Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

LPRPG-P: Relaxed Plan Heuristics
for Planning with Preferences

Amanda Coles and Andrew Coles
Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, UK
email: firstname.lastname@cis.strath.ac.uk

Abstract

In this paper we present a planner, LPRPG-P, capable of rea-
soning with the non-temporal subset of PDDL3 preferences.
Our focus is on computation of relaxed plan based heuris-
tics that effectively guide a planner towards good solutions
satisfying preferences. We build on the planner LPRPG, a hy-
brid relaxed planning graph (RPG)-linear programming (LP)
approach. We make extensions to the RPG to reason with
propositional preferences, and to the LP to reason with nu-
meric preferences. LPRPG-P is the first planner with direct
guidance for numeric preference satisfaction, exploiting the
strong numeric reasoning of the LP. We introduce an anytime
search approach for use with our new heuristic, and present
results showing that LPRPG-P extends the state of the art in
domain-independent planning with preferences.

1 Introduction

Classical Al planning considers the problem of reaching a
set of given goals from some specified initial state. It is often
the case, however, that we are concerned not only about the
final state after plan execution, but also about the structure
of the plan itself. For example, we may prefer for a specific
truck to pass through a certain location, or that the battery
charge of a rover does not drop below a certain safety level
throughout the execution of a plan. Further, we may not be
certain that a plan exists to satisfy all goals and trajectory
constraints we desire; traditional planners report failure in
this case. We would prefer the planner to produce a plan
that satisfies as many of our constraints/goals as possible
weighted according to some utilities we specify. Such soft
constraints are referred to as preferences.

In this paper we present a new heuristic, based on
LPRPG (Coles et al. 2008), capable of reasoning with such
problems and unique in two regards. First, it provides prefer-
ence satisfaction guidance through the use of relaxed plans,
which have proven highly successful in satisfycing planning;
second it provides explicit guidance for satisfaction of pref-
erences involving numeric conditions. We build on existing
work in planning with preferences and trajectory constraints.

Work on trajectory constraints began by considering hard
constraints (Kabanza & Thiébaux 2005), these can be used
to prune the search space and thus find plans with desired

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

26

properties. Trajectory preferences are an extension of this,
where not all constraints can be satisfied, rendering simple
pruning ineffective. Researchers began considering these in
the Fifth International Planning Competition (IPC5) when
the PDDL3 language (Gerevini et al. 2009) for preferences
was introduced. The most closely related of IPC5 planners,
HPLAN-P (Baier et al. 2007), performs forward search us-
ing heuristics designed for propositional preferences. These
are based on the relaxed planning graph (RPG) structure
and use techniques such as summing the layers in which
goals/preference facts appear (rather than relaxed plans) to
estimate goal distance and preference satisfaction potential.

Net-benefit (NB) (or over-subscription) planning is also
related. Yochan®™® (Benton er al. 2009) handles a limited
subset of PDDL3 preferences by compiling to a cost-based
representation, where preferences are implicit; and using
an over-subscription planner. The problem of deciding on
a set of soft goals to achieve in NB planning has been ap-
proached in many ways, one being the use of an LP (Benton
et al. 2007). Compilation to cost-based satisfycing planning
has also been successful (Keyder & Geffner 2009).

NB planning does not generally consider trajectory pref-
erences; compilation in this case is much more complex.
One compilation-based approach supporting trajectory pref-
erences, that of MIPS-XXL (Edelkamp et al. 2006), is to use
compilation with a modified planner (Metric-FF). Metric-
FF is repeatedly called, with a goal is added each time that
the metric function value improves on the last. There is,
however, no direct heuristic guidance about how to satisfy
preferences. MIPS-XXL is the only planner that handles the
complete PDDL3 language. SGPLAN can reason with pref-
erences in IPC5 domains; however, the mechanism of deal-
ing with these in SGPLAN 6 often relies on recognising tex-
tual features of the domain (Hsu & Wah 2008). It is unclear
how the implemented techniques generalise to wider appli-
cation, we return to this in our evaluation.

1.1 PDDL 3 Preferences
A PDDL3 planning problem is a tuple (I, G, A, P, M) where:

e] is a collection of facts and assignments to numeric vari-
ables describing the initial state;

e (5 is acollection of facts and numeric conditions that must
be true in a goal state;

e A is a set of actions, where each a € A has:

— a set pre, of preconditions (numeric or propositional)
on its execution,;

— effects, facts that become true, eff .}, or false, eff, ; and
numeric updates eff »“"™ that occur upon its execution.

a

e P is a set of preferences: desired properties of the plan;

e M is a metric function defined over preference violations
and numeric variables in the domain.

The preferences in P can be split in to two categories:
simple preferences and trajectory preferences. Simple pref-
erences take the form (at-end f), denoting a soft goal; or ap-
pear in preconditions (preference f), meaning we prefer £
to be true upon executing the action. Trajectory preferences
specify conditions on the trajectory of the plan: (always f),
(sometime f) and the restricted nestings, (at-most-once f),
(sometime-after f g), (sometime-before f g). In general, f
and g are ADL formul®. A preference is numeric if £ or
g refer to numeric variables. The semantics of these pref-
erences are as would be intuitively expected, we refer the
reader to (Gerevini et al. 2009) for LTL specifications.

M assigns a cost to the violation of each preference spec-
ified in P; the planner aims to find a solution that gives the
best possible value of this function (not necessarily optimal).
For precondition preferences, this cost is incurred each time
the relevant action is applied but the preference does not
hold. For all other preferences, the cost is incurred once,
if the plan does not satisfy the preference. In this paper we
focus on preference violations, hence we restrict the metric
function to these: we do not allow inclusion of domain vari-
ables. There are no direct associated costs with applying ac-
tions. As we are building upon LPRPG we inherit its restric-
tion to producer-consumer behaviour (Coles et al. 2008).
That is, all actions increasing (decreasing) numeric variable
v must have a precondition v < ¢ (v > c¢) and effect v+=k
(v-=k) where ¢ and k are positive real-valued constants'.

2 LPRPG Heuristic

Here we give an overview of the LPRPG heuristic (Coles et
al. 2008) upon which we base our work, and discuss the
challenges in extending it to reason about preferences. The
LPRPG heuristic was designed to reason about problems with
strong numeric interaction: it is a hybrid heuristic, using FF’s
RPG (Hoffmann 2003) for propositional reasoning, tightly
coupled with a Linear Program (LP) for numeric reasoning.

RPG heuristic computation begins by building a graph
consisting of fact and action layers. The initial fact layer, fj
contains all facts true in .S, the state to be evaluated, along
with upper and lower bounds on the values of each numeric
variables v, ub(v) and Ib(v). The action layer a;, following
each fact layer f;, contains all actions whose preconditions
are satisfied in f;. Fact layer f; contains the union of the
positive effects (eff T of all actions in a;_; and all facts in
fi—1 along with new bounds for each numeric variable v in
that layer. Extraction of a relaxed plan is done by regres-
sion from the goals starting at the first fact layer in which
all goals appear, f,. An action is selected to achieve each
goal in turn, and the goal is replaced with the preconditions
of that action, until all goals are present in fj.

"Increasing actions often have ¢ = oo

27

The LP is used for two distinct purposes in heuristic com-
putation: in RPG expansion, to compute ub(v) and [b(v) for
numeric variables at each layer; and in relaxed plan extrac-
tion, to select actions to achieve numeric goals. LPs are built
according to the behaviour each numeric variable v in the
problem. We define §(v;, a;) as the (constant) numeric ef-
fect of action a; on variable v;. For each action, a; we have
a variable a’ representing the number of times that action
has been applied. The LP contains a constraint, relating the
initial value v of each numeric variable to its final value v':

v =v+ Z a'.6(v,a;)
acA

Further constraints added to the LP record the highest and
lowest possible values each v can hold. For lower bounds,
we find the action a4 consuming v with the smallest ¢ — k,
suchthatv > ¢ € pre, and v-=k € eff,,. The value of c—k
is then taken as the lowest value that v can hold (v,,,;,,); sSim-
ilar computation can be performed for upper bounds (v,,4)-
These become additional constraints in the LP:

UI > Umin» UI < Umazx

We can build an LP for fact layer fj, LPy,, by including
only actions that appear in a;_;. This LP relaxes action or-
dering, rather than negative effects, and thus better captures
numeric interaction. We therefore make use of it to com-
pute ub(v) and [b(v) at each fact layer. For each v we call
LPy, twice, with the objective function maximise/minimise
v’. The values of v’ in LP, become bounds on v in fj.

In LPRPG-P solution extraction is performed as in Metric-
FF for propositional goals. However, achievers for numeric
goals are found using the LP as it has a richer numeric model.
Each time the RPG requires a numeric goal g,, to be satisfied
an LP is created for the first f; such that the bounds on vari-
ables in f; allow satisfaction of g,,, and the goal formula g,
is added as a constraint. The LP objective function is set to
minimise the sum of action variables. The actions whose
variables have non-zero values in the resulting solution are
added to the relaxed plan, and their preconditions are added
to the set of goals to be achieved in the RPG.

2.1 Issues with Optimisation

At first glance it may appear relatively straightforward to use
the LP for optimisation: change the objective function in so-
lution extraction to include the cost of preference violations.

To explore this, consider a problem with numeric vari-
ables v, w and proposition f. Initially v=5, w=0 and f is
false; the goal is w=1. Available actions are a: pre,:{v > 1}
effy:{v-=1Aw+=1}; b: pre,:{f} effy:{v+=1}; and c: pre :0,
eff.:{f}. We have a preference p (always (v>5)).

If an RPG is built from the initial state, the goal appears in
f1, following the application of a in ag. Note c also appears
in ag but b will not (as f & fp). As all goals appear in f1,
LPRPG will ask LPy, to achieve the goal w=1. As b does
not appear in ag it does not appear in LPy, so the solution
returned is a=1, regardless of whether the objective function
is modified. The solution [c, b, a] satisfying p simply does
not appear in LP, . Supposing w was replaced with a propo-
sition g, and a added g, in this case the goals still appear in
fo and the LP would not be called as g is propositional, so a
would simply be selected to achieve g in the RPG.

This example demonstrates that it is necessary to do much
more than simply modify the LP objective function. We must
consider potential preference violations in RPG building and
in both the LP and RPG in solution extraction.

3 Automata: General Preference Reasoning

We now describe how automata can be used to allow gener-
alised reasoning about all preferences, regardless of which
modal-operator they are based on. We extend existing tech-
niques and further develop the ideas for relaxed planning.
Hereafter we assume conversion of ADL conditions to NNF,
these are handled in an RPG as in (Coles & Smith 2007).

3.1 Monitoring Preference Satisfaction

In order to reason with preferences in the heuristic we must
be able to determine when a preference is violated by the ap-
plication of a given action. We also need to detect when pref-
erences have been violated in reaching a state, as we need
not penalise violation further. To do this we use automata—
this allows the same reasoning to be used for all preference
types, we need no longer consider them individually. Au-
tomata can be generated using the methods of MIPS-XXL
and HPLAN-P. We use their techniques to maintain the po-
sition of each preference automaton at every state during
search, changing an automaton’s position if the condition
on a transition out of its current position becomes satisfied.

In our automata we additionally require that each posi-
tion is labelled either: Sat, the preference is satisfied in the
current state, S; Unsat, the preference is unsatisfied in .S
E-Sat, the preference is satisfied in .S and can never become
unsatisfied; or E-Vio, the preference can never be satisfied.
These labels can be generated automatically, Sat positions
are accepting positions, all others are Unsat positions; then
E-Vio/E-Sat positions are the Unsat/Sat positions from which
no Sat/Unsat position is reachable respectively. If no E-Vio
position is present in the generated automaton we add one:
HPLAN-P and MIPS-XXL consider e-violation of prefer-
ences but do not explicitly include them in automata.

In order to determine when preferences can no longer be
achieved, we add transitions between Unsat positions and
E-Vio by incorporating knowledge from the RPG. For a pref-
erence to become satisfied from a given Unsat position, U,
there must be a path from U to a Sat position upon which all
transitions can be activated in order. This problem cannot be
solved easily in general (it is plan existence); we can, how-
ever, make use of the RPG to identify trivial cases where no
plan exists: if no path from U to a Sat position has all its tran-
sition conditions appear in the RPG the preference cannot be
satisfied in any subsequent state. We create a transition from
U to E-Vio with a special label denoting that the disjunction
of these conditions does not appear in the RPG.

Formally, for an Unsat position with a number of paths
P1...Pn, €ach reaching a Sat position, and each labelled with
conditions ciy...ci,,:, the preference cannot be satisfied if
the following holds at ff,, the RPG fix point:

- = Vv A L
(fﬁ:c ie[l.‘n] jE[l..mi] CZ])

The appearance of positive literals in an RPG layer is de-
fined in Section 2. We say negative literals appear in fy if

28

they are not in S. Otherwise —f appears in f;, where a;_1
is the first layer in which an action deleting f appears. We
say f; = c if c can be made true using only facts (or their
negations) that appear in f; (variable bounds for numeric
formula). Note: if both f and —f appear in f; then both can
be true simultaneously in order to satisfy c. This is simply
equivalent to saying that if an action had a required a pre-
condition c¢ to be applied in a; then ¢ could be satisfied in fj,
thus the action could be applied in q;.

This general reasoning may appear complicated, but con-
sider the simple automata for PDDL3 preferences in Fig-
ure 1. For the sometime-after preference we can see that
there is only one way to reach a Sat position from Unsat:
achieve b. We therefore know if b does not appear in the RPG
the preference can never be satisfied, so an edge is added
from Unsat to E-Vio labelled b not in RPG.

We can now say an action violates a preference when ap-
plied in the state .S if its application results in a state in
which the relevant automaton is in E-Vio (note automaton
position may change through a series of positions at once if
conditions on edges from subsequent new positions are sat-
isfied). We define the preference violation cost of a state .5,
PVC(S), as the sum of the costs of all preferences whose
automata are in E-Vio in S, and the cost of precondition pref-
erences violated in reaching S. This is a lower bound on the
cost of any solution reachable from S.

3.2 Preference Violations in Relaxed Planning

The position of an automaton in a planning state is well de-
fined; however, in an RPG layer, its position is not so obvi-
ous. We have a choice whether each action has been applied
or not: the RPG layer represents a set of states. In the PDDL3
automata there is a hierarchy of more preferable positions?:
E-Sat, Sat, Unsat, E-Vio; if there are multiple Sat positions
the further a Sat position is from E-Vio the more preferable
it is. For PDDL3 preferences we therefore maintain a sin-
gle optimistic automaton position for each RPG layer. The
automaton moves to the most optimistic position reachable
from its current position according to the facts true in f;.

We can make use of the optimistic automaton position p
for preference p; in f; to define whether an action a; violates
p; in f;. Generally we know a; will violate p; in fj, if the
effects of a; would certainly satisfy condition(s) causing the
automaton for p; to move from p to E-Vio. Definition 3.1
specifies a subset of such actions: certain triggers.

Definition 3.1 — Certain Trigger
Action A is a certain trigger for condition C = ¢ A ¢/ (where
¢ involves no conjunction) at f; if =(f; = —¢') —ie. ¢
cannot be false given the facts in f; — and either:
e A adds (deletes) a fact f such that f = ¢ (=f = ¢);

o A has effect v+=k, vy, + k > dand (v > d) = ¢;
o A has effect v-=k, vy — k < dand (v < d) = c.

In the propositional case we consider whether each single
fact added or deleted by A will (when combined with facts

2We note that our reasoning can be extended to a more general
subset of LTL by maintaining every possible position each automa-
ton could be in, we omit the full details of this due to lack of space.

anot in RPG anot in RPG

(sometime a)

(always a)

(at-end a)

(at-most-once a)

b not in RPG

a&_‘

(sometime-after a b)

(sometime-before a b)

Figure 1: Automata for PDDL 3 Preferences (Self Loops Omitted for Clarity)

in f;) satisfy C. Note, a condition a V b can be written (a V
b) A true so in this case an action A adding a will be a
certain trigger for @ VV b. For a A b, a becomes ¢ and b is
¢’ (or vice-versa), so until —b is in the RPG, A is a certain
trigger. For actions with numeric effects the definition is
more complex. Action A decreasing v by 1 may, or may not,
cause v < 3, depending on the current value of v. However,
we can make use of v,,,4, and v,,;, (Section 2) to find when
an action will always necessarily satisfy a numeric condition
regardless of the value of v. If the lowest possible value of
U, Uman,» plus the effect of A, is large enough to satisfy ¢ we
know application of A will always cause satisfaction of c.

Definition 3.2 — Preference Violation in RPG layer a;
The action A violates preference p; in a;, with optimistic
automaton position p for p; if either:

e A is a certain trigger for the conditions on all edges on the
path from p to E-Vio (except the special RPG label, which
must be satisfied in f;);

e p is a Sat position; A is a certain trigger for all the con-
ditions on an path from p to an Unsat position U; and no
transition from U back to a Sat position can be activated
using facts in fj.

The first part of Definition 3.2 brings together Def-
inition 3.1 and the optimistic automaton position p.
As an illustrative example, an action A violates the
(sometime-before a b) preference in layer a; if b is notin f;
(so the optimistic automaton position is Sat) and A adds a.
We extend the violation definition further, giving the second
part of Definition 3.2. To understand this consider the (opti-
mistically Sat) preference p; (sometime-after a b) where b
is not in f;, and action A in a; adds the fact a to RPG layer
fi+1. Here, A is a certain trigger for the condition, a, on the
transition from Sat to Unsat for p;. The transition from Unsat
to Sat requires b, which is not in f;. We can see therefore see
that A violates p; in a;. At future layers, once b appears, A
will no longer violate p; .

Generalisation So far our reasoning has been described
for preferences where a single modal operator is applied
to a formula that does not contain further modal operators
(e.g. (sometime-after (or a b) (forall x p(x)))). How-
ever, for preferences with formule over multiple modal op-
erators (e.g. (or (always p) (sometime g))) the reasoning
must be slightly extended. Satisfaction of these can be de-
termined by maintaining automata for each sub-clause. Ac-
tions’ preference violations can be computed: in the or case,
an action violates the preference if it violates all of the sub-
clauses; whereas for and it need violate only one sub-clause.

29

4 Heuristic Computation

We now describe how an RPG can be built using these au-
tomata to record sets of preferences violated in achieving
each fact, and applying each action, at each layer. We then
show how relaxed plans satisfying preferences are extracted.

4.1 Planning Graph Construction

We introduce the notion of a preference violation set for
facts (and actions) in an RPG. Informally these are prefer-
ences that must be violated in order to reach a fact (apply
an action) from the state to be evaluated, S. At each fact
layer, f;, in the planning graph, we record the optimistic po-
sition of the automaton for each preference p, fi[p].P; and
the actions that would violate p if applied in a;, f;[p]. X, ac-
cording to Definition 3.2. From these we define preference
violation sets for facts and actions. Informally, a fact (or ac-
tion) preference violation set contains the preferences that
are violated in order to reach (apply) it at a given layer. We
define the cost of a preference violation set as:
Cost({p1...pn}) = Ti=1..n violation_cost(p;).

...where violation_cost(p;) is defined in M (in the planning
problem). The violation set for an action contains the pref-
erences that are violated by applying it at layer [and the
preference violations needed to meet its preconditions.

Definition 4.1 — Action Preference Violation Set
The preference violation set V! for action a in a;, based on
the facts in f;,is: {p € P | a € fi[p]. X} U (Usepre, V]f)

All facts in fy have empty violation sets: they have al-
ready been achieved, so any costs have already been paid.
The preference violation set for a fact f in f;,{ > 1, is the
lowest cost of either its violation set in f;_; or that of any
achiever of f in the preceding action layer a;_.

Definition 4.2 — Fact Preference Violation Set
The preference violation set Vfl for a fact f in f; is 0 if

{ = 0. Otherwise, it is the lowest cost set of: V]f_l, if fisin
fact layer I — 1; or V!~ for any action a s.t. f € eff .

Here we commit to choosing the lowest cost preference
violation set. The alternative, keeping several and selecting
from these, would raise the cost of heuristic calculation.

Finally, we define the preference violation cost at f; as:

Lve(fi) = Cost({p € P | fi[p].P € {E-Vio, Unsat}})

We can now consider RPG construction, shown in Algo-
rithm 1. The main loop (line 4 to 34) begins as in FF, de-
termining the next action layer a; and fact layer f; 1. Then,
at line 10, it calculates the preference violation set for each
factin f;41 based on the actions in a;. Lines 11 to 30 update

the optimistic position of each automaton, following the ap-
proach discussed in Section 3.2. If this led to a change in
an action’s preference violation set (due to its application
violating fewer preferences), lines 31 to 34 add additional
layers, to propagate the effects of any violation set changes.

As a worked example, consider a preference p =
(sometime-before c d) thatis Satin fy. In this case, fo[p]. X
contains any action adding c (it is preferable that d is added
first). Expanding the planning graph, when (if) a layer f;
is reached containing d, four key changes in the behaviour
of the algorithm occur, in succession. First as the label d
on the Sat-to-E-Sat edge is satisfied, f;[p]. P=E-Sat (line 16).
Second, lines 18 to 26 will assign f;[p]. X = 0, as there are
no edges out of the new optimistic position, E-Sat. Third,
at lines 27 to 30, any actions that would previously violate p
(by adding c) are given the additional precondition d. Fourth,
and finally, if the revised f;[p]. X reduced the cost of the vi-
olation set of some action a;, then following Definition 4.2
a; may change the preference violation set of one or more
facts. Lines 31 to 34 propagate any consequences of this.

In LPRPG graph building terminates at the first fact layer
in which all goals appear. Preferences create two issues with
this: first, if all goals appear, it may be beneficial to expand
the planning graph further to allow more preferences to be
satisfied; second, a layer satisfying all preferences may not
exist. We therefore terminate graph expansion in one of two
cases: either when all goals have appeared and the lower
bound on preference violations PV C(S) has been attained
(line 4); or if no new facts are appearing (line 35) (hence no
further preferences would become satisfied).

One final group of PDDL3 preferences that does not fit
the automaton model is precondition preferences: these are
unique because the cost is paid multiple times, once per vi-
olation. We handle these by making multiple copies of the
action in the RPG: one with the preference as a hard precon-
dition; and one without the additional precondition, but with
the preference in its violation set. For actions with multiple
precondition preferences we generate a copy of the action
with each possible combination of preconditions. Whilst
this compilation is potentially exponential, actions with mul-
tiple preference preconditions are rare in practice.

4.2 Relaxed Plan Extraction

Relaxed plan extraction must be modified to encourage the
generation of plans that satisfy preferences. First the goal set
must be augmented to include soft goals: these might be ex-
plicit (at-end) preferences, or arise from other preferences
that need additional facts for satisfaction (e.g. as-of-yet un-
seen (sometime) preference facts, or (sometime-after a b),
where a has been seen but b has not).

Generally, if a preference automaton is in an Unsat po-
sition in the state to be evaluated, S, the condition on the
transition from Unsat to Sat in that automaton is added as a
goal. Such goals necessarily appear in the RPG: if they did
not the automaton position would be E-Vio. This generates a
new goal set containing all facts needed to satisfy the prefer-
ences that can be (relaxedly) satisfied from S, plus all hard
goals; we extract a relaxed plan to achieve these.

30

Algorithm 1: RPG Expansion with Preferences

Data: S, a state to evaluate

1 [< 0; f; < facts and automaton positions from S

2 for each {p € P | fi[p].P ¢ {E-Vio, E-Sat}} do

3 | define fo[p]. X (see lines 18 to 26);

4 while f; does not meet goals VLVC(f;) > PVC(S) do

5 k<«

6 A" {a € A fysatisfies pre, }; a; < A';

7| S f1U (Uaear eff 1)

8 call LP to update numeric bounds in fj;1;

9 I+ 1+1;

10 for f € f; do determine V]f (Definition 4.2);

1 for each {p € P | fi_1|p].P ¢ {E-Vio, E-Sat}} do

12 AV, AE « vertices, edges from p’s automaton;

13 E + {e € AFE | fjsatisfies label on e};

14 R « vertices in the digraph (AV, E) reachable

from fi_1[p].P;

15 if (3r € Rmore optimistic than f;_1[p].P) then

16 | filp].P < (most optimistic) r;

17 else fi[p].P < fi—1[p].P;

18 filp]. X < 0;

19 for each edge (fi[p].P,v) € AE do

20 R’ + vertices in (AV, E) reachable from v;

2 if (R’ N {E-Sat, Sat}) = () then

22 ¢ < label on (f;[p].P,v) in AE;

23 trig < actions triggering c;

24 ¢’ < label on (v, fi[p].P) in AE;

25 if f; satisfies ¢’ then each of trig has
additional precondition(s) ¢’ from layer
a; onwards;

26 else add trig to fi[p]. X;

z if fi[p]. P # fi—1[p]. P then

28 ¢ < label on (fi—1[p].P, fi[p].P) in AFE;

29 fora € (fi—1[p]. X\ filp]. X) do

30 a has additional precondition(s) ¢ from

L L layer a; onwards;

31 | while3a € A" | Cost(V}) < Cost(V!=1) do

32 ap — Al 1+1;

33 fi < fi—1 (including preference data);

34 for f € f, do determine V} (Definition 4.1);

35 if f;, = f; then break out of the while loop;

36 if f) satisfies the problem goals G then return An
RPG, layers fy..f; else return Failure

Extraction is performed as in the LPRPG heuristic with a
few minor modifications. First, goals (and preconditions of
selected achievers) are added to be achieved at the earliest
layer they appear with their lowest cost violation set (rather
than the earliest layer they appear). Then, when choosing
actions to achieve fact f in layer f;, we select the action with
the lowest cost violation set in a layer earlier than f;. Asin
LPRPG actions achieving numeric conditions are chosen by
the LP; modifications to this are considered in Section 4.3.

The inclusion of extra preconditions in RPG building has
an important effect during solution extraction: recall that ex-
tra preconditions are added when an action appears with a

lower cost violation set. Therefore, when achievers with
the lowest cost violation set are selected, these will be the
ones with extra preconditions (if such actions exist) and the
extra preconditions are precisely the extra facts needed to
satisfy the preference. Note that the consequences of using
this mechanism for (sometime-after c d) is that d is actually
achieved before c in the relaxed plan, not after; however, the
important thing is that achievers for d are inserted in to the
relaxed plan, not their relative order.

4.3 Using the LP to Satisfy Numeric Preferences

The LP is used in solution extraction to determine the achiev-
ers for numeric goals, we therefore modify it to select
achievers that satisfy preferences. Key to this is the inclu-
sion of a binary variable p’ for each preference p; (form-
ing a mixed integer-linear program), with constraints such
that p?=0 iff the values assigned to the action variables could
conceivably allow the preference to be (or remain) satisfied.
The LP is solved with objective function: minimise Xp® *
vtolation_cost(p;). We call the value of the objective func-
tion upon solving LPy, VLP(f;). We then add a constraint
Ypt * violation_cost(p;) = VLP(f;) and solve again min-
imising Ya® (LPRPG’s objective). As in LPRPG if a’ is non-
zero in the solution to this LP a; is added to the relaxed plan.

The LP has no internal notion of action ordering or layers,
so we must use the preference violation information from the
RPG. Suppose we are building LPy; to find achievers for a
numeric goal at RPG layer f;. We know the set of actions that
will definitely violate each preference p; if applied before q;
is fi[p:]. X (Section 4.1). For each action a; in this set we
add LP constraints to enforce that (a’ > 0) = (p' = 1).

Of the remaining actions not in f;[p;]. X some will simply
never violate any preferences. Others, however, will have
extra preconditions in the RPG that are required in order for
their application not to violate preferences. The mechanisms
in the RPG will, of course, deal with satisfaction of these
preconditions: when the LP selects an achiever (returns a so-
lution in which a’ > 0) the RPG puts this achiever at the
layer in which it has the lowest cost violation set, thus re-
quiring any extra preconditions. Since the LP does not deal
with propositional preconditions this mechanism is invalu-
able. However, if the extra precondition that is going to be
added is numeric, the LP is inevitably later going to be asked
to achieve this. It is useful, therefore, to allow the LP to see
the numeric consequences (i.e. any added numeric precon-
ditions) of actions it selects for application.

The numeric preconditions of actions are captured in the
LP constraints (Section 2). Note that these are the original
preconditions of the actions in the planning problem and do
not include those added in the RPG. The additional precondi-
tions are therefore encoded by separate constraints: for each
action a; that has had a wholly numeric precondition ¢ added
at layer [(removing p; from its preference violation set) we
add to the LP a constraint enforcing that if a® > 0, ¢ could
be satisfied by assignments to action variables, or p* = 1.

To define precisely what we mean by could be satis-
fied we make use of optimistic upper (OUB(v)) and lower
(OLB(v)) bounds on LP variable v. OUB(v), is the max-
imum value v could hold given any possible ordering of

31

the actions (recall the LP relaxes action ordering). For-
mally, OUB(v) = v + . a'.§(v,a;), Va; € A such that
d(v,a;) > 0 (OLB(v) is computed by considering a; € A
such that §(v,a;) < 0). Now we say a condition v > ¢
could be satisfied if OUB(v) > ¢. Similarly v < ¢ requires
OLB(v) < c¢. This reasoning extends to arbitrary linear nu-
meric formula across several variables by taking the upper
or lower bound for each as appropriate to minimise (or max-
imise) the value of the formula.

To illustrate this consider (sometime-before (v >1) (1 >1)),
p1. Suppose that the RPG bounds on v; and v in f; are [0,2]
and that action a; always causes v; > 1 (and has no con-
ditions of v5). In this situation a; is not in f;[p1].X but has
the additional precondition (v > 1) in f;. LPy, is therefore
constrained such that if a; is applied (a* > 0), OUB(vy) > 1
or p! = 1. This forces the LP to trade off the cost of the obli-
gation to achieve (vo > 1) in order to apply a; against that of
violating p;. If v; > 1 was instead a proposition f this con-
straint would still be enforced (because the additional pre-
condition, vy > 1, is numeric). If, however, we were con-
sidering (sometime-before (vi >1) (or (v2 >1) £)) the con-
straint would not be added to the LP as the condition is not
wholly numeric (the LP does not consider achieving propo-
sitions): the RPG must decide whether to satisfy f or to later
ask the LP for (v, > 1).

As well as single-action triggers, we consider the conse-
quences of the final value v’ of each variable on preference
satisfaction: we could apply multiple actions which individ-
ually do not violate a preference, but in combination do. For
example, an action with effect v+=1 does not necessarily vi-
olate (always (v<35)) (or (at-most-once (v<5)) where we
have already seen (v < b)), but could if applied many times.
In Definition 3.1 we showed what it means for an action to
be a certain trigger for a condition. Here in the LP we want
to say what it means for the collection of actions selected to
be a certain trigger. It makes more sense here to speak of
their results, i.e. the values of v} in the solution to the LP,
being a certain trigger for conditions.

The values of v} in LPy, are a certain trigger for condition
C =cAdif f(vi.v)) > (L)kand f(v)..v)) > (L)k = ¢
and, as before, —(f; = —¢’). Now we can add constraints
to LPy,: if the values of v are a certain trigger for edge con-
ditions on a path to E-Vio from the optimistic automaton po-
sition p (of the automaton for preference p; in f;), then p; is
violated (again excepting any special RPG condition which
must be true in f;). Thatis, (f(v)..v),) < (>)k) V (p' = 1).

We can now use the LP to satisfy the hard (numeric) goals
requested and attempt to satisfy the preferences. Each hard
goal is added to the LP as a constraint over the variables v’.
Then, we add constraints for preferences that, according to
Section 4.2, require additional goals. For the special case
of at-end preference p;, we constrain the LP such that either
the v’ values satisfy p;, or p’=1. All other goals (which are
required only to hold at some point) become conditions on
optimistic bounds: for instance, if p1, (sometime (v>5), has
not yet been satisfied, either OUB(v) > 5 or p'=1.

We can make additional use of the modified LP during
graph building. Its use to compute bounds is exactly the
same as that in LPRPG but VLP(f;) is used in the termination

condition. VLP(f;) (constrained to achieve all hard numeric
goals) is an admissible estimate of the minimum preference
violation cost attainable given the actions in RPG layer a;_ .
Thus we modify the definition of LVC(f;) to be the maxi-
mum of its previously defined value and VLP(f;). This en-
sures that graph expansion continues if there is still potential
for LP violation cost to be reduced by adding further layers.

5 Search

Search to find low cost plans involves trade-off: explor-
ing not only states with small relaxed plan length, h(S5),
to find feasible solutions (satisfying hard goals); but also
those with low violation cost. Anytime search approaches
can produce solutions of increasing quality, reporting solu-
tions when found and continuing search.

The LPRPG-P heuristic is non-zero for most feasible solu-
tions as the relaxed plan will still contain actions to achieve
unsatisfied preferences. Indeed /(S) = 0 only when S con-
tains the hard goals and all preferences are either satisfied or
E-Vio in S. We can therefore use the LPRPG-P heuristic to
continue search when feasible solutions are found, creating
anytime variants of FF’s (Hoffmann 2003) search strategies
enforced hill-climbing (EHC) and best-first search (BFS).

Pruning can be performed once the first feasible solution
P, with metric cost ¢, has been found. We need no longer
need to consider states, S; with PVC(S;) > c. Further,
pruning can be performed using LP f,(.S) where f,(.S) was
the latest planning graph layer built when evaluating state
S. When constraining LP f,(S) to achieve all numeric hard
goals (as discussed in Section 4.3), we can prune any state
for which VLP(f,(S)) + PVC(S) > c.

Note that BFS with this pruning is complete: given suffi-
cient resources it finds provably optimal solutions. In prac-
tice this happens rarely: it requires search space exhaustion.

6 Results

We use all non-temporal IPC 5 benchmark domains han-
dled by LPRPG-P. Only 2 IPC benchmark domains have
numeric preferences, but both use temporal PDDL; we cre-
ated non-temporal variants by compressing the durative ac-
tions into instantaneous actions and removing temporal pref-
erences (we also fixed some bugs). We also introduce a
new domain with numeric preferences based on a prob-
lem that requires that the voltage in a substation be con-
trolled under changing customer demand (Bell et al. 2009).
Our new domain has hard goals requiring the voltage to re-
main within the 1.05, 0.95 range; and preferences that it re-
main within [0.97,1.03] and to minimise transformer/MSC
switching actions. Our modified problems are available at
http://personal.cis.strath.ac.uk/~amanda/preferences.
We compare to the most successful planners in IPC 5 as
well as the standard RPG heuristic with the anytime search
strategy (HFF-A) and LPRPG-P stopping at the first solution
found (i.e. standard EHC using LPRPG-P). Further we in-
clude a baseline control: producing the plan computed by FF
to satisfy the hard goals (ignoring preferences) where these
are present (marked * in Table 1); and the empty plan oth-
erwise. SGPLAN 6 makes use of textual domain features

32

Domain ||Cont-|| SG | ¢ ||LPRPG | ¢ |HFF| ¢ [LPRPG|c || SG |c |[MIPS H |c
rol |[PLAN -P-A -A -P-1Ist PLAN| -XXL PLAN|
5.1 (NO-LP) -Sol. -W -P
Pathways SP|[20.46(|29.79 [30 || 25.85 | 24 [22.73 4 [2046[0|| 0 |0|P2.53(6 |[2238[5
Trucks SP [[L.01#(|17.02 |18 || 6.92 | 19 {3.05|11| 118 [16]| 3 [3|| 4 [4|| 3 |4
Storage SP ||5.36 || 13.37| 15 || 1081 | 12 |8.67|12| 536 [0]| 0 [0[7.51|5]/9.19]10
TPPSP || 15* || 20 |20|| 1687 | 11 [15.7820| 15 |0||18.6616||15.79]14]|15.82]6
SP Total |[41.83]|80.18] 83 || 60.45 | 66 [50.23[47| 42 [16[[21.66[19[}49.83p9[[50.39]25
Rovers QP |[8.03%|[14.88] 20 || 19.11 | 20 [11.51] 16| 16.75]20[[138 [0]| 0 [0][3.17]5
Storage QP ||4.33 || 14.57(20 || 115 | 16 | 93 |16 433 [0|[433|1|[7.3 |5 || 7.98 |11
TPPQP |[3.84%|| 18.7 |20 || 1591 | 20 [6.62[20| 3.84 |0|| 0 |0|[4.54]4|[6.27 |4
Trucks QP || 1.16 || 16.89|20 || 9.68 | 20 | 2.2 [13| 35 [19]] 0 [0|[2.12]3]| 2 |5
Prop. Total |[59.19|[145.22]163]| 116.65 | 142 [79.86[112]70.42 55| |27.3720]}63.79}41]]69.81[50
PP |[061 || 162 |9 || 1551 | 19 [14.0619[537 [19f| 0 [o][o [1]| -
L CNP__ 1L L NA20 1As) o f I R | N |
Pathways |[3.09]| 0 [0| 27.75 [30 [3.09] 17300 [1][0 |o|[4.11]4
R %5 VE0) A T A | T e L
Voltage |[4.13%|| 0.46 | 0 || 16.56 | 18 | 1.9 |2 [1521]18][0 |0([391]6
CNP 8.04) |(10)
Total | (67.02][147.3[172{] 176.47 | 200 [98.91[134[94.09 [93[[27.37]20[[71.81]52
(154.33)((197)
Table 1: IPC quality score, and coverage (c): Number of Prob-

lems the Planner Found a Solution Better than the Control.

to recognise some planning problems. We want to explore
how planners perform on general unknown problems, so we
include a second SGPLAN configuration SGPLAN-w: this
consists of a script that changes the domain name and adds
the never-applicable action z (below), then runs SGPLAN.
This prevents the text matching code in SGPLAN 6 from
identifying any domains. We experimented three versions
of SGPLAN (5.1, 5.2.1 and 6) and selected the best, 5.1; this
is also used inside the SGPLAN-W wrapper.

(raction z :parameters (?1 - dummytype)
(and

(neveradded))

:precondition
effect

(neveradded))

Table 1 shows the IPC scores (computed as in IPC6) for
each planner after 30 minutes (1.5GB memory limit, 3.4
GHz Pentium D). We observed that other planners do not
check whether the empty plan is a solution. We therefore
awarded each the value of the empty plan (in the time taken
by LPRPG-P to compute it) in domains where the planner
solved at least one problem (to avoid masking failures due
to crashing/grounding). Comparison of LPRPG-P-A to HFF-
A shows that our new heuristic finds much lower cost solu-
tions than the standard RPG heuristic when used with any-
time search. It is guided to find solutions satisfying prefer-
ences; whereas the standard RPG effectively performs blind
search once the first feasible solution is found. In the ab-
sence of anytime search (LPRPG-P-1st Sol.) LPRPG-P still
finds lower cost solutions than HFF (control); but, because it
attempts to return a feasible solution quickly, rather than sat-
isfying all preferences first, its solution quality is not as good
as in the anytime setting. LPRPG-P shows good scalability
in comparison to HFF in both settings.

Comparing to existing planners, SGPLAN 5.1 dominates
on most propositional domains; but its performance is sig-
nificantly affected by the changes that disable SGPLAN 6
domain recognition. Indeed, overall, SGPLAN-W is out-
performed by all other planners. Of the remaining planners
LPRPG-P-A scales to solve many more problems and domi-
nates in terms of solution quality in all but one domain. In
this domain SGPLAN-W performs best. We do not under-
stand precisely how it works; however, its behaviour appears
consistent with the statement that it selects a set of prefer-

Cumulative IPC Scores on Propositional Domains

LPRPGP-A

Cumulative IPC Score

1 10
Time (s)

ISGPLAN 5.1

LPRPGP-A-BFS

(a) IPC Score vs time: Propositional Domains

LPRPGP-A vs HFF-A

LPRPGP-A vs HPlan-P

Cumulative IPC Scores Across All Domains

180 #LPRPGP-A
160 //LPRPGP~A-NO~LP
e _{SGPLAN 5.1

LPRPGP-A-BFS

#s*LPRPGP-1st Sol

st M IPS -X XL
oo

Cumulative IPC Score

SGPLAN-W

1 . 0 100 1000
Time (ss

(b) IPC Score vs time: All Domains

10000 LPBPGP-A vs SGPLAN I5.1

10000 |- E

1=}
S
S

3 % x % X B
X o
Q L 4
§1000 s 3
< % S
S x u 2 L
= % M) TrucksQP + 3100
- TPPQP % S
Q +
@ 100+ % StorageaP x | 1 @ «
< > o RoversQP L3 A
w B TPPSP m &
% v StorageSP O o 10} X
TrucksSP I

o
w7
.

PathwaysSP 2
ransformerCNP.
PathwaysCNP
TPPCNP.

I 1 L

*x

g TPPSP m
StorageSP O |
TrucksSP
PathwaysSP 2

StorageQP x| |

X x X
XX g [} 3
Z1000 :
. o b & x ¥ B
*
S * o *
43 et
%] 07 X
@ 100 - TrucksQP +|
> ° 24K TPPQP %
TrucksQP + z * x StorageQP ¥
TPPQP X < X + RoversQP
['%
Q
%}

" L L T
1000

10 100 10000
LPRPGP-A Solution Cost

10 100 1000 10000
LPRPGP-A Solution Cost

(c) Comparing the Cost of the Best Solution Found After 30 Minutes on Mutually Solved Problems

Figure 2: IPC scores over time and Comparison on Mutually Solved Problems

ences to achieve up-front and plans to achieve these (Hsu
et al. 2006). The current implementation is not, however,
robust across this set of domains.

On the numeric planning domains LPRPG-P demonstrates
exceptional performance compared to existing planners.
The (-LP) figures, in which the LP is disabled, demon-
strate that the LP (used only in numeric problems) improves
performance; except in Pathways where increased per-node
evaluation time outweighs benefits. The loss in Pathways
is small compared to the much larger gains in the other do-
mains. Despite being able to solve the equivalent compe-
tition problems, SGPLAN 5.1 fails on our debugged non-
temporal problems. MIPS-XXL handles all of the domains;
but, limited heuristic guidance with respect to preferences
affects its scalability, and ability to find low cost solutions.

Next, we investigate solution improvement over time,
Figures 2a,b, to see how we might expect planners to con-
tinue to scale. The greatest period of solution improvement
is up to 10 seconds for most planners; however, the anytime
planners continue to produce better solutions at 30 mins.
Further, LPRPG-P-A achieves a greater score after 1 second
than MIPS-XXL, HPLAN-P and SGPLAN-W do in 30 min-
utes. Performing EHC then BFS outperforms BFS alone.

Whilst a good measure of both coverage and solution
quality, IPC scores can reward highly a planner that has
strong coverage over one that produces lower cost solutions
but does not scale. To address this we present results, Fig-
ure 2¢, comparing LPRPG-P-A to the 2 best other planners
above, and the standard RPG (-A) on mutually solved prob-
lems; points above the line indicate LPRPG-P generated a
lower cost plan. Here we do not award the score of the empty
plan, we include only solutions generated by the planners.
Our solution cost is lower than that of the standard RPG and
HPLAN-P; further it is comparable to that of SGPLAN 5.1.

33

Acknowledgements

The authors would like to thank Giuseppe Turelli for early
investigations in to this work and Sheila Mcllraith for help-
ful discussions. We also thank J Benton, Emil Keyder, Jorge
Baier and Shahid Jabbar for assistance with their planners.

References
Baier, J.; Bacchus, F.; and Mcllraith, S. 2007. A heuristic search ap-
proach to planning with temporally extended preferences. In IJCAI 2007.
Bell, K. R. W,; Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009.
The role of Al planning as a decision support tool in power substation
management. Al Communications 22(1):37-57.
Benton, J.; Do, M. B.; and Kambhampati, S. 2009. Anytime heuristic
search for partial satisfaction planning. AZJ 173.
Benton, J.; van den Briel, M.; and Kambhampati, S. 2007. A Hybrid
Linear Programming and Relaxed Plan Heuristic for Partial Satisfaction
Planning Problems. In ICAPS 2007.
Coles, A. L., and Smith, A. J. 2007. Marvin: A heuristic search planner
with online macro-action learning. JAIR 28.
Coles, A. L; Fox, M.; Long, D.; and Smith, A.J. 2008. A Hybrid Relaxed
Planning Graph-LP Heuristic for Numeric Planning Domains. In /CAPS
2008.
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-Scale Optimal
PDDL3 Planning with MIPS-XXL. In IPCS5 booklet, ICAPS.
Gerevini, A. E.; Long, D.; Haslum, P.; Saetti, A.; and Dimopoulos, Y.
2009. Deterministic Planning in the Fifth International Planning Com-
petition: PDDL3 and Experimental Evaluation of the Planners. AIJ 173.
Hoffmann, J. 2003. The Metric-FF Planning System: Translating Ignor-
ing Delete Lists to Numeric State Variables. JAIR 20.
Hsu, C., and Wah, B. 2008. SGPlan 6 source code,
http://ipc.informatik.uni-freiburg.de/planners, accessed 14/09/10.
Hsu, C.-W.; Wah, B.; Huang, R.; and Chen, Y. 2006. New Features in
SGPlan for Handling Preferences and Constraints in PDDL3.0. In IPC5
booklet, ICAPS.
Kabanza, F., and Thiébaux, S. 2005. Search control in planning for
temporally extended goals. In ICAPS 2005.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled away.
JAIR 36.

