
Scalable Scheduling for Hardware-
Accelerated Functional Verification

Michael D. Moffitt
IBM Corp.

11400 Burnet Rd.
Austin, TX 78758-3493

mdmoffitt@us.ibm.com

Gernot E. Günther
IBM Corp.

1701 North St.
Endicott, NY 13760-5553
gernotg@us.ibm.com

Abstract
We consider an application of scheduling to hardware-
accelerated functional verification, a massively-parallel com-
putational paradigm used in the simulation of complex in-
tegrated circuits. Our domain requires the compilation of
logical primitives into a set of instruction memories that op-
timize the concurrency and communication between tightly
synchronized processing units. The scheduling process is
burdened by a complex model in which all logical dependen-
cies must be resolved by a dynamic network of routes that
compete for sparsely distributed resources. We describe a se-
ries of optimization steps that cooperate to minimize simula-
tion depth while scaling to problem sizes on the order of a
billion gates. Our approach targets an industrial acceleration
architecture containing 262,144 parallel processors.

In the field of electronic design automation, the purpose
of functional verification is to ensure that the behavior of a
logic design conforms to its specification (Wile, Goss, and
Roesner 2005). The importance of verification to the de-
sign of integrated circuits cannot be overemphasized; failure
to detect bugs prior to fabrication can lead to catastrophic
results and potentially the loss of hundreds of millions of
dollars, as in the case of the infamous Intel FDIV bug (Sha-
rangpani and Barton 1994). The task of verifying an ad-
vanced microprocessor is extremely difficult, and has even
been deemed “the most complex of all human endeavors”
(Markoff 2008). To date, logic simulation remains the dom-
inant technique for system-level validation of complex mi-
croprocessors: a design-under-test is driven by vectors of
inputs, and properties encountered in the sequence of states
are checked for correctness.

As compared to the speed of a fabricated chip, software-
based simulators are painfully slow; in response, massively-
parallel hardware accelerators can be used to increase per-
formance by several orders of magnitude, reducing other-
wise month-long simulations to days or even hours (Schu-
bert 2009). The hardware accelerator is programmed by
loading its memory with a statically compiled instruction
stream produced prior to simulation by a compiler that
schedules each logical primitive at a specific time on a spe-
cific processor. Dependencies between primitives in the
netlist induce precedence relations in the graph, and the

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

communication and concurrency between tasks on parallel
processors must be aggressively optimized to maximize the
efficiency and efficacy of the accelerator. Poor compilation
may lead to slower simulation speeds and, in the worst case,
large instruction memories that eclipse the capacity of the
machine. Due to the enormous cost of building and main-
taining a fleet of hardware accelerators, the compiler’s abil-
ity to minimize simulation depth is of utmost importance to
the verification effort.

Superficially, the aims of parallel logic simulation echo
the same concerns faced by traditional multi-machine
scheduling models (Pinedo 2008). Indeed, many of the clas-
sical conditions are present: each gate (or job) is processed
once, no machine may process more than one gate at a time,
the simulation schedule is determined offline, etc. The pres-
ence of alternative resources (Focacci, Laborie, and Nuijten
2000) and precedence constraints (Aho and Mäkinen 2006;
Gacias, Artigues, and Lopez 2010) is also quite typical in
the literature. Yet, the compilation process for hardware-
accelerated verification is differentiated (in part) by a strong
routing requirement: every source-sink dependency imposes
not only a constraint over their pairwise ordering, but also
the need to route the result of gate evaluations through the
various resources of the machine.1 The topology of a route
influences (and is influenced by) the assignment of gates to
processors and stages, as well as the resources consumed by
competing routes. Hence, the compiler must be capable of
synthesizing legal routes between gates as it schedules while
intelligently managing the allocation of routing resources.

This tight coupling of scheduling and routing reflects
a notable departure from traditional problem definitions:
even the resource constrained project scheduling problem
(RCPSP) – one of the most general scheduling formulations
(Laborie 2005; Lombardi and Milano 2009) – assumes that
resources are consumed only by the activities themselves.
Any dependence declared between activities merely affects
their pairwise ordering, and fails to model the complexities
of communicating between them. Since the processors of
the machine require precise synchronization, subtle details
of the accelerator architecture cannot be easily ignored or

1In contrast to vehicle routing formulations (Beck, Prosser, and
Selensky 2003) where steps along a path visit a statically defined
set of nodes, our routes connect a dynamically determined series of
resources required to transmit data between processors.

162

Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling

e

f

g

h

j

k

reg

reg

reg

reg
a
b

c
d

i
l

P1P2P3P4

t1 b a d c
t2 g f e
t3 i h
t4 k
t5 l j

(a) (b)

Figure 1: (a) A sample netlist. (b) A simulation schedule
parallelized over four processing units.

simplified using a pure abstraction. These challenges are
compounded by limitations enforced by the instruction set,
creating a delicate tradeoff between the execution of gates
and the routing of their inputs/outputs. Finally, the sheer
size of modern electronic designs dwarfs the vast majority
of academic scheduling benchmarks; instead of optimizing
makespan for a few dozen jobs and machines, we must dis-
tribute up to a billion gates across over a quarter-million par-
allel logic processors. Collectively, these challenges place
hardware acceleration in an entirely different league than the
problems typically faced in the literature, presenting both a
burden and an opportunity to the scheduling community.

In this paper, we introduce hardware-accelerated func-
tional verification as an applied domain for scheduling. We
describe the details of an acceleration architecture that must
be addressed by a robust scheduling engine, including limi-
tations imposed by the machine itself as well as the instruc-
tion set used to program the memories of its processors. We
then discuss opportunities for optimization that the compiler
must exploit to successfully build models for complex de-
signs. Finally, we describe elements of a compilation flow
that cooperate to minimize simulation depth. An implemen-
tation of our approach is evaluated across a suite of modern
designs (containing up to 200 million gates) targeted for an
industrial accelerator with 262,144 parallel processors.

Preliminaries
Logic Design and Functional Verification
The development of an integrated circuit (such as a micro-
processor or controller) begins with a behavioral description
of its functionality. This description – commonly written in
a hardware description language (HDL) – is transformed via
logical synthesis into a gate-level logical netlist. A netlist is
defined by a set of gates G and a set of nets N , where each
net ni ∈ N maps a source gate gi to a set of sinks S(gi).
The output of each gate is determined by a boolean func-
tion over the binary values of its inputs. A subset of gates
called registers are state-holding elements whose values do
not change between clock boundaries; the remaining combi-
national logic connecting these registers determines the tran-
sitions between states of the machine.

A logical netlist may be consumed by one of two pro-
cesses. First, it may be produced for consumption by phys-
ical synthesis, a process that places gates and routes wires
between them while ensuring the physically realized design
meets all frequency targets. Alternatively, if the design is

still in the early phases of development, the netlist may be
used to perform functional verification of the model to en-
sure that the behavior of the design conforms to its specifica-
tion (Wile, Goss, and Roesner 2005). This is achieved using
logic simulation, which explores a sampling of paths in the
state space by bombarding the model with vectors of input
values and checking for correctness.

Parallel Logic Simulation
As simulation functionally evaluates the netlist over a se-
quence of simulation cycles, the results of each gate (start-
ing with registers) are propagated to their downstream sinks.
For instance, consider the toy netlist in Figure 1(a). Before
gate h can be evaluated, the output of each of its sources (e,
f, and g) must be known. Any topological order is sufficient
to establish a serial simulation schedule, such as:

[a, b, c, d, e, f, g, h, i, k, j, l]

However, some gates (such as h and i, or j and l) may be
evaluated independently from one another, giving way to
a model parallelism that enables some computation to be
performed concurrently. Figure 1(b) illustrates one possible
simulation schedule over four processing units. The length
(or depth) of this simulation is only 5 stages, as opposed to
the 12 stages of the serialized version.

The topic of parallel logic simulation goes back more
than a quarter century (Smith 1986), with much of the prior
literature focusing on software-based simulation schemes.
Exploiting model parallelism in software simulation is chal-
lenging for several reasons. Many of the event-driven strate-
gies employed to increase efficiency – such as limiting eval-
uation to only those gates whose inputs have changed from
the previous cycle – make computational workload unknown
prior to execution, preventing an offline parallelization algo-
rithm from determining an intelligent allocation of logical
primitives to threads or processing units. In addition, general
purpose microprocessors offer relatively loose synchroniza-
tion schemes, and the number of threads / cores is dwarfed
in comparison to the amount of parallelism present in the
model. Finally, software is inherently slow; no amount of
cache or multithreading can compensate for the difference
in speed as compared to a fabricated chip. These concerns
motivate the need to enhance simulation speed using special-
purpose hardware accelerators.

Anatomy of a Hardware Accelerator
Hardware accelerators come in many forms, and are typ-
ically targeted to specific applications and domains. In the
context of functional verification, simulation schedules must
be statically compiled into instruction memories that are
executed by tightly synchronized parallel logic processors
(Darringer et al. 2000). In optimizing for logic simulation,
the difficulty of exposing and exploiting model parallelism
is compounded by the limitations and requirements of the
machine architecture. In particular, it is worth noting that
the parallel simulation schedule in Figure 1(b) makes the
following implicit assumptions:
• The output of every gate evaluation is available instanta-

neously to all successors and does not expire.

163

Logic
Processor

Instruction
Memory

Data
Memory

From other
processors

To other
processors

gate

opcd[0:3]

fn_out[0:2]

op0[0:4] op1[0:4]

MUX

left_out[0:2]
right_out[0:2]

recycle[0:4]
data[0:F]
LP_in[0:1]

(a) (b)

Figure 2: (a) A logic processor, along with its instruction
memory and data memory. (b) Inputs selects for a gate.

• All processors are fully connected.

• Routing is free (i.e., no resources are consumed for com-
munication)

In practice, compilation requires a much more elaborate
model that is deeply entrenched in the micro-architecture
of the machine. In this section, we reveal the fundamental
components of a modern industrial simulation accelerator as
they relate to scheduling optimization.

The Logic Processor
A hardware accelerator is composed of many individual
logic processors or LPs, each with its own dedicated instruc-
tion memory and data memory (see Figure 2(a)). The pro-
cessor is designed for a simple purpose: to fetch an instruc-
tion, decode it, evaluate the operation, and store the result in
data memory. This process is repeated over several stages
until the simulation cycle is complete, at which point the
next cycle can begin again at instruction zero. The instruc-
tion depth of any single LP is comparatively small (e.g., on
the order of thousands of stages per simulation cycle), and
large designs typically span hundreds of thousands of LPs.
These logic processors lie at the bottom of a multi-level ma-
chine hierarchy: a full system contains several boards that
each contains several chips that each contains many LPs, as
shown in Figure 3.

The evaluation of a gate requires access to the values of its
sources; hence, the task of routing these values between var-
ious resources of the machine is central to the programming
of the accelerator. Although gate evaluations are ultimately
written to the data memory, high latency is associated with
each memory request. To reduce delay, each logical pro-
cessor maintains an internal shift register that temporarily
caches the output of recently evaluated gates. This regis-
ter (fn out) acts effectively as a fixed-width queue, whose
contents advance automatically each stage. Provided that
the evaluation of a gate’s source still remains on the regis-
ter, that value may be routed “for free” without incurring the
cost of accessing memory. Even though no parallelism can
be exploited on a single LP, the ordering of gates can still
substantially impact the quality of the schedule.

Example 1(a): Consider a 5-gate netlist
{d(b, c), e(a, d)} to be scheduled on a single logic

SystemSystem

BoardBoard

ChipChip

BoardBoard BoardBoard

ChipChip

LPLP LPLP LPLP LPLP LPLP LPLP LPLP LPLP LPLP LPLP LPLP LPLPLPLP

ChipChip

Figure 3: A hierarchy of accelerator components.

processor with a 3-bit fn out shift register. Of the
following two orderings:

o0 = [a, b, c, d, e] o1 = [b, c, a, d, e]

only o1 can successfully execute in five stages. Order-
ing o0 cannot, since gate e is separated from its source
a by four stages (longer than the width of the fn out).
The scheduling of e must thus wait for the value of a
to be written to (and read from) memory, incurring a
delay of several dozen stages. �

To extend access to values of gates that would otherwise
be lost to data memory, the micro-architecture may include
another shift register (recycle) intended to retain selected
pieces of data longer than allowed by the fn out. A single
value may be placed on the recycle at any stage.

Example 1(b): Consider the same netlist from Ex-
ample 1(a), but now assume the presence of a 5-bit
recycle shift register. The ordering o0 = [a, b, c, d, e]
may now be scheduled in five stages (numbered 1
through 5) as follows. The routing of d’s inputs at stage
4 may be achieved using fn out:

(input b) fn out(2)⇒ op0(4)
(input c) fn out(3)⇒ op1(4)

where fn out(x) denotes the output of the function
scheduled at stage x, and opi(y) denotes the ith input
to the function scheduled at time y. The routing of e’s
inputs at stage 5 may be achieved using both fn out
and recycle:

(input a) fn out(1)⇒ recycle(4)⇒ op0(5)
(input d) fn out(4)⇒ op1(5)

Since the value of a is added to the recycle at stage 4
(and is available at stage 5), it would be accessible by
any instruction executed at stage 9 or earlier. �

Input to the recycle shift register may come from either
the fn out or even the recycle itself, hence the values of
some gates may be recycled indefinitely if so desired. How-
ever, the width of the register is fixed, and like any limited
resource it must be used judiciously.

164

Processor Communication
A chip is composed of multiple logic processors execut-
ing lock-step in parallel. Invariably, the input to a gate on
one processor will be located on another LP, requiring a
communication mechanism to route values between multi-
ple processing units. To scale to hundreds of LPs per chip
while exploiting the physical locality of some processors, a
wide variety of communication networks (and combinations
thereof) are typically used to connect them.

Some processors may be so closely connected that the
output of one can be used directly as the input to its neigh-
bors. In such a case, the foreign LP may be indexed as easily
as the various stages of the current LP’s own fn out. Other-
wise, the output can be routed to an output register (lp out)
that broadcasts to a larger set of LP’s; this value may be
selected by any of the receiving LP’s via an input register
(lp in).

Example 2: Consider the same netlist from Example
1(a), but now assume the presence of two logic pro-
cessors LP0 and LP1 each having a 3-bit fn out shift
register. Also assume that gates {a, b, d} are assigned
to LP0 (with a and b scheduled at stages 1 and 2, re-
spectively), and gates {c, e} are assigned to LP1 (with
c scheduled at stage 1).
If the two LPs are directly connected, all inputs to gate
d may be accessed directly in stage 2:

(input b) fn out[0](1)⇒ op0[0](2)
(input c) fn out1⇒ op1[0](2)

where fn out[n](x) denotes the output of the function
scheduled at stage x onLPn. If, however, the LPs com-
municate only through indirect registers, the schedul-
ing of gate d must be deferred to stage 4 due to the
routing of c:

fn out1⇒ lp out[1](2)⇒ lp in[0](3)⇒ op1[0](4)

This assumes unit delay between lp out[1] and
lp in[0]. If a larger delay is required, d’s other input (a)
cannot be routed; although it shares the same processor
as d, it is only available on the fn out until stage 4. �

A more complex mesh network of logic processors would
allow communication between two processors LPx1,y1 and
LPx2,y2 only if x1 = x2 or y1 = y2, using different register
pairs to broadcast and receive along either dimension. Rout-
ing between distant processors would then require multi-leg
paths of the form:

fn out[x1, y1](t)⇒
lp out[x1, y1](t+ δ)⇒

lp in[x1, y2](t+ δ + 1)⇒
lp out[x1, y2](t+ δ + 2)⇒

lp in[x2, y2](t+ δ + 3)⇒
opi[x2, y2](t+ δ + 4)

where 1 ≤ δ ≤ length (fn out). As before, use of the
recycle shift register at any intermediate step may extend
the availability of the value being routed.

Intra-Chip Connectivity
As discussed earlier, processors must communicate not only
between themselves on a single chip, but across several
chips in the system. A full discussion of chip communica-
tion paradigms falls outside the scope of this work; instead,
we offer two observations. First, the overhead involved in
routing values between gates increases as communication
between elements at higher levels in the hierarchy is re-
quired. Here, the speed of light is the bottleneck: the time
needed for a signal to cross multiple chip boundaries can be
far greater than is allowed by one clock cycle. Second, pairs
of connected chips may be restricted to communicate only
through a subset of logic processors; the processor(s) con-
necting chip i to chip j may or may not overlap with the
processor(s) connecting chip i to chip k.

The Instruction Set
Each accelerator resource used to store or transmit data must
select from a finite number of inputs. The task of deter-
mining which inputs should be made available to which re-
sources is left to the accelerator designer, who must balance
the desire to increase connectivity with the demands to re-
duce the size of the instruction memory. Many of these de-
cisions are “baked into” the machine and cannot be altered
after the fact (and thus reflect hard constraints to be obeyed
by the compiler). The connectively between elements estab-
lishes the core communication fabric to which the schedul-
ing engine must adhere.

Input Selects and Instruction Words
Consider an architecture defined by:
• a 2-input logic primitive
• a 3-bit fn out shift register
• a 5-bit recycle shift register
• two 8-bit data memory read ports (see next section)
• a 1-bit lp out register broadcasting to all LPs
• a 2-bit lp in register selecting one of 256 other LPs
In Figure 4, we show the input selects available to each re-

source in one possible realization of this hypothetical micro-
architecture. Each column represents the input to a resource
to be programmed, and each row represents the number of
outputs of a resource that may be selected. For instance,
gate operand op0 may select from 32 possible sources: 3
bits from fn out of the current LP or its two neighbors, 5
bits from the recycle, 16 bits from the data memory, and
two from the lp in register. These 32 options require 5 bits
to program op0, as shown in the multiplexer of Figure 2(b).
Other resources require different amounts of programming
bits depending on their connections, such as the recycle
register whose inputs are comparatively limited.

The various input selects are grouped together into in-
struction words that are issued to the processor. From a
scheduling perspective, the simplest instruction set is one
that allows the programming of all resources at any stage.
After taking into account the 4 bits needed to specify the
function opcode (a truth table defining the boolean calcu-
lation to be performed), a full instruction for our machine

165

op0 op1 recycle lp out lp in
fn out 3×3 3×3 1 3×3 -
recycle 5 5 1 5 -

data mem 2×8 2×8 - - -
lp in 2 2 2 2 -
lp out - - - - 256
Total 32 32 4 16 256

(5 bits) (5 bits) (2 bits) (4 bits) (8 bits)

Figure 4: The input selects afforded to each resource to be
programmed.

would require a 28-bit word. In any stage where only some
operations are performed, the remaining bits that would oth-
erwise program a resource are wasted.

More commonly, the instruction word size is condensed
by permitting only a subset of operations to be executed in
a single stage. Each instruction must be decoded to deter-
mine which bits correspond to what resources. For instance,
the programmable bits may be split into two types of 15-bit
instructions: a gate evaluation instruction:

← 1-bit
type →←

4-bit
opcd →← 5-bit op0 →← 5-bit op1 →

and a routing instruction:

← 1-bit
type →←

2-bit
recycle→←

4-bit LP
out

→← 8-bit LP in →

If, for example, a majority of inputs can be routed directly
from fn out, the instruction memory can be densely
packed with gate evaluations. These will be interleaved with
occasional routing instructions to communicate data back
and forth between processors. Depending on the number of
internal registers and their connectivity, the instruction set
can become quite exotic.

Although the compiler is not responsible for determining
this patchwork of operations, the instruction set neverthe-
less has a profound impact on the decisions faced by the
scheduling engine. For instance, observe that the solution
to Example 1(b) requires the recycle to be programmed
in the same stage that a gate is being executed, a task that
is not possible if these operations are decoupled. Hence,
the compiler must not only consider the demands imposed
upon the state elements of the accelerator (its shift registers,
cross-processor buffers, etc.), but also consider the mutual
exclusivity between operations as bits are consumed in the
instruction memory.

Instruction Cycles and Data Memory Read Ports
Communication with the data memory introduces its own
challenges. Since the output of every stage is written to
this memory, its size correlates to the maximum number of
stages that the simulator can evaluate in one simulation cy-
cle. Hardware limitations dictate the maximum number of
accesses (read or write ports) that the data memory can sup-
port per stage.

The data memory is typically organized in rows of word
size N , where each bit contains the output of one stage:

dm[row 0] : 11001001 (output of stages 0− 7)
dm[row 1] : 01011010 (output of stages 8− 15)
dm[row 2] : 10100110 (output of stages 16− 23)
...

Since N bits are written at the same time, only 1 write port
is required every N stages. The remaining ports are avail-
able as read ports to make additional data available to the
input selects. The number of instruction memory bits re-
quired to program the read ports depends on the depth of
the data memory; a 2048-stage deep memory with an 8-bit
data word would require eight address bits to program each
read port. Since this address specifies an entire row of gate
evaluations, each bit within that row is available as a distinct
input select.

The bits required to program all read ports are packaged
along with groups of individual instruction words to form
instruction cycles: the writing of gate outputs is deferred
until a cycle is complete, and instructions within a single
cycle share access to multiple read ports. Assuming two
read ports per cycle, an instruction cycle for our hypothetical
machine would be 136 bits in length:

←2×8-bit
DMRP

→← 15-bit
inst

→← 15-bit
inst

→← ... →← 15-bit
inst

→

← stage: →← x →← x+ 1 →← ... →← x+ 7 →

Since the data memory is the only resource with full access
to the entire history of gate values, read ports are a precious
commodity. Yet, the “cycle alignment” issues that arise from
memory I/O have a significant impact on the how the sched-
uler should optimize their use.

Example 3: Consider the nets
{c(a, b), d(a, c), e(a, c)} in the context of a larger
model to be scheduled on a logic processor that allows
2 DMRPs every 8 stages. Assume that gates {a, b, c}
may be scheduled in the range [15 − 17], and {d, e}
may be scheduled in the range [63− 65]:

15 16 17 63 64 65

{a b c} ... {d e }
The assignment:

(a, b, c, d, e)← (15, 16, 17, 63, 64)

requires the consumption of four DMRPs: d’s sources
(a and c) reside in two different instruction cycles,
hence a read port is needed for each (the same is true
for e). In contrast, only two DMRPs are required if the
positions of a and b are swapped:

(a, b, c, d, e)← (16, 15, 17, 63, 64)

Both a and c now live in the same data memory word,
and can be accessed by the same address. Finally,
the number of DMRPs may be reduced to one if the
scheduling of d and e is deferred by one stage:

(a, b, c, d, e)← (16, 15, 17, 64, 65)

In this case, a single instruction cycle contains the sinks
d and e, which may issue a single DMRP to access their
shared sources. �

166

N O P Q
J K L M

I

E F G H
A B C D

(a)

N O P Q
J K L M

I

E F G H
A B C D

(b)
Figure 5: Optimal min-cut partitionings do not necessarily
maximize concurrency across processing elements.

A Compilation Flow
Compilation for a massively-parallel hardware accelera-
tor must simultaneously resolve a classical multi-machine
scheduling problem and a dynamic routing allocation prob-
lem, both of which are caked in several layers of complex-
ity. A solution is not merely an ordering over logical primi-
tives or a mapping of gates to stages or processors. Instead,
the output is a set of instruction memories used to program
the processors of the machine. These instruction memories
should minimize simulation depth while simultaneously en-
suring the valid placement of gates to LPs as well as the
valid routing of values between them (respecting all laten-
cies, shift register widths, input selects, etc.).

In order to accommodate model sizes with nearly a billion
gates, we avoid the systematic search paradigms developed
to seek optimality for small benchmarks, and instead em-
ploy a compiler flow that strings together several point-tool
optimizations into a scalable scheduling engine. The recipe
presented here is by no means the only feasible approach,
yet it has evolved over time from repeated iteration and im-
provement.

Partitioning
The extreme latency encountered when communicating
across chip or board boundaries motivates the need for a
global distribution of logical primitives within the hierarchy
of the machine. Here, the micro-architecture of the individ-
ual logic processors are abstracted away, and the model of
the accelerator is reduced to a set of resources corresponding
to chip indices. Communication between tightly connected
gates should remain local, so that no one path is burdened
by excessive delay caused by off-chip dependencies.

As in (Lombardi, Milano, and Benini 2009), we formulate
this initial phase as a min-cut partitioning problem (Karypis
et al. 1997), in which nodes of a hypergraph are balanced
across multiple resources while minimizing the number of
cut edges. While partitioning methods have not gone unno-
ticed in parallel logic simulation (Sporrer and Bauer 1993;
Chamberlain 1995), prior work typically seeks to balance
only the number of gates across the resources. This may lead
to poor static schedules, as demonstrated in Figure 5. Al-
though both solutions cut comparable numbers of nets, solu-
tion (a) does not enable concurrency: the evaluation of one
portion of logic is conditional on the execution of another,
and so the scheduling of any dependent primitives must be
deferred. In contrast, solution (b) achieves maximum con-
currency in the joint scheduling of both processors:

sim. schedule for (a) sim. schedule for (b)
P0 ABCDEFGHI........ ABEFIJKNO
P1JKLMNOPQ CDGH.LMPQ

To enhance concurrency, we incorporate a multi-
dimensional demand model into the partitioning engine. All
logic primitives are divided into a series of strata that cor-
respond to types in an augmented hypergraph. Each vertex-
type pair is mapped to a scalar weight, allowing each group
of gates to be balanced independently of one another across
partitions. Several other techniques – including critical edge
weighting and directed cut minimization – further help to
improve solution quality by preserving long chains of logic
and preventing signal congestion. We refer the reader to
(Moffitt, Sustik, and Villarrubia 2011) for more details.

Prescheduling
Once the logic has been partitioned down to the chip level,
the cost of communication between logic processors is com-
paratively far cheaper. While the compiler should still at-
tempt to constrain neighboring logic to the same processor,
the detailed allocation of resources to gates and routing is a
greater concern than the pure number of cut nets.

In determining the LP assignment for a gate, several cri-
teria must be considered, including (but not limited to):

1. Which LPs are its sources assigned to?
2. Which LPs are the sources of its sinks assigned to?
3. When are each of its inputs likely to be scheduled?2

4. Which LPs are used for cross-chip communication?
5. Which LPs are most densely / sparsely populated?

These factors collectively influence the total amount of rout-
ing, the anticipated cost of routing for downstream gates,
the exploitation of short (cheap) routes, and the amount of
routing congestion on the logic processors.

The process of prescheduling considers one gate at a time,
using a combination of these factors to determine which
logic processor appears to be the best choice. The weights
corresponding to each contribution must be carefully tuned;
for instance, most criteria are optimized by assigning all
gates to a single LP, and so parallelism must be proactively
encouraged by heavily promoting assignment to idle LPs.

Scheduling and Routing
The final step in the compiler requires two operations to be
performed in tandem: the assignment of gates to stages on
their corresponding processors, and the routing of values be-
tween source-sink pairs across the internal resources of the
machine.

When a gate g is chosen to be scheduled, the earliest pos-
sible stage it may be assigned must be greater than any of
its sources. This minimum stage may or may not be avail-
able on the processor, depending on what bits are being used
in that stage for other gate or routing instructions. Once an
available stage s is found, we proceed to attempt the routing
of g’s inputs to the operand selects in that candidate stage.

2In our implementation, no actual routing is performed during
this phase, so all stage assignments are preliminary.

167

The routing from source f to sink g follows a typical
depth-first search paradigm, where a partial path may be
extended by any instruction that propagates the signal to a
subsequent resource (e.g., from fn out to recycle or from
recycle to lp out). As nodes are expanded and retracted,
bits in the instruction memory are marked as appropriate.
The goal here is not necessarily to find the shortest path, but
rather a feasible path (i.e., one that arrives at the operand se-
lect of g at stage s) using the fewest resources. Hence, each
resource is associated with an empirically determined cost,
and these costs accumulate along any partial routing path.

fn_out[n](x)fn_out[n](x)

recycle[n](x+α)recycle[n](x+α)

Cost(recycle)
Cost(lp_out)

lp_out[n](x+γ)lp_out[n](x+γ)

lp_in[n''](x+...)lp_in[n''](x+...)lp_in[n'](x+...)lp_in[n'](x+...)

Cost(lp_out) +
Cost(lp_in) C(lp_out) +

C(lp_in)

At any point in search, it is possible to establish a lower
bound on the resources required to arrive at the sink. This
estimate may be used to intelligently guide the expansion
of nodes, although ensuring the admissibility of the heuris-
tic becomes complicated when advanced techniques are em-
ployed (as described in the following section). If all in-
puts can be successfully routed, the candidate stage is ac-
cepted. Otherwise, all previously accepted routes must be
rolled back, and routing must be attempted again for the next
available stage.

Resource Reuse and Proactive Programming We refine
this basic approach by incorporating two additional tech-
niques. The first technique exploits the reuse of resources re-
served by previous paths. Consider a source-sink pair (f, g)
successfully routed between multiple processors by path p:

fn out[n](x)⇒ lp out[n](x+ δ)⇒ ...⇒ op0[n
′](x+ γ)

When a different source-sink pair (f, h) is later attempted,
any portion of path p may be reused when routing the value
of f to h. In our example, the resource lp out[n](x+ δ) has
already been programmed to broadcast the result of source
f , so no additional cost need be attributed to the expansion
of this search node. While these “free” routes serve to re-
duce redundant routing, they also make it difficult to pre-
cisely calculate the cheapest possible distance to the operand
select. If true optimality of the path is desired, an aggressive
branch-and-bound approach must be performed. In practice,
this is far too computationally expensive, and so we abort
search after the first feasible route is found.

The second technique exploits a special peculiarity of the
micro-architecture: once an input select is programmed to
select resource r at stage s, it will continue to read from r
at stages s + 1, s + 2, and so forth, until it is programmed
again to select a different source. Hence, the programming
of a resource need not coincide with its consumption.

This decoupling enables the scheduler to perform a num-
ber of sophisticated optimizations.

Example 4: Consider the nets {d(a), e(b), f(c)} to
be programmed on a pair of logic processors LP0 and
LP1. Assume that gates {a, b, c} are assigned to LP0

and gates {d, e, f} are assigned to LP1, and that the in-
struction set prohibits gate evaluations from being exe-
cuted concurrently with routing directives.
If the compiler requires all resources to the pro-
grammed at the time of their consumption, the schedule
must frequently inject instructions to program the reg-
isters on the sending and receiving LPs:

stage LP0 LP1

1 eval(a) –
2 lp out(fn out) –
3 eval(b) lp in(LP0)
4 lp out(fn out) eval(d)
5 eval(c) lp in(LP0)
6 lp out(fn out) eval(e)
7 – lp in(LP0)
8 – eval(f)

Many of these instructions serve to program resources
that are already set to the proper inputs. The compiler
may instead proactively program the communication
between LP0 and LP1, compacting the schedule sub-
stantially:

stage LP0 LP1

1 lp out(fn out) –
2 eval(a) lp in(LP0)
3 eval(b) eval(d)
4 eval(c) eval(e)
5 – eval(f) �

To enable proactive programming, our scheduler examines
bits earlier in the instruction memory “on-the-fly” to detect
if the resource is already programmed to the desired value.
Even if new programming bits must still be inserted, they
may be scheduled prior to the target stage so long as the
resource is marked as reserved during intermediate stages.

Resource reuse and proactive programming both serve to
reduce routing cost in different ways: the former prevents
duplication of signals from a specific source, while the lat-
ter prevents duplication (or clobbering) of instructions that
program a specific resource.

Industrial Accelerator Benchmarks
Scheduling benchmarks in the literature often consider in-
stances on the order of dozens or hundreds of jobs. To give
an idea of the scale of the real-world problems our com-
piler must resolve, we provide a summary of ten industrial
benchmarks in Table 1 along with various compiler statis-
tics. The largest of these benchmarks contains over 200 mil-
lion logic primitives. Our target acceleration architecture
contains 262,144 individual logic processors that are dis-
tributed among 32 boards containing 32 chips each.

Several metrics are measured to evaluate the behavior of
the compiler. While the statistics reported here are highly
anecdotal, they serve to highlight the key criteria that are
of concern to the efficacy of the scheduling engine. Hyper-
edge cut (unweighted, in thousands) relates to communica-
tion latency and should be minimized, but it is nevertheless
a misleading measure of global solution quality since it does
not capture processor concurrency. Post-partitioning rank
establishes a lower bound on simulation depth due purely to

168

Model Information Part. Stats Operand Select Distribution Resource Reuse Freq. Final Stats
name # gates # chips cut (k) rank fn out recycle lp in dmrp recycle lp in lp out depth time (s)

model 01 19,279,925 128 2525 303 23.3% 31.2% 18.1% 27.1% 31.3% 28.4% 23.6% 430 7832
model 02 25,205,857 128 6860 280 22.6% 30.6% 17.6% 28.7% 31.5% 30.3% 23.5% 406 11912
model 03 33,307,926 128 6948 309 20.4% 28.8% 15.6% 34.9% 30.3% 31.4% 24.2% 480 17010
model 04 44,992,100 128 8709 266 25.3% 27.4% 19.1% 28.1% 29.1% 26.8% 21.7% 452 16069
model 05 57,612,277 256 9196 266 25.8% 30.5% 14.1% 29.3% 30.6% 32.7% 23.7% 452 25476
model 06 69,028,199 256 17178 275 24.8% 28.9% 13.5% 32.6% 28.7% 31.2% 24.7% 470 53177
model 07 88,455,478 512 24354 293 23.9% 29.8% 17.8% 28.3% 31.7% 29.3% 24.6% 404 49487
model 08 92,453,184 512 28763 269 26.7% 30.4% 13.1% 29.5% 30.2% 33.2% 23.3% 348 46466
model 09 124,350,925 512 30475 365 23.3% 26.3% 13.2% 37.0% 31.0% 31.7% 22.1% 512 65142
model 10 206,274,833 1024 56178 402 24.5% 28.2% 12.9% 34.2% 29.8% 30.3% 23.8% 498 118470

Table 1: Summary of Benchmarks and Compiler Results for an Industrial Accelerator

delay along critical paths, and does not consider allocation
of resource to gate evaluation or routing. The distribution
of operand selects indicates which resources are commonly
used to feed gate inputs. These statistics are relatively con-
sistent across designs; for instance, roughly a quarter of all
inputs tend to access their sources directly from the fn out
register. We also report the frequency that the inputs to var-
ious resources are reused instead of programmed explicitly.
The final two metrics – simulation depth in cycles (which
directly contributes to simulation speed and the size of the
instruction memory) and compilation runtime – are the ul-
timate measures of performance. Across all benchmarks,
our compiler requires roughly 1 second of runtime for every
2,000 primitives.

Conclusions
This paper has considered an application of scheduling to
hardware-accelerated functional verification, a massively-
parallel computational paradigm used in the simulation of
complex integrated circuits. Our domain requires compila-
tion of logical primitives into instruction memories that op-
timize the concurrency and communication between tightly
synchronized processing units. The scheduling process is
burdened by a complex model in which all logical dependen-
cies must be resolved by a dynamic network of routes that
compete for sparsely distributed resources. Our approach
decomposes compilation into a series of optimization steps
that cooperate to minimize simulation depth while scaling to
problem sizes on the order of a billion gates.

Acknowledgements
The authors are indebted to Kevin Pasnik and Zoltán
Hidvégi for many useful discussions, and to Wolfgang Roes-
ner for feedback on preliminary versions of this work.

References
Aho, I., and Mäkinen, E. 2006. On a parallel ma-
chine scheduling problem with precedence constraints. J.
of Scheduling 9:493–495.
Beck, J. C.; Prosser, P.; and Selensky, E. 2003. Vehicle
routing and job shop scheduling: What’s the difference? In
Proceedings of ICAPS 2003, 267–276.
Chamberlain, R. D. 1995. Parallel logic simulation of VLSI
systems. In Proceedings of DAC 1995, 139–143.

Darringer, J. A.; Davidson, E. E.; Hathaway, D. J.; Koene-
mann, B.; Lavin, M. A.; Morrell, J. K.; Rahmat, K.; Roes-
ner, W.; Schanzenbach, E. C.; Tellez, G.; and Trevillyan, L.
2000. EDA in IBM: past, present, and future. IEEE Trans.
on CAD 19(12):1476–1497.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
scheduling problems with setup times and alternative re-
sources. In Proceedings of AIPS 2000, 92–101.
Gacias, B.; Artigues, C.; and Lopez, P. 2010. Parallel
machine scheduling with precedence constraints and setup
times. Comput. Oper. Res. 37:2141–2151.
Karypis, G.; Aggarwal, R.; Kumar, V.; and Shekhar, S.
1997. Multilevel hypergraph partitioning: Application in
VLSI domain. In Proceedings of DAC 1997, 526–529.
Laborie, P. 2005. Complete MCS-based search: Application
to resource constrained project scheduling. In Proceedings
of IJCAI 2005, 181–186.
Lombardi, M., and Milano, M. 2009. A precedence con-
straint posting approach for the RCPSP with time lags and
variable durations. In Proceedings of CP 2009, 569–583.
Lombardi, M.; Milano, M.; and Benini, L. 2009. Robust
non-preemptive hard real-time scheduling for clustered mul-
ticore platforms. In Proceedings of DATE 2009, 803–808.
Markoff, J. 2008. Burned once, Intel prepares new chip
fortified by constant tests. The New York Times.
Moffitt, M. D.; Sustik, M.; and Villarrubia, P. G. 2011. Ro-
bust partitioning for hardware-accelerated functional verifi-
cation. In Proceedings of DAC 2011 (to appear).
Pinedo, M. L. 2008. Scheduling: Theory, Algorithms, and
Systems. Springer, third edition.
Schubert, K.-D. 2009. Verification challenge of a multi-core
processor. In Proceedings of ICCAD 2009, 809–812.
Sharangpani, H. P., and Barton, M. L. 1994. Statistical
analysis of floating point flaw in the pentium processor.
Smith, R. J. 1986. Fundamentals of parallel logic simula-
tion. In Proceedings of DAC 1986, 2–12.
Sporrer, C., and Bauer, H. 1993. Corolla partitioning for dis-
tributed logic simulation of VLSI-circuits. In Proceedings of
PADS 1993, 85–92.
Wile, B.; Goss, J.; and Roesner, W. 2005. Comprehensive
Functional Verification: The Complete Industry Cycle. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

169

