
The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem

Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de

Hauke Lasinger
LemnaTec GmbH

Schumanstr. 18
52146 Würselen, Germany

hauke.lasinger@lemnatec.com

Abstract

We introduce the Scanalyzer planning domain, a domain for
classical planning which models the problem of automatic
greenhouse logistic management.

At its mathematical core, the Scanalyzer domain is a permu-
tation problem with striking similarities to common search
benchmarks such as Rubik’s Cube or TopSpin. At the same
time, it is also a real application domain, and efficient algo-
rithms for the problem are of considerable practical interest.

The Scanalyzer domain was used as a benchmark for sequen-
tial planners at the last International Planning Competition.
The competition results show that domain-independent auto-
mated planners can find solutions of comparable quality to
those generated by specialized algorithms developed by do-
main experts, while being considerably more flexible.

Plant Phenomics and Smarthouses
Modern sequencing methods have made it possible for re-
searchers in biology to easily produce a wealth of informa-
tion about the genotype, the genetic make-up, of an organ-
ism. However, genetic information is rarely an end in itself;
instead, we are usually much more interested in the pheno-
type, the observable traits and characteristics of an organism,
and information about the genotype is only useful in so far
as it allows us to make predictions about the phenotype.

For example, one of the most important goals of plant re-
search is to increase the yield and resilience of crops. Mod-
ern genetics gives us the tools to selectively breed crops
with unprecedented accuracy. However, to relate the per-
formance of plants to their genetic characteristics, we still
need to actually grow, observe and carefully analyze them.
The field of plant phenomics is concerned with large-scale
quantitative studies of plant phenotypes (Furbank 2009;
Finkel 2009).

Smart greenhouses (smarthouses in the following) are an
important technology for this purpose. A smarthouse con-
sists of one or more greenhouses together with imaging fa-
cilities that collect data about the plants being grown, in-
cluding infrared, visible light and fluorescence imaging. To
achieve high throughput, imaging must operate fully au-
tonomously. For this purpose, plants are transported be-
tween the greenhouses and imaging facilities by a system

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of conveyor belts. The Scanalyzer planning domain, named
after the LemnaTec Scanalyzer phenotyping platform for
which it was conceived, models the problem of controlling
these conveyor belts. This is difficult for three reasons.

Firstly, it is necessary to navigate in fairly confined
spaces. Typical greenhouses are long and narrow and can
require contorted travel routes due to space and money con-
straints. (It is cheaper to use a few long conveyor belts than
a larger number of shorter segments.)

Secondly, to enable the highest possible throughput, the
conveyor belts should be packed with plants to the largest
possible extent, and hence one usually cannot transport a
given plant or batch of plants through the greenhouse to-
wards the imaging facility without also moving the plants
located on the way. Therefore, one must simultaneously ac-
tivate several conveyor belts that form a cycle, so that a sin-
gle operation involves many simultaneous plant movements,
some of them potentially undesirable.

Thirdly, smarthouses can be large. For example, the Plant
Accelerator at the University of Adelaide, in operation since
January 2010, is the largest deployment of the Scanalyzer
platform to date. Designed for a throughput of 2400 plants
per day, it houses more than 1 km of conveyors. Even for
much smaller systems, phenotyping runs can require signif-
icant amounts of time – in one deployment up to 7 hours, of
which 3 hours are due to delays caused by plant routing.

The rest of this paper is structured as follows. In the next
section, we introduce (one variant of) the greenhouse lo-
gistics problem by way of example. We then explain why
classical planning algorithms are a good match for it and
describe the Scanalyzer domain as used at the Sixth Interna-
tional Planning Competition (IPC-2008). We also provide
a brief comparison of (domain-independent and domain-
dependent) planner performance. Finally, we discuss some
generalizations and future challenges and conclude.

The Problem

Consider Fig. 1, which shows a top-down view of the con-
veyor system in a small, but otherwise representative de-
ployment of the Scanalyzer platform. This example was
used as instance #3 of the Scanalyzer domain at IPC-2008.
All conveyor belts only travel in one direction, as indicated
by the arrows. In a quiescent state of the system, plants are
only located on the horizontal conveyor belts A–F in the

234

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)



A

B

C

D

E

F

I

Figure 1: Example scenario. The objective is to transport all
plants located on conveyor belts A–F through the imaging
chamber I for analysis and to end up in a state where all
plants are back at their original location.

right part of the picture, indicated by darker color. We will
refer to these six belts as segments in the following. The ob-
jective is to transport all plants through the imaging chamber
I (at the left) and then return them to their original segments.
Observe that with the given travel directions, only plants on
segment A can enter the conveyor belt leading to the imag-
ing chamber, and plants leaving the imaging chamber must
enter segment F afterwards.

Each segment contains a large number of plants (say 52).
There is no available free space, so it is not possible to trans-
port plants from, say, segment C to segment E without si-
multaneously making room on segment E. In the problem
variant we consider here, all plants located on a given seg-
ment must travel together, so that we can consider them as
a single batch. An atomic operation consists of, e. g., ac-
tivating segments C and E as well as the middle and right
vertical belts to swap the contents of C and E.

Grouping plants into batches in this way restricts the set of
possible plans and may introduce plans that are more costly
than what would be possible when considering individual
plants, so it is desirable to remove this limitation. However,
the currently used algorithms do require such grouping to
keep the state space of the problem reasonably small. We
will come back to this issue when discussing generalizations
and challenges, but for now we treat a batch of plants that
occupies a complete segment as a unit.

This means that we can represent a quiescent state of the
system by denoting which of the six batches (called 1–6 in
the following) is contained on which segment, together with
information that denotes which batches have been analyzed
by the imaging chamber already. We write such states as
6-tuples of the form 〈a, b, c, d, e, f〉, where each entry de-
notes which batch is contained on the corresponding seg-
ment, and batches that have been analyzed are marked with
a star. Using this notation, the initial state of the example is
〈1, 2, 3, 4, 5, 6〉 and the goal state is 〈1∗, 2∗, 3∗, 4∗, 5∗, 6∗〉.

In the example, there are ten atomic operations: we can
swap the contents of any of the segments A, B, C with any
of the segments D, E, F without traveling through the imag-
ing chamber (a rotate operation), and we can swap the con-

tents of segments A and F while transporting the contents
of segment A through the imaging chamber (a rotate-and-
analyze operation). For example, three of the ten succes-
sor states of the initial state are 〈1, 5, 3, 4, 2, 6〉 (via oper-
ation rotate(B, E)), 〈6, 2, 3, 4, 5, 1〉 (via rotate(A, F )) and
〈6, 2, 3, 4, 5, 1∗〉 (via rotate-and-analyze(A, F )).

We remark that allowing more complicated atomic opera-
tions, as well as interleaving certain operations, appears in-
tuitively feasible. For example, one might want to execute
operations like rotate-and-analyze(A, F ) and rotate(C, D)

concurrently. However, limitations of the sensors and actu-
ators that control the conveyor belts usually preclude such
levels of sophistication, so that the problem can indeed be
adequately modeled as purely sequential, using only the de-
scribed atomic operations.

Another practical observation is that traveling through the
imaging chamber is significantly more expensive than the
other operations, and hence the IPC-2008 domain formula-
tion assigns a higher cost to rotate-and-analyze operations
than to rotate. The domain-specific solver currently used
by LemnaTec, however, assumes that all operations have the
same cost. For this particular conveyor system the distinc-
tion does not matter because redundant rotate-and-analyze
steps can be replaced by corresponding rotate steps.

We conclude our discussion of the example scenario by
remarking that an optimal solution consists of 6 rotate-and-
analyze and 8 rotate operations.

The Scanalyzer PDDL Domain
For several reasons, classical planning systems appear to be
a good match for the Scanalyzer planning problem. Firstly,
the (often limiting) classical assumptions of a fully observ-
able, static world with a single planning agent and determin-
istic state transitions are adequate for the problem. Unfore-
seen changes to the environment or goals are rare enough for
offline planning to be a suitable approach.

Secondly, the flexibility offered by a general planner is
useful because the Scanalyzer platform is deployed in many
different kinds of greenhouses with different sizes and lay-
outs. Also, a general planner can adapt to different scenar-
ios easily. For example, there may be a requirement to move
certain plants between different parts of the greenhouse in
addition to imaging them. For a general planner, this can
simply be expressed by defining a suitable goal. As an-
other example, a conveyor belt may need to be shut down for
maintenance or be otherwise unavailable. A general planner
can be adapted to such a situation by simply removing some
of the available operators.

Thirdly, the algorithms employed by current classical
planners, which are mostly based on forward search in the
state space, are adequate for the problem. The allowed op-
erations in the domain are reminiscent of classical permuta-
tion puzzles like TopSpin (e. g., Yang et al. 2008), for which
the best known algorithms are based on heuristic forward
search. Indeed, the domain-specific solver currently used by
LemnaTec is based on A∗ with a domain-specific heuristic.

Finally, the problem is easily expressible in the usual
planning formalisms. In fact, the original problem specifica-
tion as formulated by a domain expert and implemented in

235



(define (domain scanalyzer)

(:requirements :typing :action-costs)

(:types segment batch - object)

(:predicates (on ?b - batch ?s - segment)

(analyzed ?b - batch)

(CYCLE-2 ?s1 ?s2 - segment)

(CYCLE-2-WITH-ANALYSIS ?s1 ?s2 - segment))

(:functions (total-cost) - number)

(:action rotate-2

:parameters (?s1 ?s2 - segment ?b1 ?b2 - batch)

:precondition (and (CYCLE-2 ?s1 ?s2)

(on ?b1 ?s1) (on ?b2 ?s2))

:effect (and (not (on ?b1 ?s1)) (not (on ?b2 ?s2))

(on ?b1 ?s2) (on ?b2 ?s1)

(increase (total-cost) 1)))

(:action rotate-and-analyze-2

:parameters (?s1 ?s2 - segment ?b1 ?b2 - batch)

:precondition (and (CYCLE-2-WITH-ANALYSIS ?s1 ?s2)

(on ?b1 ?s1) (on ?b2 ?s2))

:effect (and (not (on ?b1 ?s1)) (not (on ?b2 ?s2))

(on ?b1 ?s2) (on ?b2 ?s1) (analyzed ?b1)

(increase (total-cost) 3))))

(define (problem example) (:domain scanalyzer)

(:objects A B C D E F - segment

b1 b2 b3 b4 b5 b6 - batch)

(:init (= (total-cost) 0)

(CYCLE-2 A D) (CYCLE-2 A E) (CYCLE-2 A F)

(CYCLE-2 B D) (CYCLE-2 B E) (CYCLE-2 B F)

(CYCLE-2 C D) (CYCLE-2 C E) (CYCLE-2 C F)

(CYCLE-2-WITH-ANALYSIS A F)

(on b1 A) (on b2 B) (on b3 C)

(on b4 D) (on b5 E) (on b6 F))

(:goal (and (analyzed b1) (analyzed b2) (analyzed b3)

(analyzed b4) (analyzed b5) (analyzed b6)

(on b1 A) (on b2 B) (on b3 C)

(on b4 D) (on b5 E) (on b6 F)))

(:metric minimize (total-cost)))

Figure 2: PDDL formalization of the Scanalyzer example.

LemnaTec’s planner could be faithfully converted to a plan-
ning domain in the STRIPS fragment of PDDL in less than
an hour. Figure 2 shows the relevant part of the PDDL for-
malization of the example task as it was used at IPC-2008,
with some changes in terminology for clarity. (The full do-
main contains some additional operators for dealing with
half-size batches, as discussed later.)

Scanalyzer at IPC-2008

At IPC-2008, the Scanalyzer domain was used as a bench-
mark in two tracks, sequential satisficing and sequential
optimization. In the optimization track, planners were re-
quired to produce minimal cost solutions and were scored
according to the number of solved tasks. In the satisfic-
ing track, suboptimal solutions were accepted, but planners
were scored according to the cost of the generated solutions.
Both tracks used a 30 minute timeout. The planning do-
mains used for evaluation were unknown to the participants
at the time the planners were submitted. (In fact, the Scana-
lyzer PDDL domain did not yet exist then.)

Layout 1 Layout 2 Layout 3 Layout 4

Size DSS IPC Size DSS IPC Size DSS IPC Size DSS IPC

6 18∗ 18∗ 6 22∗ 22∗ 6 26∗ 26∗ 6 22∗ 22∗

8 24∗ 24∗ 8 30∗ 30∗ 8 36∗ 36∗ 8 32 30∗

10 30∗ 30∗ 10 38∗ 44 10 46∗ 46∗ 10 40 44

12 36∗ 36∗ 12 46∗ 54 12 56∗ 60 12 — 56

14 42∗ 42∗ 14 54∗ 64 14 66∗ 72 14 — 66

16 48∗ 48∗ 16 62∗ 74 16 — 86 16 — 84

18 54∗ 54∗ 18 — 84 18 — 94 18 — 94

20 60∗ 60∗ 20 — 94 20 — 108 20 — 106

22 66∗ 66∗ 22 — 104 22 — 114 22 — 116

24 72∗ 72∗ 24 — 114 24 — 134 24 — 128

Table 1: Comparison of solution cost between the domain-
specific solver (DSS) by LemnaTec and the best IPC-2008
result (IPC). Best performances shown in bold; optimal so-
lutions marked with stars. The running example is Layout 3,
size 6. IPC-2008 used sizes 6–18 of the first three layouts.

In the Scanalyzer domain, the same 30 problem instances
were used in both tracks. The first 21 of these are “regular”
Scanalyzer tasks with a similar flavor to our example sce-
nario (Figs. 1 and 2). The remaining 9 tasks encode a gener-
alized problem, discussed in the following section. The reg-
ular tasks differ in the number of segments (6–18) as well
as the conveyor system layout, with all layouts suggested
by domain experts from LemnaTec. For this paper, we ex-
tended this benchmark suite slightly by adding larger tasks
with up to 24 segments and an additional family of conveyor
layouts. Table 1 compares the performance (in terms of so-
lution quality) of the best-performing planners at IPC-2008
to LemnaTec’s domain-dependent solver on the extended
benchmark suite. For both the domain-independent planners
and LemnaTec’s solver, memory was a more limiting factor
than runtime, with the 2 GB memory limit usually exceeded
within a few minutes.

The results show that while the A∗-based LemnaTec
solver sometimes produces better solutions (especially for
Layout 2), the domain-independent planners scale to in-
stances of larger size. In one case for Layout 4, the domain-
independent systems even produce a better solution. (Opti-
mality of the LemnaTec solver is not guaranteed despite the
use of A∗ as it uses an inadmissible heuristic.) Note that
these instances are far from trivial to solve. Blind search
approaches begin to fail for the size-10 problems, which al-
ready have 3.7 · 109 reachable states, and are hopeless for
the size-12 problems with 2.0 · 1012 reachable states.

Generalizations and Challenges

Smarthouse logistics offers many challenges beyond what
we discussed so far. Most importantly, there is considerable
interest in removing the restriction that all plants on a seg-
ment must be moved together as a single batch, which is
severely limiting for two reasons.

Firstly, for tasks where the objective is to image all plants
and then return them to their origin, the best batched solu-
tions may be more expensive than the best solutions that do
not use batching.

236



I

batch 1a batch 1b

batch 2a batch 2b

batch 3a batch 3b

batch 4b batch 4a

batch 5b batch 5a

batch 6b batch 6a

Figure 3: Example scenario with half-segment batches:
transport all batches to the imaging chamber I and then to
the goal positions indicated by the curved arrows.

Secondly, many relevant planning tasks cannot be mod-
eled at the abstraction level of full-segment batches. For ex-
ample, in a common scenario the plants in the greenhouse
need to be imaged and then moved to different locations
from their original ones, according to some rotation sched-
ule that ensures that plants reside in different areas of the
greenhouse over time, to ensure even growing conditions.
With full-segment batches, this goal cannot be properly ex-
pressed because plants initially located at the front of a seg-
ment will remain at the front of a segment in every quies-
cent state. One solution for this deficiency is to split seg-
ments into several virtual subsegments and group plants into
batches at the level of these smaller subsegments.

Figure 3 shows an example of this, where each batch oc-
cupies one half of a segment. At the abstract level, we
can still represent the state space of such a problem as a
k-tuple that indicates which batches are located where and
which batches have been analyzed. For example, in the sce-
nario shown above the initial state could be represented as
〈1a, 1b, 2a, 2b, 3a, 3b, 4b, 4a, 5b, 5a, 6b, 6a〉 and the goal as
〈1b∗, 6a∗, 2b∗, 4a∗, 3b∗, 5a∗, 2a∗, 4b∗, 3a∗, 5b∗, 1a∗, 6b∗〉.

The main difference to the earlier problem instances is
that operators now rotate the contents of four tuple positions,
rather than just swapping two positions. For example, the
operation rotate(A, F ) applied to a state s = 〈s1, . . . , s12〉
would permute the first two and last two tuple entries, lead-
ing to state 〈s2, s12, s3, . . . , s10, s1, s11〉.

While the domain-specific solver employed by LemnaTec
cannot currently express problem instances of this kind, they
are easy to formalize in PDDL; all that is needed, com-
pared to Fig. 2, is to add operators rotate-4 and rotate-and-
analyze-4 for performing such larger rotations, together with
predicates CYCLE-4 and CYCLE-WITH-ANALYSIS-4 to en-
code the topology of the conveyor system.

The IPC-2008 formulation of the Scanalyzer domain con-
tains these generalizations, and benchmark instances #22-
30 used at the competition encode half-segment problems
similar to this example, with three different kinds of con-
veyor layouts and 4–12 half-segment batches. However, the
participating planners scaled much worse on these instances

than on the regular ones. Only two systems could solve the
problem instance shown in Fig. 3 (#30 in the benchmark
suite), and then only with plans of very poor quality (cost
161, compared to a supposed optimal cost of 55). While
this is still significantly better than the performance of blind
search, which does not scale to any of the instances with 12
half-segments, solving half-segment problems of substantial
size remains a significant challenge.

If half-segment problems are not yet hard enough, the rep-
resentation can of course be refined further, up to the ex-
treme of planning at the level of individual plants. With
each segment having room for up to 52 plants, the state
space of the example 6-segment problem would then contain
312! · 2312 = 1.8 · 10738 states, which certainly requires sig-
nificantly more insight to find reasonable solutions. More-
over, at this level the assumption of modeling the problem
as purely sequential would need to be revisited, since it is
clearly desirable to have more than one plant use the vertical
conveyor belts connecting the segments at the same time.

Conclusion
We have introduced the Scanalyzer planning domain, which
models planning problems that arise in the context of man-
aging smarthouses, smart greenhouses used for large-scale
automated experiments in plant phenomics.

The characteristics of these planning problems make them
an attractive target for classical planners. The Scanalyzer
domain has been used as a benchmark at IPC-2008, where
the best-performing planners have produced very notable re-
sults. Compared to domain-specific solvers, general plan-
ners have the advantage of being more flexible in several
dimensions as well as being available as off-the-shelf tools.

Due to its nature as a real application problem with a well-
defined combinatorial structure, easily expressible in PDDL,
we believe that the Scanalyzer domain is of interest for prac-
tically and theoretically minded researchers alike, in addi-
tion to being a suitable benchmark for domain-independent
classical planners. Practically relevant scaling challenges of-
fer an interesting area for future research.

Acknowledgments
Many thanks to Robert Mattmüller, who helped with the
Scanalyzer PDDL formalization, implemented the problem
generator and produced the reference plans for IPC-2008.

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS). For more in-
formation, see http://www.avacs.org/.

References
Finkel, E. 2009. With ‘phenomics,’ plant scientists hope to
shift breeding into overdrive. Science 325:380–381.

Furbank, R. T., ed. 2009. Plant Phenomics, volume 36 (10–
11) of Functional Plant Biology. CSIRO Publishing.

Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
JAIR 32:631–662.

237




