
The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning

Gabriele Röger and Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{roeger,helmert}@informatik.uni-freiburg.de

Abstract

We empirically examine several ways of exploiting the infor-
mation of multiple heuristics in a satisficing best-first search
algorithm, comparing their performance in terms of cover-
age, plan quality, speed, and search guidance. Our results
indicate that using multiple heuristics for satisficing search is
indeed useful. Among the combination methods we consider,
the best results are obtained by the alternation method of the
“Fast Diagonally Downward” planner.

Introduction

Heuristic forward search is a very popular approach in clas-
sical planning, and a wide range of heuristics is available
today. None of these heuristics consistently outperforms all
others, and hence it appears worthwhile to use the informa-
tion of several heuristics during search instead of only one.

For optimal planning with A∗-style algorithms, arbitrary
admissible heuristics can be combined by using their maxi-
mum. The resulting heuristic dominates all individual ones
and usually requires fewer state evaluations to solve a task.
Often, even better combinations are possible, for example
by using action cost partitioning methods that allow adding
heuristic estimates admissibly (Haslum, Bonet, and Geffner
2005; Katz and Domshlak 2008).

For satisficing planning, where greedy best-first search
is a common approach, the setting for combining heuristic
values is quite different. Heuristics do not have to estimate
the true goal distance in any quantitatively meaningful way,
since greedy search only cares about relative values: states
further from the goal should receive larger estimates than
states closer to the goal. There is no need to respect a cri-
terion like admissibility, and we can combine multiple esti-
mates in essentially arbitrary ways.

Combining several heuristics in a satisficing planner can
improve performance and scalability dramatically. Figure 1
shows a striking example of this. The graphs show the run-
time, in seconds, for solving instances of the IPC-2000 As-
sembly domain using the FF heuristic hFF (Hoffmann and
Nebel 2001), the causal graph heuristic hCG (Helmert 2004),
and the context-enhanced additive heuristic hcea (Helmert
and Geffner 2008). None of the individual heuristics solves

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0.1s

1s

10s

100s

1000s

ru
nt

im
e

instances (not in original order)

Alternation
h

cea
h

CG
h

FF

Figure 1: Runtimes in the Assembly domain.

more than 15 tasks within usual resource limits (30 minutes,
2 GB). However, their combination (labeled “Alternation” in
the figure) solves 29 out of 30 tasks, including 13 tasks not
solved by any of the three heuristics it is based on.

The question, then, is how to combine heuristic estimates
to achieve the best possible performance. One obvious way,
by analogy to optimal planning, is to take their maximum or
sum. However, for the Assembly example this does not turn
out to be useful: none of the heuristics obtained by taking
two or three of the candidate heuristics and computing their
maximum or sum solves more than 13 of the 30 tasks, so
they are all outperformed by the FF heuristic used alone.
An alternative is to use weighted sums, but this immediately
raises the question of how to determine suitable weights. In
the given domain, we tested all 33 combinations of the form
h(s) = p ·h1(s)+ (1− p)h2(s) where p ∈ {0, 0.1, 0.2, . . . ,
1.0} and h1 and h2 are two heuristics from the given set.
None of these combinations improves over the FF heuristic.

So clearly, there are cases where maximization or sum-
mation is not the best way to combine heuristics for satis-
ficing planning. Indeed, in Fig. 1, the alternation method
is vastly superior. This method is not new: it was intro-
duced by Helmert (2006) under the name “multi-heuristic
best-first search” (a term we avoid in this paper because
it applies to all methods we discuss), and it is one of the
ingredients underlying the Fast Downward (Helmert 2006)
and LAMA (Richter, Helmert, and Westphal 2008) planners.
However, neither alternation nor any other method for com-

246

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)



h2

h1 1

1

2

2

3

3

4

4

5

5

6

6

T1, P,
A

A

M, S,
P

M

S, T2,
P, A

Figure 2: Buckets of an open list with heuristics h1 and h2

(shown as white rounded rectangles). The symbols within
some of the buckets are explained later.

bining heuristic estimates in satisficing planners has ever
been evaluated in a principled way, and from the literature it
is completely unclear if, to what extent, and why alternation
or any other method for combining heuristic values leads to
better planner performance than just using a single heuristic.

In this paper, we attempt to rectify this situation by de-
scribing several methods for combining heuristic estimates
and providing a thorough experimental study to illustrate the
benefits of using multiple heuristics for satisficing planning.

Greedy Search with Multiple Heuristics

All search methods presented in this paper are variations
of greedy best-first search (Pearl 1984), differing only in
the choice of which state to expand next. Greedy best-
first search is a well-known algorithm, so we only present
it briefly to introduce some terminology. Starting from the
initial state, the algorithm expands states until it has found
a goal path or explored all reachable states. Expanding a
state means generating its successors and adding them to the
open list. The open list plays a very important role because it
determines the order in which states are expanded. In single-
heuristic search, it is often a min-heap ordered by s �→ h(s),
where s is a search state and h : s → N0 ∪ {∞} estimates
the length of the shortest path from s to the goal. Hence,
states with a low estimate are expanded first. States with the
same estimate are usually expanded in FIFO order.

This paper deals with the question of how to use estimates
of multiple heuristics h1, . . . , hn within this algorithm. In
principle, the methods we present only differ in the expan-
sion priorities imposed by the open list. We can see the open
list as a collection of buckets (Fig. 2), each associated with
an estimation vector (e1, . . . , en) and containing all open
states s with (h1(s), . . . , hn(s)) = (e1, . . . , en). All ap-
proaches we present can be understood as first selecting a
bucket to expand a state from and then picking a state from
this bucket according to the FIFO principle. Hence, an ap-
proach is largely characterized by its candidate buckets, i. e.,
the buckets that are possible candidates for expansion at each
step. For example, the candidate buckets for the sum method
are those where e1 + · · · + en is minimal. In Fig. 2, this
means that either the bucket with estimation vector (4, 2) or
the bucket with estimation vector (5, 1) is chosen.

Maximum and Sum

We first discuss the already mentioned maximum and sum
approaches. The candidate buckets for the maximum ap-
proach are those minimizing max {e1, . . . , en}, and the can-
didate buckets for the sum approach are those minimizing
e1 + · · · + en. In the example of Fig. 2, these buckets are
marked with an M for maximum and S for sum. Among all
states in these buckets, the oldest one is expanded first.

The maximum and sum methods are very easy to imple-
ment: since they reduce each estimation vector to a single
number, a standard single-heuristic open list can be used.
However, we will see that maximum and sum are among the
weakest methods for combining heuristic estimates. One
explanation for this is that they are easily misled by bad
information. If one of the component heuristic provides
very inaccurate values, these inaccuracies affect every sin-
gle search decision of the sum method, because each heuris-
tic directly contributes to the final estimation. For the maxi-
mum method, large inaccurate estimates of one heuristic can
completely cancel the information of all other heuristics.

Tie-breaking

Our experience with the addition and sum methods suggests
that aggregating heuristic estimates into one value tends to
dilute the quality and characteristics of the individual heuris-
tics. Therefore, in the following we concentrate on methods
that preserve the individual estimates. One obvious idea is to
rank the heuristics and use the less important ones only for
breaking ties. With this approach, search is mainly directed
by one good heuristic and only if there are several states with
the same minimum estimate, the other heuristics are succes-
sively consulted to identify the most promising state. If two
states have exactly the same estimation vector, they are again
expanded according to the FIFO principle.

Tie-breaking always selects a single candidate bucket. In
the example of Fig. 2, this bucket is labeled with T1 for the
case where h1 is the main heuristic and h2 is used to break
ties and with T2 for the opposite case.

Unlike the maximum and sum approaches, tie-breaking is
not affected by the “scale” of the component heuristics. In-
creasing estimates by an additive or multiplicative constant
or applying any other strictly increasing transformation does
not affect the choices of the tie-breaking method. We see
this as a strength of the approach because it offers some re-
silience against systematic errors in heuristic estimates.

A major drawback of tie-breaking is that we have to de-
fine a ranking of the heuristics. For our experiments, we
decided to order the heuristics according to their (empirical)
quality in single-heuristic search. It is apparent that combin-
ing multiple heuristics via tie-breaking does not fully exploit
the available information and that the approach is clearly not
robust against bad estimates of the main heuristic.

Selecting from the Pareto Set

We now present a method that, like tie-breaking, is robust to
transformations of heuristic estimates, but does not favour
one heuristic over another. The method uses the concept of

247



Pareto-optimality, well-known in economics and game the-
ory, which is based on the notion of dominance. We say that
a state s dominates a state s′ (s < s′) if all heuristics con-
sider s at least as promising as s′ (i. e., ∀i hi(s) ≤ hi(s

′))
and at least one heuristic strictly prefers s over s′ (i. e.,
∃j hj(s) < hj(s

′)). It appears reasonable to require that
if state s dominates s′, then s should be expanded before s′.
Hence, we consider the Pareto set of nondominated states:

nondom
def
= {s ∈ open | �s′ ∈ open with s′ < s}.

In the Pareto approach, the candidate buckets are exactly
those buckets whose states belong to nondom. In Fig. 2,
these buckets are labeled with P. We see that the set includes
many candidate buckets of the previous approaches, but not
all of them. In particular, bucket (4, 4) which is a candidate
for the maximum approach is not Pareto-optimal because it
is dominated by (4, 2). From all Pareto-optimal candidate
buckets, the one used for expansion is chosen randomly with
probability proportional to the number of states it contains.

Unlike the previous methods, the Pareto criterion does not
impose a total preorder on states, which makes maintaining
the open list for this approach much more expensive. We
discuss this issue in more detail in a technical report (Röger
and Helmert 2010). On the positive side, the Pareto method
has none of the disadvantages mentioned for the previous
approaches: no single heuristic has an overly large influence
on the overall state ranking, and we use all available order-
ing information. Moreover, whenever we prefer a state over
another, we can theoretically justify this decision.

Alternation
The last approach we consider is the alternation method,
originally proposed by Helmert (2004; 2006). Like the
Pareto method, it avoids aggregating the individual heuristic
estimates and makes equal use of all heuristics. The method
gets its name because it alternates between heuristics across
search iterations. The first time a state is expanded, the alter-
nation method selects the oldest state minimizing h1. On the
next iteration, it selects the oldest state minimizing h2, and
so on, until all heuristics have been used. At this point, the
process repeats from h1. The candidate buckets for the al-
ternation method are those whose estimate vectors minimize
at least one component (labeled with A in Fig. 2).

Alternation is built on the assumption that different
heuristics might be useful in different parts of the search
space, so each heuristic gets a fair chance to expand the
state it considers most promising. There are two important
differences to the Pareto approach. Firstly, alternation only
expands states that are considered most promising by some
heuristic. The Pareto approach also expands states which
offer a good trade-off between the different heuristics, such
as bucket (4, 2) in Fig. 2. Secondly, for states that are most
promising to the currently used heuristic, alternation com-
pletely ignores all other heuristic estimates. The Pareto ap-
proach also attempts to optimize the other heuristics in such
situations. For example, it would not consider bucket (2, 6)
in Fig. 2 because it is dominated by bucket (2, 5).

Alternation can be efficiently implemented by maintain-
ing a set of min-heaps, one ordered by each heuristic.

Experiments

We now turn to the central questions of this paper: is the use
of multiple heuristics for satisficing best-first search actually
beneficial? And if so, which combination method performs
best? To answer these questions, we integrated the differ-
ent combination methods into a state-of-the-art planner and
evaluated them on all planning tasks from the first five inter-
national planning competitions (IPC 1–5). All experiments
were conducted on computers with 2.3 GHz AMD Opteron
CPUs under a 30 minute timeout and 2 GB memory limit.

Our implementation is based on the Fast Downward plan-
ner (Helmert 2006), which we extended with implementa-
tions of the different combination approaches. To focus
on the impact of heuristic combination methods, not other
search enhancements, we did not use the preferred operator
information provided by the heuristics.

We conducted experiments both with Fast Downward’s
lazy variant of greedy best-first search and with the textbook
(“eager”) algorithm (Richter and Helmert 2009), with virtu-
ally identical results. Here, we report on the more standard
eager algorithm. Results for lazy search are reported in an
earlier workshop paper (Röger and Helmert 2009).

We consider three heuristic estimators: hFF, hCG, and hcea.
Each approach is evaluated on all two- and three-element
subsets of these heuristics. For the tie-breaking method we
fixed the ranking of the heuristics as hcea 
 hFF 
 hCG

based on the coverage these heuristics achieve on the bench-
marks in single-heuristic search.

All planners thus obtained are scored according to four
metrics: coverage (solved tasks), quality (solution length
compared to best solution found by any approach; essen-
tially the IPC-2008 scoring method), speed (CPU time to
solve a task on a logarithmic scale), and guidance (state ex-
pansions to solve a task on a logarithmic scale). All scores
are in the range 0–100, where larger values indicate better
performance. See the paper by Richter and Helmert (2009),
which uses the same scoring methods, for details.

The results of the experiment are summarized in Table 1.

Comparison between combination approaches. Com-
paring the five combination methods to each other, we see
that alternation generally performs best. It gives the best re-
sults in terms of coverage and quality on all four heuristic
sets, and is best in terms of speed and guidance in all cases
except for one where the Pareto approach is slightly better.

The next best method is the Pareto approach, which al-
ways outperforms the remaining three methods on speed and
guidance. In terms of coverage and quality, the maximum
and sum approaches sometimes obtain comparable results.

The remaining three techniques, maximum, sum and tie-
breaking, perform quite similarly to each other and are
clearly worst overall, with tie-breaking slightly weaker than
the others. In particular, tie-breaking preforms worse than
the sum method in all cases.

Comparison to single-heuristic methods. Another clear
outcome of the experiment is that using multiple heuristics
can give considerable benefits, especially with the alterna-
tion method. For any set of heuristics and any of the met-
rics, alternation outperforms the best single heuristic from

248



Heuristics Combination Cover. Quality Speed Guid.

h
cea 74.62 68.67 65.27 65.65

h
FF 73.85 70.55 66.81 64.07

h
CG 72.66 65.36 64.16 60.43

h
cea, h

FF Maximum 72.69 67.26 62.15 64.02
Sum 73.75 68.42 63.75 *65.67
Tie-breaking 72.44 67.14 62.90 64.67
Pareto *76.20 *70.71 66.32 *68.90
Alternation *77.95 *73.70 *67.84 *70.14

h
FF, h

CG Maximum *74.76 68.76 65.29 *65.08
Sum *75.01 67.99 65.41 *65.35
Tie-breaking 72.59 66.13 64.66 *64.41
Pareto *74.93 67.84 65.87 *66.19
Alternation *78.73 *73.28 *69.22 *69.28

h
cea, h

CG Maximum 74.06 67.95 63.63 65.51
Sum *74.76 67.70 64.12 *65.67
Tie-breaking 73.78 67.41 63.36 64.99
Pareto 74.52 67.70 64.48 *66.52
Alternation *75.20 *69.18 64.42 *66.39

h
cea, h

FF, h
CG Maximum 72.21 66.54 61.13 63.71

Sum 73.47 67.52 62.98 65.24
Tie-breaking 72.49 66.95 61.90 64.34
Pareto *76.29 70.16 66.01 *69.18
Alternation *79.80 *74.62 *68.56 *71.91

Table 1: Overall result summary. The best combination
method for a given set of heuristics and metric is highlighted
in bold. Entries marked with an asterisk indicate results that
are better than all respective single-heuristic approaches.

the set, with only one exception (speed for the combination
of hcea and hCG). Indeed, adding more heuristics is almost
universally a good idea for the alternation method in our ex-
periment. There are nine ways to choose a single heuristic
or two-heuristic set and a new heuristic to add, and there are
four scoring metrics. In 34 of these 36 cases, the marginal
contribution of adding the new heuristic is positive.

For the Pareto method, the comparison to single-heuristic
search gives somewhat mixed results. While it improves
coverage (except for the combination of hcea and hCG) and
guidance, the quality and speed results are mostly worse
than those of the best individual heuristics.

For the maximum and sum methods, it is hard to ar-
gue that they offer any compelling advantage over single-
heuristic search, and the tie-breaking method consistently
performs worse on all metrics than just using the main
heuristic on its own, with only one exception.

Details for alternation. We have observed that the best
results are obtained by the alternation method using all three
heuristics. A detailed look at the experimental data, reported
in the technical report accompanying this paper (Röger and
Helmert 2010), shows that this improvement is not limited to
a few benchmark domains but distributed quite evenly across
domains. Moreover, the improvement of coverage over the
other combination methods and individual heuristics is sta-
tistically significant at a level of p ≤ 0.001, using the same
nonparametric test that Hoffmann and Nebel (2001) employ
in their comparison of FF and HSP.

Conclusion
Combining heuristic estimates for satisficing planning calls
for different approaches than combining heuristic estimates
for optimal planning. In our experiments, aggregating
different heuristic estimates into a single numeric value
through arithmetic operations like taking the maximum or
sum turned out not to be a good idea, even though it is
the common approach for optimal planning. Our expla-
nation for this is that such aggregation methods are eas-
ily led astray even if only one heuristic generates bad es-
timates. The Pareto approach, and especially the alternation
approach which clearly performed best in our experiments,
are much more robust to such misleading estimates.

In future work, it would be interesting to see if results
can be improved further by including yet more estimators,
such as the additive (Bonet and Geffner 2001) or landmark
heuristic (Richter, Helmert, and Westphal 2008), or if per-
formance begins to degrade when four or more estimators
are used. Another interesting question is whether adaptive
techniques that acquire information about the heuristics dur-
ing search can lead to further performance improvements.

Acknowledgments
This work was supported by the German Research Council
(DFG) by DFG grant NE 623/10-2 and as part of the Trans-
regional Collaborative Research Center “Automatic Verifi-
cation and Analysis of Complex Systems” (AVACS).

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search. AIJ
129(1):5–33.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. AAAI 2005,
1163–1168.

Helmert, M., and Geffner, H. 2008. Unifying the causal graph and
additive heuristics. In Proc. ICAPS 2008, 140–147.

Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In Proc. ICAPS 2004, 161–170.

Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.

Katz, M., and Domshlak, C. 2008. Optimal additive composition
of abstraction-based admissible heuristics. In Proc. ICAPS 2008,
174–181.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Richter, S., and Helmert, M. 2009. Preferred operators and de-
ferred evaluation in satisficing planning. In Proc. ICAPS 2009,
273–280.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. AAAI 2008, 975–982.

Röger, G., and Helmert, M. 2009. Combining heuristic estimators
for satisficing planning. In ICAPS 2009 Workshop on Heuristics
for Domain-Independent Planning, 43–48.

Röger, G., and Helmert, M. 2010. The more, the merrier: Combin-
ing heuristic estimators for satisficing planning (extended version).
Technical Report 258, Albert-Ludwigs-Universität Freiburg, Insti-
tut für Informatik.

249




