GSSP contains sev-
eral other established infinite-horizon MDP classes, includ-
ing stochastic shortest path, positive-bounded, negative,
and discounted-reward problems. We described a heuristic
search framework for solving GSSPs, FRET. It starts with
an admissible value function and repeatedly modifies it with
a novel operator. Unlike pure Bellman backup, this oper-
ator is guaranteed to converge to the optimal solution on
GSSPs when initialized admissibly. Finally, we suggested
using an algorithm called SixthSense as a starting point for
constructing admissible GSSP heuristics. The preliminary
empirical evaluation clearly shows FRET’s advantage in ef-
ficiency over non-heuristic-search methods like VI.
Acknowledgments. We would like to thank Martine De
Cock, Jesse Davis, and the anonymous reviewers for insight-
ful comments and discussions. This work was supported
by WRF/TJ Cable Professorship and the following grants:
ONR N000140910051, NSF IIS-1016465, TIN2009-10232
(MICINN, Spain).

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Artificial Intelligence 72:81–138.
Bellman, R. 1957. Dynamic Programming. Princeton University
Press.
Bertsekas, D. 1995. Dynamic Programming and Optimal Control.
Athena Scientific.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search algo-
rithms for planning with uncertainty and full feedback. In IJCAI,
1233–1238.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In ICAPS’03,
12–21.
Bryce, D., and Buffet, O. 2008. International planning compe-
tition, uncertainty part: Benchmarks and results. In http://ippc-
2008.loria.fr/wiki/images/0/03/Results.pdf.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops. In Artificial Intelligence,
129(1–2):35–62.
Kolobov, A.; Mausam; and Weld, D. 2010. SixthSense: Fast and
reliable recognition of dead ends in MDPs. In AAAI’10.
Puterman, M. 1994. Markov Decition Processes. John Wiley &
Sons.
Tarjan, R. 1972. Depth-first search and linear graph algorithms. In
SIAM Journal on Computing, 1(2):146–160.

137

