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Abstract

Computing a good policy in stochastic uncertain envi-
ronments with unknown dynamics and reward model
parameters is a challenging task. In a number of do-
mains, ranging from space robotics to epilepsy man-
agement, it may be possible to have an initial training
period when suboptimal performance is permitted. For
such problems it is important to be able to identify when
this training period is complete, and the computed pol-
icy can be used with high confidence in its future per-
formance. A simple principled criteria for identifying
when training has completed is when the error bounds
on the value estimates of the current policy are suffi-
ciently small that the optimal policy is fixed, with high
probability. We present an upper bound on the amount
of training data required to identify the optimal policy
as a function of the unknown separation gap between
the optimal and the next-best policy values. We illus-
trate with several small problems that by estimating this
gap in an online manner, the number of training samples
to provably reach optimality can be significantly lower
than predicted offline using a Probably Approximately
Correct framework that requires an input ε parameter.

Many real-world planning challenges take place in uncer-
tain, stochastic domains. Such problems are even more chal-
lenging when the reward and dynamics model parameters
that describe the domain are initially unknown. It is neces-
sary to implicitly or explicitly estimate these parameters in
order to compute a good plan for said domains, even though
the model parameters themselves are not of interest.

In a number of interesting planning domains, such as
game playing agents, space robots such as the Mars rover or
Robonaut, or medical applications including epilepsy man-
agement (Guez et al. 2008), it may be reasonable to expect
to have an extended training period, during which subopti-
mal plans can be computed and tried. However, after train-
ing completes, it is important to ensure the resulting policy is
optimal with high probability. For example, a patient could
be monitored in a hospital until drug dosage schedules have
been tuned for the patient, but mistakes made when the pa-
tient is far from medical facilities could be severe. In such
applications, we wish to know when the computed policy
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can be used with high confidence in its future performance.
We analyze a criteria for this optimal policy identification.

Computing a policy, a mapping of states to actions, while
learning the model parameters falls under the class of re-
inforcement learning (RL). There has been a large body of
approaches to balancing the tradeoff between model param-
eter identification and planning using the existing estimated
models, commonly known as the tradeoff between explo-
ration and exploitation. Perhaps the most promising ap-
proaches for this tradeoff are recent techniques that pose
this challenge as a partially observable Markov decision pro-
cess (POMDP) planning problem, by computing plans over
the cross product of the system state and model parameters
(see for example Poupart et al. (2006), Asmuth et al. (2009),
and Kolter and Ng (2009)). Another popular approach for
solving planning problems with initially unknown model pa-
rameters are Probably Approximately Correct (PAC) rein-
forcement learning algorithms, such as Brafman and Ten-
nenholtz’s (2002) R-max algorithm. For an input δ and ε,
PAC RL algorithms guarantee that each action selected will
have a value that is ε-close to the value of the optimal action,
on all but a number of steps that is polynomial function of
δ and ε, with probability at least 1 − δ. Neither POMDP-
nor PAC-style approaches explicitly seek to identify when
the optimal policy has been found with high likelihood. The
criteria we discuss for identifying the optimal policy can be
used in conjunction with these and a wide variety of other
techniques for planning with unknown model parameters.

We consider domains described as finite-state and finite-
action Markov decision processes (MDPs). The optimal pol-
icy for an MDP has been identified when the error bounds on
the estimated state-action values do not change the resulting
policy, with high probability. This criteria for identifying
the optimal MDP policy is essentially identical to the ac-
tion elimination and stopping criteria presented by Even-Dar
and colleagues (2006). We extend this prior work by pro-
viding an upper bound on the number of required samples
in order to identify the optimal policy as a function of the
unknown separation gap between the optimal and next-best
state-action values. We illustrate with several small prob-
lems that by estimating this gap in an online manner, the
number of training samples to provably reach optimality can
be significantly lower than predicted by PAC-RL approaches
that requires an input ε parameter.
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Figure 1: (left) Q̃ estimates and (right) the Q̄ values (shown
by thick horizontal lines) which use the lower bound of the

best Q̃ action, and the upper bounds of all other actions.

a2 maximizes the Q̄ value, but a1 maximizes Q̃, showing
the policy for this state could change given the current error
bounds, and is not yet guaranteed to be optimal.

Background

A MDP is a tuple 〈S, A, Ts,a(s′), R(s, a), γ〉, where S and
A are the discrete set of states and actions; Ts,a(s′) is the
dynamics model that expresses the probability of starting in
state s, taking action a and arriving in state s′; R(s, a) is the
deterministic1 reward received from taking action a in state
s; and γ is the discount factor. All rewards are assumed to
lie between 0 and a known Rmax.

The goal is to learn a policy π : S → A. The value of a
policy π for a state s is the expected sum of future rewards
from following policy π starting in state s:

V π(s) = E

⎡
⎣ ∞∑

j=0

γjr(sj , π(sj))|s0 = s′

⎤
⎦ ,

where r(sj , π(j)) is the reward received at step j, s0 is
the initial state and the expectation is taken with respect
to the transition dynamics. Similarly, the state-action value
Qπ(s, a) is :

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

Ts,a(s′)V π(s′). (1)

Initially the parameters of the reward R and transition model
T are unknown.

Optimal Policy Identification

In this section we describe a procedure for identifying when
the optimal policy has been found, with high probabil-
ity. This procedure is semantically equivalent to the stop-
ping criteria presented by Even-Dar and colleagues (2006)
though our presentation is slightly different.

The key idea is to maintain uncertainty bounds around the
estimates of the state-action values, and consider whether
the best action for a particular state could change given these
bounds: see Figure 1 for a graphical illustration. The state-
action values depend on the current dynamics model param-
eter estimates which are computed from the observed state-

action-next state transitions. Let Ṽ and Q̃ be the state and

1We believe the results are easily extendable to unknown,
stochastic rewards.

state-action values, respectively, computed using the esti-

mated dynamics model T̃ , and let V and Q be the optimal
state and state-action values computed using the unknown
true dynamics model T . The difference between the optimal
and estimated state-action values is

ΔQ(s, a) = |Q(s, a)− Q̃(s, a)|.

We will use Δmax
Q to denote the maximum such difference

over all state-action pairs. We can then substitute in the ex-
pression for Q(s, a) from Equation 1,

ΔQ(s, a) = γ

˛̨
˛̨
˛̨
X

s′

Ts,a(s′)V (s′)−
X

s′

T̃s,a(s′)Ṽ (s′)

˛̨
˛̨
˛̨

= γ

˛̨
˛̨
˛̨
X

s′

Ts,a(s
′
)(V (s

′
) − Ṽ (s

′
))+

X

s′

Ṽ (s
′
)(Ts,a(s

′
)−T̃s,a(s

′
))

˛̨
˛̨
˛̨

≤ γ|
X

s′

Ts,a(s′)max
a2

(Q(s′
, a2)−Q̃(s′

, a2))|+γṼmaxL1(Ts,a, T̃s,a)

≤ γΔmax
Q +γṼmaxL1(Ts,a, T̃s,a) (2)

where we have added and subtracted Ts,a(s
′)Ṽ (s′), used

the triangle inequality, upper bounded Ṽ by its maxi-

mum value Ṽmax, and used the definition of the L1 norm,
L1(Ts,a, T̃s,a) ≡

∑
s′∈S |Ts,a(s′) − T̃s,a(s

′)|. Equation 2
must hold for Δmax

Q ,

Δmax
Q ≤ γΔmax

Q + γṼmaxL1(Tsm,am
, T̃sm,am

)

Δmax
Q ≤

γṼmaxL1(Tsm,am
, T̃sm,am

)

1− γ
, (3)

where sm and am are the state-action pair with the largest L1

error. Therefore the maximum error will be bounded above
by the largest L1 difference between the transition models

(over all state-action pairs) and the maximum value Ṽmax.
This is a known result that has been used in past PAC RL
proofs (see e.g. Strehl and Littman, 2005).

Given a bound on the L1 norm of the transition model that
holds with probability at least 1− δ, Equation 3 can be used
to determine if the policy has converged with high proba-
bility to the optimal plan (see Algorithm 1). Briefly, the
algorithm returns that convergence has not occurred if any
state-action pairs have not yet been sampled, since this is re-
quired in order to obtain an estimate of, and a well-defined
bound on, the transition dynamics of each state-action pair.
After all state-action pairs are sampled at least once, the de-
terministic reward model will be known exactly. On any
future time steps, Algorithm 1 involves computing an error
bound on the state-action values and checking if the best
action for any state-action pair could change given the po-
tential error in the estimated state-action values. If the best
action stays the same for all states, then the policy has con-
verged. To handle states where there are two or more actions
with the same optimal state-action value, in addition to δ the
user should also provide an error bound εmin: Algorithm 1
returns true when the optimal policy has been reached or the
maximum state-action value error is εmin.

Bounding the Transition Model Error
To compute an upper bound on the L1 distance between
the estimated and true dynamics models, we estimate con-
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fidence bounds on the model parameters. Since the dynam-
ics models are multinomials, there exist known confidence-
intervals, developed by Weissman et al. (2003). Strehl
and Littman (2005) extended these bounds using the union
bound and results from Fong (1995), to a reinforcement
learning context: their bound ensures that the computed in-
tervals are consistent over all state-action pairs, at each time
step. More precisely, from Strehl and Littman we know
that for a given δ, with probability at least 1 − δ, the L1

distance between the estimated transition model for a state-
action pair T̃s,a and the true transition model Ts,a is at most:

L1(T̃s,a, Ts,a)≤

√
2 ln( (2|S|−2)2|S||A|π2

3δ
)+4 ln(ns,a)

ns,a

. (4)

where ns,a is the number of times action a has been taken
from state s, and π is the circle constant, not the policy.

Convergence to Optimal

Algorithm 1 provides a criteria for halting exploration.
However, so far it is not clear how good the online crite-
ria of Algorithm 1 is, or how it might compare to a PAC-RL
algorithm which provides an offline formula for the number
of required samples needed to provide accuracy guarantees
on the resulting policy. We now provide promising evidence
of the benefit of using the online criteria of Algorithm 1.

Let g be the minimal separation gap between the state-
action values of the optimal action a∗ and next-best action:

g ≡ min
s

(
Q(s, a∗)− max

a s.t.a�=a∗
Q(s, a)

)
.

Note that g will not be known in advance, which is the
motivation behind using the online convergence criteria. In-
deed, Algorithm 1 can identify the optimal policy when the
estimated error in the state-action values, Δmax

Q , becomes

equal or smaller than the gap g/2, since for this any smaller
error bounds, the optimal policy does not change. Essen-
tially Δmax

Q provides an online estimate of the gap g.
We now bound the number of samples required to achieve

optimal performance with high probability as a function of
the unknown separation gap.

Theorem 1. Given any δ > 0, separation g, and known
maximum reward Rmax, define

Ns,a =
8R2

maxγ2

g2(1− γ)4

(
ln(

(2|S| − 2)2|S||A|π2

3δ
)

+4 ln

(
16R2

maxγ2

g2(1− γ)2

))
. (5)

Then if there are at least Ns,a transition samples for each
state-action pair (s, a) then with probability at least 1 − δ
the computed policy using the estimated transition model

parameters T̃ will be optimal.

Proof. (Sketch) If the state-value uncertainty bounds are
less than or equal to g/2 then the policy does not change
when these the error bounds are incorporated. Therefore we

Algorithm 1 OptimalPolicyReached

Input: estimated state-action values Q̃, transition counts
ns,a for all state-action pairs, δ,γ,εmin

if ∃ns,a < 1 then
return False;

end if
∀s ∈ S, ∀a ∈ A, compute L1(Ts,a, T̃s,a) using Eqn. 4.
Compute Δmax

Q using Eqn. 3

for s ∈ S do
ã∗

s = maxs Q̃(s, a)

Q̄(s, ã∗
s) ≡ Q̃(s, ã∗

s)−ΔQ(s, ã∗
s)

Q̄(s, a) ≡ Q̃(s, a) + ΔQ(s, a) ∀a 
= ã∗
s

if argmaxa Q̄(s, a) 
= ã∗
s and Δmax

Q > εmin then
return False;

end if
end for
return True;

require Δmax
Q to be at most g/2. From Equation 3 we see

that to ensure Δmax
Q ≤ g/2 it is sufficient to require:(

γṼmaxL1(Tsm,am
, T̃sm,am

)
)

/(1− γ) = g/2, (6)

as the left-hand expression is an upper bound for Δmax
Q . We

then substitute an upper bound for Ṽmax ≤ Rmax/(1 − γ)
and solve for the error in the transition model:

L1(Tsm,am
, T̃sm,am

) =
g(1− γ)2

2γRmax

. (7)

To ensure Equation 7 holds with probability at least 1−δ it is
sufficient (from Equation 4) to ensure an upper bound on the
L1 error is bounded by the right-hand side of Equation 7:r

2(ln(
(2|S| − 2)2|S||A|π2

3δ
) + 2 ln(Ns,a))/Ns,a =

g(1 − γ)2

2γRmax

.

Solving for Ns,a yields

Ns,a =
8R2

maxγ2

g2(1− γ)4
ln(

(2|S| − 2)2|S||A|π2

3δ
) +

16R2
maxγ2

g2(1− γ)4
ln(Ns,a). (8)

The above expression is equivalent to n = D + C ln(n)
where D and C are positive constants. It is well known fact
(used in the proofs of Strehl and Littman (2005), among oth-
ers) that if N ≥ 2C ln(C) then N ≥ C ln(N). This implies
if N ≥ C ln(N) then 2C ln(C) ≥ C ln(N), which implies
D + 2C ln(C) ≥ D + C ln(n) and therefore it is sufficient
to satisfy Equation 8 to set Ns,a as

Ns,a =
8R2

maxγ2

g2(1− γ)4
ln(

(2|S| − 2)2|S||A|π2

3δ
) +

32R2
maxγ2

g2(1− γ)4
ln

(
16R2

maxγ2

g2(1− γ)4

)
, (9)

which is the defined Ns,a in our theorem.
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Sample Bounds

The above bound is very similar to the bounds produced
in Probably Approximately Correct planning with unknown
model parameters, the key difference is that our bound is
defined in terms of g instead of an input parameter ε. We
now provide several example problems where we can di-
rectly solve the MDP and calculate g explicitly in order to
demonstrate that g may be larger than an arbitrary ε chosen
offline for a PAC-RL-style algorithm. These results imply
that for these problems, if Algorithm 1 was used to iden-
tify the optimal policy by calculating an online estimate of
the separation g, the number of samples required would be
fewer than the offline number of samples computed by PAC-
RL algorithms that commit to an overly conservative ε.

We consider three sample MDP problems. Chain is a 9-
state MDP used by Dearden, Friedman and Russell (1998).
PittMaze MDP (see Figure 2) is a 21-state grid maze MDP
with 4 cardinal-direction actions. When Actions succeed
with probability 0.6: with 0.2 probability the agent goes in
a perpendicular direction, unless there is a wall. At the goal
the agent transitions to a sink terminal state. Rewards are 0
for self-looping pits, 0.5 for the goal, and 0.495 for all other
states. The agent can start in any non-pit state. PittMaze2 is
the same as PittMaze1 with re-arranged pits and start states.

For each MDP, we computed the sample complexity
bound Ns,a we used Equation 5 with either g or an alternate
smaller ε in place of g which (from the proof of Theorem 1)
guarantees the resulting maximum state-action error bound
Δmax

Q is at most g/2 or ε/2, respectively.
Table 1 shows the sample complexity results. In each

case, the minimum separation g is such that the maximum
number of samples Ns,a per state-action pair to reach the op-
timal policy is an order of magnitude or smaller than might
be expected by a naı̈ve selection of the ε parameter.

These sample problems suggest that by estimating g on-
line and checking repeatedly whether the optimal policy has
been identified using Algorithm 1, we may need fewer sam-
ples to guarantee optimal performance than in PAC-RL ap-
proaches which offline choose an ε and use this to bound the
number of samples for ε-optimal performance.

Conclusion

We presented a formal bound on the number of samples re-
quired to identify an optimal policy with high probability in
a MDP with initially unknown model parameters as a func-
tion of the unknown gap separation g, which is implicitly

Figure 2: Pitt maze domain. Pitts are black squares, walls
are grey lines, and the goal is the star state.

Table 1: The number of samples per state-action pair as a
function of Δmax

Q (= 2ε) or the minimal separation g. γ =
0.9 and δ = 0.5.

PROBLEM G Δmax
Q Ns,a Vmax

CHAIN 0.39 G/2 5 ∗ 106 4.3

0.01 2 ∗ 109 4.3

PITTMAZE1 0.10 G/2 7 ∗ 107 3.8

0.01 2 ∗ 109 3.8

PITTMAZE2 1.87 G/2 1 ∗ 106 10.5

0.1 1 ∗ 108 10.5

0.01 1 ∗ 1010 10.5

estimated online in Algorithm 1. Our calculation of the sam-
ple complexity bounds for several sample problems provide
evidence that Algorithm 1 may outperform alternate explo-
ration halting criteria. Though more work is required for
these bounds to be practical, our results suggest that focus-
ing on optimal policy identification, instead of minimum er-
rors in the optimal values, may reduce the amount of train-
ing required to be highly confident in the computed policy’s
future performance.
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