
Shopper: A System for Executing and Simulating Expressive Plans

Robert P. Goldman and John Maraist
{rpgoldman, jmaraist}@sift.info

SIFT, LLC
211 N. First St.

Minneapolis, MN 55401 USA

Abstract

We present Shopper, a plan execution engine that facili-
tates experimental evaluation of plans and makes it easier
for planning researchers to incorporate replanning. Shop-
per interprets the LTML plan language, which extends PDDL
in two major ways: with more expressive control struc-
tures, and with support for semantic web services modeled on
OWL-S. LTML’s command structures include not only con-
ventional ones such as branching, iteration, and procedure
calls, but also features needed to handle HTN plans, such
as precondition-filtered method choice. Unlike conventional
programming languages, LTML supports interaction with the
agent’s belief store, so that its execution semantics line up
with those assumed by planners. LTML actions extend PDDL
actions in having outputs as well as effects, which means that
they can support actions that sense the world; an important
special case of this is semantic web services, which reveal
information about a state hidden from the agent. To support
experimentation as well as action in the real world, Shop-
per accommodates multiple, swappable implementations of
its primitive action API. For example, one may interact with
real web services through SOAP and WSDL, or with sim-
ulated web services through local procedure calls. We de-
scribe novel features of LTML, the interpretation strategy,
swappable back-ends, and the implementation.

Introduction

Planning techniques are evolving in scale and practicality to
be able to tackle real-world problems. In order for the tech-
niques to be broadly accepted, the community must evalu-
ate not only plan generation, but also how generated plans
will perform in execution. We have developed the Shopper
system to interpret plans encoded in LTML, an extension of
PDDL. Shopper is designed to provide support to planning
researchers, providing error detection, signaling and pack-
aging, to make it easier to develop and test replanning tech-
niques. Shopper provides swappable interfaces to execution
and simulation backends for experimentation. For example,
one may interact with real web services through SOAP and
WSDL (Englander 2002), or with simulated web services
through local procedure calls.

We have used LTML and Shopper for planning and ex-
ecution problems that correspond to web service composi-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Class trans@Airport
(subClassOf loc@Location)

(restrict loc@airportLocationID
(cardinality 1)

- loc@AirportLocationCode))

Figure 1: LTML class definition.

tion (Sirin et al. 2004; Traverso and Pistore 2004), and we
draw this paper’s examples from that domain. Our frame-
work is generally suitable for software application domains
like the Unix softbot (Etzioni 1993) and for limited cases of
planning for physical systems as well.

LTML

The Learnable Task Modeling Language, or
LTML (Burstein et al. 2009), is a plan language that
provides additional features necessary for real-world
planning — especially in the domains of web services
composition and softbots — in a framework comfortable
to planning researchers familiar with PDDL. LTML is an
extension to PDDL that brings in (1) compatibility with
OWL (the web ontology language) and OWL-S to support
semantic web service composition, and (2) variables1 and
(3) more expressive control constructs (branches, looping).
LTML extends the expressive power of OWL (van Harmelen
and McGuinness 2004), allowing it to capture ontological
information about classes and entities. LTML’s primitive
operations cover both conventional planning operators (as
in PDDL), and semantic web services (as in OWL-S), with
additional features to overcome shortcomings of OWL-S.
Finally, LTML adds higher-level control flow constructs
to compose these atomic actions into programs.2 LTML
has some other unusual features for serialization on the
semantic web and support for multiagent learning which we
will not discuss here.

LTML allows us to describe the types and properties of
entities. For example, the definition in Figure 1 specifies
that an airport is a kind of location, and that it has an air-

1PDDL has parameters, and quantified variables in actions, but
no program-style variables.

2Often referred to as “workflows” in the semantic web domain.

230

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)



(AtomicProcess reserveSeat

(inputs missionId - trans@ID

patientID - med@PatientID

specialNeeds - med@SpecialNeedsCode)

(outputs outcomeFlag - res@ResultCode

reservationID - med@ReservationID)

(precondition

(exists (m - trans@Mission)

(trans@missionID m missionId)))

(result

(when (type outcomeFlag res@Success)

(ThereIs ((p (referent med@Patient patientID))

(m (referent trans@Mission missionID)))

(trans@hasReservedSeat p m reservationID)

(when (hasValue specialNeeds)

(trans@supportsSpecialNeeds m specialNeeds))

(increment-fluent (trans@PAX m) 1)))))

Figure 2: Sample web service markup in LTML.

port location ID property that has exactly one value of type
airport location code. The “@” here is a namespace sepa-
rator;3 the airport location code class is defined in the loc
namespace.

A primitive action in LTML is referred to as an
AtomicProcess.4 LTML atomic processes are an ex-
tension of PDDL actions that supports semantic web ser-
vice markup (see Figure 2 for an example). Like PDDL ac-
tions, LTML atomic processes have parameters (inputs)
and preconditions. Unlike PDDL actions, LTML atomic
processes also have outputs. These are values that will
be returned to the agent, typically a reflection of the internal
state of some entity or process that is not accessible to the
agent (e.g. an online bookstore’s inventory).

The LTML result component corresponds to PDDL’s
effects. However, when working with domains like web
services, the effects specification fulfills an important addi-
tional function — it tells the agent what it can infer about the
state of the world based on its prior knowledge of the world
and the outputs of the web services. The results provide a
superset of OWL-S markup and PDDL effects. Note the use
of the Thereis and referent construct. They give an
“exists uniquely” quantifier — if the agent knows the pa-
tient that is the referent of patientID, it should bind p to
that patient; otherwise, the agent can infer the existence of
such a patient.5 In Figure 2, the service allows us to reserve
a seat for a patient on a mission. If the service call succeeds,
the results tell us first that there is a patient, p, who is the
referent of the input patient identifier, and a mission, m, the
referent of the input mission id. We can infer that p has a
reserved seat on m, with a particular reservation ID, and we
should increment the number of passengers (trans@PAX).

LTML permits us to compose the atomic processes into
complex procedures (Methods) with conventional con-
trol structures like conditionals and loops. LTML is

3LTML namespaces are XML namespaces.
4LTML processes are not processes in the sense of temporally-

extended periods during which variables change continuously.
5This form of quantification is analogous to that of Golden’s

run-time variables, in his PUCCINI planner (Golden 1997).

(Method Exp@TransportAllPatients
(inputs date - time@Date)
(body
(seq seq0

(links recordSet
- med@SetOfPatientReqRecord)

(acts
(perform step1

(luRqts@lookupRequirements
(luRqts@ReqDate <= date))

(put
(luRqts@lookupRequirementsOut

=> recordSet)))
(loop step2
(links

(thisRecord (over recordSet)
- med@PatientReqRecord))

(body
(perform step3

(Exp@TransportPatients
(record <= thisRecord)))))))))

Figure 3: Sample LTML method definition.

(perform p1
(links x - xsd@integer m - trans@Mission)
(when (exp@and (trans@missionID mid m)

(trans@PAX m x)))
(notifyFlightComplement

(missionID <= mid)
(PAXCount <= x)))

Figure 4: Querying the knowledge state.

purely functional: its variables (referred to as “links”) are
lexically-scoped, write-once entities. LTML features logic-
programming style queries in addition to conventional ex-
pressions. Predications such as (trans@scheduled
patient flight) are treated as queries against the
agent’s beliefs in constructs like test.

The sample method definition in Figure 3 describes a
part of a plan to process patients in a medical management
system. The method is a sequence whose first step is to
get a set of patient requirement records by performing
a lookupRequirements web service for the current
date. The input date is supplied to the named param-
eter of the service, and the (named) output parameter’s
value is put to the variable recordSet. Then we loop
over the set of records, passing each one in turn to the
Exp@TransportPatients method.

Figure 4 shows a small example of how an LTML method
call interacts with the knowledge state. In this example, we
assume that we have bound the link mid to a mission identi-
fier. The perform statement p1 establishes two local vari-
ables, x and m, and queries the agent’s belief state to bind m
to the mission with the identifier mid, and x to the number
of passengers on the flight. We next invoke the web service
notifyFlightComplement, passing as arguments the
mission identifier and the number of passengers.

One important divergence between LTML and PDDL is

231



that the LTML semantics, unlike PDDL semantics, is not
based on a finite, known domain of quantification. In the
domains of web services and software, typically the set of
objects is not known and fixed in advance (e.g. the agent
will not know all possible ISBN numbers). Furthermore, in
many domains entities will be created during the course of
execution (e.g. a new “flight reservation” might be created).

Shopper

Shopper is an interpreter for the executable subset of LTML.
In a fully implemented scenario, a controlling executive pro-
cess invokes Shopper with the LTML plan generated by the
planner component(s). Shopper executes the plan, accumu-
lating and eventually returning a list of event records. Typ-
ically the event records are details of the actions taken by
the plan, but additional detail may be required in particular
situations, for example when debugging interactively.

The executable fragment of LTML is essentially a
standard, non-nested procedural language with single-
assignment variables, so Shopper implements a straightfor-
ward stack-based abstract machine. There is an aspect of
logic programming in that a query to the knowledge state
can bind variables, but since these variables are not subject
to revision through backtracking, they can be stored on the
stack just as variables bound by explicit assignments. The
choice of single-assignment variable semantics does require
some additional complexity for loops: for iteration over se-
quences of values, and for accumulating result values as
combinations of values from different iterations. Nonethe-
less these complications are entirely compatible with the
standard stack model.

Shopper’s LTML interpreter is engineered to be agnostic
about much of its environment,6 and requires very little be-
sides the use of LTML itself. In particular, Shopper places
no requirements on the sort of planner (if any) which gener-
ates its LTML plan: the plan could be completely linear, as
from a conventional IPC planner, or could be the output of
an HTN planner. Shopper further makes no assumption of
any particular set of actions. As we discuss in the sections
below, this agnosticism is key to Shopper’s usefulness as an
experimental platform, but it also requires consideration of
the possible arbitrary failures within these extensions.

A key part of the implementation strategy is to separate
out an API for implementing atomic process invocations,
to permit these backends to be changed. The key parts of
the backend are the mapping from atomic process names to
LTML markup, and the implementation of atomic processes
that applies inputs and reads outputs. For semantic web ser-
vices, the backend must include handling the grounding of
semantic objects into conventional inputs (e.g. the transla-
tion of an LTML transairport object into a string by
extraction of its ICAO airport code) and the inverse lifting
of outputs into semantic objects (e.g. recognition that a four-
letter string in the output is the ICAO code corresponding
to a trans@airportID object). Currently, Shopper sup-

6We presented the software engineering of Shopper, with a fo-
cus on the advantages gained by our choice of Lisp as an imple-
mentation language, in a previous paper (2009).

ports two back-ends to semantic web services through alter-
nate APIs to SOAP and WSDL, a number of very simple
backends for testing (e.g. one where the services perform
simple arithmetic operations), and a simulated web service
backend for experimentation (see below).

Replanning and exceptions

A key part of any real-world plan execution is reacting to
unexpected events and replanning to handle them. From the
point of view of a planning researcher, a substantial advan-
tage of Shopper is that it lifts the burden of error detection
and handling, and leaves the researcher free to concentrate
on the replanning research. Shopper was designed to interact
smoothly with a planning system when a plan fails. These
failures can arise for several reasons: failure to meet an ac-
tion’s preconditions; an exception raised by the plan itself;
the arbitary errors which may be thrown by external action
implementations; or program errors arising from flaws in the
plan itself, such as a violation of the single-assignment se-
mantics. Shopper catches errors thrown during workflow
and web service execution, and returns serializations of the
error itself, of the dynamic state of execution, and of the
knowledge state. Of course, Shopper’s ability to catch and
serialize errors will not bring all errors into the scope of any
particular replanner; planning may still fail.

proc solveIt
state := initState;
loop

let prog = plan(state, goal);
unless prog return false;
let <success, newState> =

shopper(prog, state)
if success return true;
else state := newState;

Figure 5: Simple replanning loop.

The pseudo-code in Figure 5 shows how easy Shopper
makes replanning. The return of the knowledge state from
Shopper is the critical component for replanning. It provides
support for the most basic replanning tactic: determining the
current world state and replanning ab initio. Additional sup-
port may be supplied in the exception object Shopper returns
for planners that can exploit it. An HTN-style replanner (e.g.
HotRIDE (Ayan et al. 2007)) might need to know something
about the state of the program when the plan failed, and
a more domain-specific replanning strategy would want to
extract from the exceptions information about the specifics
of action failures. If the planning system is able to replan,
Shopper can resume execution of a residual plan, calculated
to achieve overall goals from the context of the partial exe-
cution of the original plan.

The ability of the planner to generate a plan featuring ex-
ception signals is very important to supporting replanning.
In some cases it will be impossible or impractical for a plan-
ner to generate a complete program (policy) to solve a prob-
lem. In such cases, the planner can write into a generated
plan any “simplifying assumptions” it makes, such as that a

232



given web service will be able to provide an acceptable an-
swer. The planner can do this by writing into the plan a con-
ditional branch that checks the acceptability of this answer,
and raises an exception if the answer is unacceptable. On
this exception the planner can then update the plan, incorpo-
rating the additional information arising from the exception
and the particular execution context.

Facilities for experimentation

There are a number of practical challenges to experimenting
with planning in the context of web services. First, one may
not control the real web services, meaning that it is hard to
vary them for testing and research purposes. Even if a re-
searcher does control bona fide web services, these are often
very difficult to manipulate experimentally — a web service
of the kind that interests us is often a front end to a rela-
tional database of some sort, and it is laborious to manipu-
late the contents of these relational databases for experimen-
tal purposes. It is especially difficult to do so when multiple
databases (in multiple web services) must be coordinated to
create a consistent experimental scenario. We would often
like to be able to inject failure cases, or stochastic variations.

Our experience with such services has led us to augment
Shopper with a specialized simulation capability. Shopper
provides a mechanism for associating a simulated imple-
mentation with a set of LTML AtomicProcesses. The
simulated implementation is built on the state model and
theorem-prover of the SHOP2 planner.7 The simulator per-
mits a logic-programming style of specification for the web
services, providing a very terse and elegant specification,
and allowing for quick loading of different starting states.
Unlike conventional logic-programming systems, and be-
cause of its planner lineage, our simulator provides first-
class support for state transitions. The Horn clauses also
provide a convenient mechanism for stochastic variation.

The simulation capability uses Shopper’s swappable
backends so that one can interact with simulated web ser-
vices using exactly the same plans as with real ones.

Conclusions

Shopper lowers the barriers for researchers wishing to exper-
iment with replanning and planning in software domains. It
does so by supporting a language, LTML, whose expressive
power has been expanded to meet the needs of such domains.
Because of LTML’s expressive power, Shopper can execute
linear or HTN plans.8 We also support replanning research
and systematic experimentation by easing the implementa-
tion requirements for replanning and providing facilities to
support systematic experimentation in simulated domains.

Our work on Shopper is ongoing; we are addressing issues
in incomplete information, partial ordering, and the practi-
calities of debugging LTML plans. Currently, Shopper as-
sumes that it has complete knowledge of propositions in its
queries, and (unsafely) makes the closed-world assumption.

7We have modified SHOP2 to make it possible to use its
theorem-prover and state data structures as a stand-alone library.

8LTML can capture partially-ordered plans, but Shopper cannot
yet execute them.

We have been working on a design for better handling par-
tial knowledge, based on the local closed world framework
of Etzioni et al. (1997), on which we are building an ap-
proach for open world planning (Goldman 2009). Currently
Shopper makes a STRIPS-like assumption when projecting
the effects of actions. This is problematic when combined
with the consistency constraints imposed by an OWL-style
description logic ontology; it can be difficult to capture all
the implied ramifications in PDDL-style effects expressions.
Hoffman et al. (2009) discuss this in their work on web
services composition. As this paper was written, we were
working to develop a graphical debugger for Shopper.

Acknowledgments

This article was supported by DARPA/IPTO and the Air
Force Research Labratory, Wright Labs under contract num-
ber FA8650-06-C-7606. This paper does not represent the
official position or opinions of DARPA/IPTO or Air Force
Research Labratory, Wright Labs. Thanks to colleagues at
BBN, especially Mark Burstein, David McDonald and Ja-
cob Beal, and at the University of Maryland, especially Dana
Nau and Ugur Kuter. Thanks to our anonymous reviewers.

References
Ayan, F.; Kuter, U.; Yaman, F.; and Goldman, R. P. 2007.
HOTRiDE: Hierarchical ordered task replanning in dynamic en-
vironments. In Proceedings of the ICAPS Workshop on Planning
and Plan Execution for Real-World Systems.
Burstein, M.; Goldman, R. P.; McDermott, D. V.; McDonald, D.;
Beal, J.; and Maraist, J. 2009. LTML — a language for represent-
ing semantic web service workflow procedures. In Proceedings
ISWC workshop on Semantics for the Rest of Us.
Englander, R. 2002. Java and SOAP. O’Reilly.
Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and efficient
closed-world reasoning for planning. Artificial Intelligence 89(1–
2):113–148.
Etzioni, O. 1993. Intelligence without robots: A reply to Brooks.
AI Magazine 14(4):7–13.
Golden, K. 1997. Planning and knowledge representation for soft-
bots. Ph.D. Dissertation, University of Washington.
Goldman, R. P., and Maraist, J. 2009. SHOPPER: interpreter for a
high-level web services language. In Proc. Int’l Lisp Conference.
Goldman, R. P. 2009. Partial observability, quantification, and
iteration for planning: Work in progress. In Proceedings ICAPS
workshop on Generalized planning.
Hoffmann, J.; Bertoli, P.; Helmert, M.; and Pistore, M. 2009.
Message-based web service composition, integrity constraints, and
planning under uncertainty: A new connection. Journal of Artifi-
cial Intelligence Research 35:49–117.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004. HTN
planning for web service composition using SHOP2. Journal of
Web Semantics 1(4):377–396.
Traverso, P., and Pistore, M. 2004. Automated composition of
semantic web services into executable processes. In ISWC.
van Harmelen, F., and McGuinness, D. L. 2004. OWL
web ontology language overview. W3C recommendation, W3C.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

233




