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Abstract

Planning as Satisfiability is a most successful approach to op-
timal propositional planning. It draws its strength from the ef-
ficiency of state-of-the-art propositional satisfiability solvers,
combined with the utilization of constraints that are inferred
from the problem planning graph. One of the recent improve-
ments of the framework is the addition of long-distance mu-
tual exclusion (londex) constraints that relate facts and ac-
tions which refer to different time steps.

In this paper we compare different encodings of planning as
satisfiability wrt the constraint propagation they achieve in
a modern SAT solver. This analysis explains some of the
differences observed in the performance of different encod-
ings, and leads to some interesting conclusions. For instance,
the BLACKBOX encoding achieves more propagation than the
one of SATPLAN06, and therefore is a stronger formulation
of planning as satisfiability. Moreover, our investigation sug-
gests a new more compact and stronger model for the prob-
lem. We prove that in this new formulation many of the lon-
dex constraints are redundant in the sense that they do not
add anything to the constraint propagation achieved by the
model. Experimental results suggest that the theoretical re-
sults obtained are practically relevant.

Introduction
One of the most successful approaches to optimal STRIPS
planning is the SATPLAN approach, that translates a plan-
ning problem to a propositional satisfiability one (SAT).
The approach draws its strength from the efficiency of
state-of-the-art propositional satisfiability solvers, combined
with the utilization of constraints that are inferred from
the problem planning graph. After more than a decade
of research, there exist nowadays many different encod-
ings of propositional planning as satisfiability, includ-
ing those of BLACKBOX (Kautz and Selman 1999) and
SATPLAN06 (Kautz, Selman, and Hoffmann 2006). In
most of the studies these formulations are compared exper-
imentally, and little is known about their theoretical under-
pinnings and the reasons that render one model better than
the other. In this work we present a first theoretical analy-
sis that compares some of these encodings and explains im-
portant reasons that contribute to the differences which are
observed in their performance.
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Our investigation is based on the simple observation that
the planning as satisfiability framework regards the planning
problem as a Constraint Satisfaction one. Therefore, con-
straint propagation, i.e. the process of deriving the values
of new variables from values that are known or assumed
for other variables, is a central notion. Stronger forms of
propagation derive more variable values and therefore lead
to more pruning of the search space than weaker ones. If the
computational cost of the constraint propagation procedure
is low, the reduction of the search space usually translates
into better run times.

This work compares different planning encodings wrt the
unit propagation they achieve, the standard constraint prop-
agation method employed in almost all modern SAT solvers.
Roughly speaking, a planning model is stronger than another
if it is able to propagate more variable values. Moreover,
one encoding is more compact than some other if it achieves
the same propagation but with a subset of the clauses. The
clauses that are contained in the less compact encoding are
redundant wrt unit propagation.

Our analysis reveals some interesting relationships. The
most unexpected is probably that the BLACKBOX encoding
is stronger than the one used in SATPLAN06. Based on our
theoretical results we propose a new encoding of planning as
satisfiability, called SAT-MAX-PLAN (abbreviated as SMP),
that achieves more propagation than all other models, and it
does so with a set of clauses that contains no redundancy.

We also study the propagation power of long distance
mutual exclusion constraints (londex), as introduced in
the MAXPLAN system (Chen, Xing, and Zhang 2007),
and show that they indeed strengthen the model of the
SATPLAN06 encoding. More precisely, we prove that
SATPLAN06 can propagate londex type information for-
ward through the layers of the propositional theory, i.e. from
variables that refer to a time point to variables that refer to
some later time point. However, SATPLAN06 fails to do
the same backwards, and therefore adding londex type con-
straints to SATPLAN06 encodings improves propagation.
However, we show that londex constraints do not increase
the propagation of the SMP encoding, and are therefore re-
dundant in this new model.

In the experimental part we compare SMP,
BLACKBOX and SATPLAN06 in a number of domains
from the last planning competitions. It turns out that SMP
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outperforms both other encodings, whereas between the
two, BLACKBOX has an advantage over SATPLAN06.
In fact, SMP coupled with a new SAT solver called
precosat (Biere 2009), can solve more problems than
the other planners, and presents a notable advancement of
the state-of-the-art of planning as satisfiability. Moreover,
it shows that the theoretical results of this work are of
practical relevance.

To the best of our knowledge the only other studies close
to the spirit of this work are (Geffner 2004) and (Rintanen
2008). However, the focus there is on understanding mu-
texes and londexes, and explaining how they can be derived
by a modern SAT solver. Our investigation is complemen-
tary to the above, and explains what, when and why con-
straints improve performance.

Preliminaries

In this section we discuss briefly various SAT encodings for
STRIPS planning problems, constraint propagation in SAT,
and long distance mutual exclusion constraints. We assume
that the reader is familiar with the basics of STRIPS plan-
ning, planning graphs, londex constraints, and SAT solving.
Our analysis refers exclusively to STRIPS planning.

Planning as Satisfiability

A (STRIPS) planning problem is a triple P =< I, G, A >,
where I is the set of facts that hold in the initial state, G
are the goals, and A is a set of actions. Each action A has
preconditions, denoted by pre(A), add effects, denoted by
add(A), and delete effects, denoted by del(A). From the
description of a planning problem a planning graph can be
constructed as described in (Blum and Furst 1997). A cen-
tral notion in planning graphs is action interference, defined
as follows.

Definition 1 Two action A1 and A2 interfere whenever any
of the sets del(A1) ∩ add(A2) and del(A1) ∩ pre(A2) is
non-empty.

In this work we study some of the most successful mod-
els of planning as satisfiability. They include different en-
codings supported by the planning systems BLACKBOX, and
SATPLAN06. All these systems use information that is de-
rived from the planning graph of the problem. Part of the
information that is extracted has the form of mutually exclu-
sive pairs, or mutexes for short, that are defined as follows.

1. Two actions A1, A2 are mutually exclusive at level l if
they interfere or there is a pair of facts f1 ∈ pre(A1),
f2 ∈ pre(A2) such that f1, f2 are mutually exclusive at
level l.

2. Two facts f1, f2 are mutually exclusive at level l if for
every pair of actions A1, A2 such that f1 ∈ add(A1),
f2 ∈ add(A2), A1, A2 are mutually exclusive at level l−
1.

In a planning graph each level corresponds to a different
time point, while inertia is captured by noop actions that
encode persistence. In the SAT model of a planning prob-
lem time-stamped propositional atoms (or variables) repre-
sent the action and facts of the problem. An atom A(T ),

where A is an action, corresponds to the decision of whether
action A is taken or not at time T , and analogously for vari-
ables of the form f(T ) where f is a fact. In all systems
that utilize the planning graph an action/fact variable is in-
troduced to the theory only if the corresponding action/fact
node is present in the planning graph. More specifically, the
variables are created as follows.

1. Unit clauses for the initial and final state.

2. An action variable A(T ) is added to the theory if for each
p ∈ pre(A), p(T ) occurs in the theory, and there is no
pair p1, p2 ∈ pre(A) s.t. ¬p1(T )∨¬p2(T ) belongs to the
theory.

3. A proposition variable p(T ) is added to the theory if
some action variable A(T − 1) is in the theory, with
p ∈ add(A).

To facilitate our study we first introduce a new encod-
ing called Graphplan-direct, that is direct translation of the
planning graph structure into propositional logic. The other
encodings that we investigate in the rest of this paper are
subsets of the clause set of the Graphplan-direct formula-
tion. The clauses of the Graphplan-direct encoding are the
following.

1. Unit clauses for the initial and final state.

2. A(T ) → f(T ), for every action A and fact f s.t. f ∈
pre(A).

3. A(T ) → f(T + 1), for every action A and fact f s.t.
f ∈ add(A).

4. A(T ) → ¬f(T + 1), for every action A and fact f s.t.
f ∈ del(A).

5. f(T )→ A1(T − 1) ∨ . . . ∨Am(T − 1), for every fact f
and all actions Ai, 1 ≤ i ≤ m (including the noops) s.t.
f ∈ add(Ai).

6. ¬f(T ) → A1(T − 1) ∨ . . . ∨ Am(T − 1) ∨ ¬f(T − 1),
for every fact f and all actions Ai, 1 ≤ i ≤ m s.t. f ∈
del(Ai).

7.1 ¬A1(T )∨¬A2(T ), for every pair of actions A1, A2 such
that the set del(A1) ∩ pre(A2) is non-empty.

7.2 ¬A1(T )∨¬A2(T ), for every pair of actions A1, A2 such
that the set del(A1) ∩ add(A2) is non-empty.

7.3 ¬A1(T ) ∨ ¬A2(T ), if there is a pair of facts f1 ∈
pre(A1), f2 ∈ pre(A2) such that f1, f2 are mutually ex-
clusive at time T .

8 ¬f1(T ) ∨ ¬f2(T ), for every pair of facts f1, f2 that are
mutex at time T .

The first system that employed information derived from
the planning graph in the propositional encoding of a plan-
ning problem was BLACKBOX (Kautz and Selman 1999).
BLACKBOX (version 43) supports different encodings, three
of which we investigate here and denote by BB-7, BB-31,
and BB-32. Each of them is obtained by selecting the ap-
propriate value (7, 31, or 32) of parameter axioms. The set
of clauses of each of these encodings (which is a subset of
the clauses of the Graphplan-direct model) is the following.
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1. BB-7: Clauses 1, 2, 5, 7.1, 7.2, 7.3

2. BB-31: Clauses 1, 2, 3, 4, 5, 7.1, 8

3. BB-32: Clauses 1, 2, 3, 4, 5, 7.1, 7.2, 7.3, 8

Similarly to BLACKBOX, SATPLAN06 also supports dif-
ferent encodings. Two of them are mixed action/fact mod-
els, and the other two are action-based encodings. Due
to space limitations, in this work we restrict ourselves to
the mixed models. They are denoted by SATPLAN06-4
and SATPLAN06-3, and are obtained by setting the encod-
ing parameter to value 4 and 3 respectively. Each of them
contains the following clauses (again numbers refer to the
Graphplan-direct model).

1. SATPLAN06-4: Clauses 1, 2, 5, 7.1, 7.2, 8

2. SATPLAN06-3: Clauses 1, 2, 5, 7.1, 7.2, 7.3, 8

The propositional theory that results from the above en-
codings, for a fixed number of time steps Tmax, is given as
input to a SAT solver. Any time step T ≤ Tmax, is a valid
time point.

Propagation in a SAT solver

State-of-the-art SAT solvers such as siege (Ryan
2003), minisat (Een and Sorensson 2003) and
precosat (Biere 2009), employ Unit Resolution for
constraint propagation. That is, they resolve all unit clauses
with all other clauses in the theory, and iterate this process
until no further unit clause can be derived (or unsatisfi-
ability is proven). In the following, UP (T ) denotes the
closure of theory T under Unit Propagation. The notion of
UP-redundancy plays a central role in our analysis, and is
defined as follows.

Definition 2 The binary clause l1 ∨ l2 is UP-redundant wrt
a theory T iff either l1 ∨ l2 ∈ T or lj ∈ UP (T ∪ {¬li}), for
i �= j and i, j ∈ {1, 2}.

Below, several notions regarding the relative strength of
propositional theories wrt binary clauses are defined.

Definition 3 Theory T1 is at least as strong as theory T2

wrt UP and binary clauses, denoted by T1 ≥UP T2, iff ev-
ery clause of T2\T1 is binary and UP-redundant wrt T1.
Theory T1 is strictly stronger than theory T2 wrt UP and bi-
nary clauses, denoted by T1 >SUP T2, iff T1 ≥UP T2 or
T1 ⊃ T2 and T2 �≥UP T1.
Theory T1 is more compact than theory T2 wrt UP and bi-
nary clauses, denoted by T1 >C T2, iff T1 ≥UP T2 and
T1 ⊂ T2.

Long-Distance Mutual Exclusion

The Long-Distance Mutual Exclusion (londex) method of
(Chen, Xing, and Zhang 2007), is based on the multi-valued
domain formulation (MDF), in which a planning domain is
defined over a set X = (x1, . . . , xn) of multi-valued vari-
ables, where each xi has an associated finite domain Di. If
x is a multi-valued variable from X and v a value from its
domain, x = v denotes the assignment of v to x. To asso-
ciate such an assignment x = v with a boolean fact f , we
use the notation f = MDF (x, v).

For every multi-valued variable in a planning problem, the
method of (Chen, Xing, and Zhang 2007) builds the domain
transition graph, from which the fact distances are calcu-
lated.

Definition 4 Given an MDF variable x with domainDx, its
domain transition graph (DTG) Gx is a digraph with vertex
set Dx and arc set Ax, such that (v, v′) ∈ Ax iff there is an
action o such that del(o) = v and add(o) = v′.

Definition 5 Given a DTG Gx, the distance from a fact
f1 = MDF (x, v1) to another fact f2 = MDF (x, v2), de-
noted by ΔGx

(f1, f2), is defined as the minimum distance
from vertex v1 to vertex v2 in Gx.

Based on fact distances, londex constraints for facts and
actions are derived. In the following, t(f) denotes the time
step at which fact f is true, and t(a) the time step at which
an action is chosen. Moreover, we say that an action a is
associated with a fact f if f appears in pre(a), add(a) or
del(a).

Definition 6 (Fact Londex) Given two boolean facts f1 and
f2, that correspond to two nodes in a DTG Gx, such that
ΔGx

(f1, f2) = r, then there is no valid plan in which 0 ≤
t(f2)− t(f1) < r.

There are two classes of actions londex constraints that
are defined below.

Definition 7 (Class A Action Londex) If actions a and b are
associated with a fact f , they are mutually exclusive if one
of the following holds:

1. f ∈ add(a), f ∈ del(b), and t(a) = t(b)

2. f ∈ del(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ 1

Definition 8 (Class B Action Londex) If action a is associ-
ated with fact f1 and action b with fact f2, and it is invalid
to have 0 ≤ t(f2) − t(f1) < r according to fact londex
constraints, then a and b are mutually exclusive if one of the
following holds:

1. f ∈ add(a), f ∈ add(b), and 0 ≤ t(b)− t(a) ≤ r − 1

2. f ∈ add(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ r

3. f ∈ pre(a), f ∈ add(b), and 0 ≤ t(b)− t(a) ≤ r − 2

4. f ∈ pre(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ r − 1

The relative strength of the encodings

We first study unit propagation in planning systems that em-
ploy information derived from the planning graph. More
precisely, we will investigate the relative constraint propaga-
tion power of BLACKBOX and the mixed SATPLAN06 en-
codings.

It is easy to see that the encodings are related as fol-
lows: for any (STRIPS) planning problem P , SATPLAN06-
4(P ) ⊂ SATPLAN06-3(P ) ⊂ BB-32(P ), and BB-7(P ) ⊂
SATPLAN06-3(P ). The following proposition shows that
some of the mutex clauses are UP-redundant in some en-
codings.

Proposition 1 The set of clauses 7.3 is UP-redundant wrt
any propositional encoding that contains the set of clauses
2 and 8.
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Proof Let ¬A1(T ) ∨ ¬A2(T ) be a clause with A1 and A2

two actions such that there is a pair of facts f1 ∈ pre(A1),
f2 ∈ pre(A2) such that f1, f2 are mutually exclusive at level
T . We will show that ¬A2(T ) ∈ UP (TP ∪{A1(T )}). From
A1(T ) and clause A1(T ) → f1(T ) we obtain f1(T ). Since
the theory contains axioms 8, it must contain the clause
¬f1(T ) ∨ ¬f2(T ). From this clause and f1(T ) we obtain
¬f2(T ), form which, together with A2(T )→ f2(T ) we con-
clude¬A2(T ). The proof of¬A1(T ) ∈ UP (TP ∪{A2(T )})
is symmetric.

A direct consequence of the above proposition is the fol-
lowing relation between the two mixed SATPLAN06 encod-
ings.

Corollary 1 For any planning problem P , SATPLAN06-
4(P ) >C SATPLAN06-3(P ).

Another result that is stated formally below can be used
to simplify theories that contain clause sets 3 and 4.

Proposition 2 The set of clauses 7.2 is UP-redundant wrt
any propositional encoding that contains the set of clauses
3 and 4.

Proof Let ¬A1(T ) ∨ ¬A2(T ) be a clause with A1 and
A2 two actions such that at least one of the sets del(A1) ∩
add(A2) and del(A2)∩add(A1) is non-empty. Assume that
del(A1) ∩ add(A2) �= ∅ (the other case is symmetric) and
let f ∈ del(A1) ∩ add(A2). We will show that ¬A2(T ) ∈
UP (TP ∪ {A1(T )}). The theory contains a clause of the
form A1(T ) → ¬f(T + 1) from which ¬f(T + 1) is de-
rived. From this and clause A2(T )→ f(T + 1), ¬A2(T ) is
concluded.

A direct consequence of the above proposition is that en-
coding BB-32 can be simplified by removing clauses 7.2.
Similarly, by proposition 1, clauses 7.3 can also be omitted.
Therefore, BB-31(P ) >C BB-32(P ), for all problems P .

A similar observation holds for the Graphplan-direct en-
coding. By removing the UP-redundant clauses 7.2 and 7.3
we obtain SATPLANmax encoding which contains the fol-
lowing clauses:

• SATPLANmax: Clauses 1, 2, 3, 4, 5, 6, 7.1, 8.

On the other hand, the set of clauses 8 is not UP-
redundant wrt to any encoding that contains any of the
other clauses (i.e. 1 to 7.3). From this we conclude that,
for all problems P , BB-31(P ) >SUP BB-7(P ). Similarly
clause sets 3 and 4 are not UP-redundant wrt to any other
clause, and therefore, BB-31(P ) >SUP SATPLAN06-4(P ).
Hence, it seems that from the implemented encodings of
planning as satisfiability, BB-31 is the strongest. Finally,
SATPLANmax(P ) >SUP BB-31(P ), for any problem P ,
due to the existence of clause set 6.

Note, that the SATPLANmax encoding uses only one set
of mutex actions, namely set 7.1. However, it is possible that
a clause is included in several sets of mutex clauses, each for
a different reason. Therefore, a mutex pair of actions that be-
longs to set 7.1 may also belong to other mutex sets that are
UP-redundant. The size of clause set 7.1 of SATPLANmax,
can be reduced by omitting all clauses of this set that also be-
long to sets 7.2 or 7.3. Furthermore, all mutex action clauses

on actions A1 and A2 and time T that contain add effects p1

and p2 respectively such that p1 and p2 are mutex at time
T + 1 can also be omitted. We call the resulting encoding
SAT-MAX-PLAN, or SMP for short.

Londex Propagation in Propositional Planning

From the STRIPS encoding P of a planning problem, we
can construct its multi-valued representation PM , using a
translation M as those described e.g. in (Helmert 2009). For
each multi-valued variable X of PM with domain DX , we
denote by X(v) the fact in its STRIPS representation P that
corresponds to the assignment of value v ∈ DX to variable
X . Moreover, X(v, T ) denotes the atom (in the planning
graph and the propositional theory) that represents the truth
value of X(v) at time T . In order to abstract away from
the details of the particular method that is used to construct
the multi-valued representation of a STRIPS domain, and
therefore simplify our discussion, we make some, we be-
lieve, natural assumptions about the domains we consider.

Definition 9 A multi-valued translation method M that
translates STRIPS problems into their multi-value represen-
tation, satisfies the domain compatibility assumption if for
every STRIPS problem P and its multi-valued representa-
tion PM the following conditions hold:

1. Let X be a multi-valued variable of PM with domainDX

and A any action of P . If X(vi) ∈ add(A) for vi ∈ DX ,
then X(vj) ∈ del(A) ∩ pre(A) for some vj ∈ DX with
i �= j.

2. If X is a multi-valued variable of PM with domain DX ,
then the initial state assigns true to exactly one fact of the
form X(vi) for vi ∈ DX .

We can now prove that for translations that satisfy the do-
main compatibility assumption, Graphplan marks as mutex
all facts that refer to the different values of a multi-valued
variable.

Proposition 3 Let PM be the translation of a STRIPS prob-
lem P under a translation method M that satisfies the do-
main compatibility assumption. If X is a multi-valued vari-
able of PM with domainDX , in the planning graph all pairs
of facts of the from X(vi), X(vj), with vi, vj ∈ DX and
i �= j, are mutex in all its levels where they both appear.

Proof We prove the claim inductively on planning graph
levels.
Base case. Assume that both X(vi) and X(vj) appear on
(fact) level 1 of the planning graph. We prove that they
are marked as mutually exclusive by Graphplan. Suppose
first that one of X(vi) and X(vj), say X(vi), appears in
the initial state (fact level 0). Since X(vj) appears on

level 1, there must be some actions A
vj

1
, . . . A

vj
n such that

X(vj) ∈ add(A
vj

c ) and X(vi) ∈ del(A
vj

c ) ∩ pre(A
vj

c ), for
1 ≤ c ≤ n. On the other hand, X(vi) appears on level 1 be-
cause of noopX(vi). Observe that noopX(vi) is mutex with
all actions A

vj

c in the preceding action level, and therefore
(X(vi), X(vj)) are also mutex.
Assume now that X(vt) appears in the initial state, and
therefore, by the domain compatibility assumption, none of
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X(vi) and X(vj) does. Then, there must be two sets of

actions, A
vj

1
, . . . A

vj

n and Avi

1
, . . . Avi

m, such that X(vj) ∈
add(A

vj

c ), X(vt) ∈ del(A
vj

c ) ∩ pre(A
vj

c ), for 1 ≤ c ≤ n,
and X(vi) ∈ add(Avi

d ), X(vt) ∈ del(Avi

d ) ∩ pre(Avi

d ), for

1 ≤ d ≤ m. Observe that every action A
vj
c deletes X(vt)

which is a precondition of all actions Avi

d . Therefore, every

action A
vj

c is mutex with every action Avi

d . Hence, X(vi)
and X(vj) are also mutex at fact level 1.

Inductive hypothesis. Assume that for some planning
graph level k, Graphplan marks as mutex all pairs of facts
of the form X(vi), X(vj), with vi, vj ∈ DX .

Inductive step. We prove that the same holds for graph
level k + 1 for all pairs of facts of the from X(vi), X(vj),
with vi, vj ∈ DX . Let Avi

c be an action such that X(vi) ∈
add(Avi

c ), and A
vj

d an action such that X(vj) ∈ add(A
vj

d ).
By the domain compatibility assumption, there are facts
X(vc) ∈ del(Avi

c ) ∩ pre(Avi
c ), X(vd) ∈ del(A

vj

d ) ∩
pre(A

vj

d ), with vc, vd ∈ DX . Assume first that vc �= vd.
From the inductive hypothesis we know that X(vc), X(vd)
are mutex at fact level k, therefore actions Avi

c and A
vj

d are
mutex at action level k. On the other hand, if vc = vd, then
pre(Avi

c ) ∩ del(A
vj

d ) �= ∅, therefore Avi
c and A

vj

d are again

mutex. Therefore, any pair of actions Avi
c and A

vj

d that add
X(vi) and X(vj) respectively are mutex at level k. Hence,
X(vi), X(vj) are mutex at level k + 1.

A similar result can be proven (the proof is omitted) for
actions that have multi-valued variables in their add effects.

Proposition 4 Let PM be the translation of a STRIPS prob-
lem P under a translation method M that satisfies the do-
main compatibility assumption. If X is a multi-valued vari-
able of PM with domain DX , in the planning graph all
pairs of action Ai, Aj (including noops) such that X(vi) ∈
add(Ai), X(vj) ∈ add(Aj), for vi, vj ∈ DX , are mutex in
all its levels where they both appear.

In the rest of the paper we assume that londex con-
straints are generated from the multi-valued representation
of a planning domain by a translation method that satis-
fies the domain compatibility assumption. Moreover, we
assume that londex constraints are translated into clauses
in a straightforward manner, i.e. a Class A action londex
on actions A1 and A2 translates into a set of binary clauses
¬A1(T ) ∨ ¬A2(T + 1) for all valid points.

Londex propagation in SATPLAN06

In the following we analyze the effects of various londex
constraints on the constraint propagation of a UP based SAT
solver. A clause of the form ¬p(T ) ∨ ¬q(T + k) that corre-
sponds to a londex constraint of a planning problem P is for-
ward UP-redundant wrt to an encoding TP of P if ¬q(T +
k) ∈ UP (TP ∪ {p(T )}). Similarly, the clause is backward
UP-redundant wrt to TP if ¬p(T ) ∈ UP (TP ∪{q(T +k)}).

We start by analyzing the effects of londex constraints
of Class A. This class contains constraints that refer to ac-
tions that cannot be executed in parallel, as well as con-
straints that relate actions that are one time step apart. Note
that action mutexes that refer to the same time point are
included in SATPLAN06 encoding, therefore we do not

consider them. For the other type of Class A londex con-
straints, we show below that they are forward UP-redundant
wrt the the SATPLAN06-4 model, which we refer to as
SATPLAN06 encodings.

Proposition 5 Let A1, A2 be actions and f a fact of a plan-
ning problem P such that f ∈ del(A1) and f ∈ pre(A2).
The set of clauses¬A1(T )∨¬A2(T +1), for all valid points
T , is forward UP-redundant wrt the SATPLAN06 encoding
of the problem.

Proof Let TP be the SATPLAN06 encoding of a problem
P . We prove that ¬A2(T + 1) ∈ UP (TP ∪ {A1(T )}). Let

Af
1
, Af

2
, . . . , Af

k be the actions that contain f in their add
effects (including noop). Theory TP contains the clauses

1. ¬A2(T + 1) ∨ f(T + 1)

2. ¬f(T + 1) ∨Af
1
(T ) ∨Af

2
(T ) ∨ . . . ∨Af

k(T )

3. A set of binary clauses of the form ¬A1(T ) ∨ ¬Af
i (T ),

1 ≤ i ≤ k.

From A1(T ) and the set of clauses (3) above, UP derives

the set of unit clauses ¬Af
i (T ), 1 ≤ i ≤ k From these

clauses and clause (2), UP entails the unit clause ¬f(T +1)
and from clause (1) ¬A2(T + 1). Therefore ¬A2(T + 1) ∈
UP (T ∪ {A1(T )}).

We investigate now long distance constraints for facts,
and show that they are also forward UP-redundant wrt to
the SATPLAN06 encoding.

Proposition 6 Let X be a multi-valued variable of a plan-
ning problem P with domain DX , and TP the SATPLAN06
encoding of P . Then, for any two values vi, vj ∈ DX

and k ≥ 0 such that ΔGX
(vi, vj) > k, the set of clauses

¬X(vj , T + k) ∨ ¬X(vi, T ) is forward UP-redundant wrt
to TP for all valid time points T .

Proof We prove inductively on k that ¬X(vj , T + k) ∈
UP (TP ∪ {X(vi, T )}) for all vj s.t. ΔGX

(vi, vj) > k.
Moreover, we show within the same inductive proof, that
¬Aj(T + k) ∈ UP (TP ∪ {X(vi, T )}) for all actions Aj

such that X(vj) ∈ pre(Aj) and ΔGX
(vi, vj) > k.

Base case. We prove that the theorem holds for k = 0,
that is, if ΔGX

(vi, vj) > 0, ¬X(vj , T ) ∈ UP (TP ∪
{X(vi, T )}). First note that ΔGX

(vi, vj) > 0 holds for
all vi, vj ∈ DX , j �= i. By proposition 3, TP contains the
clauses ¬X(vi, T )∨¬X(vj , T ), for all vi, vj ∈ DX , j �= i.
Therefore, ¬X(vj , T ) ∈ UP (TP ∪ {X(vi, T )}). Further-

more, if Aj is an action such that X(vj) ∈ pre(Aj), then TP

contains the clause ¬Aj(T ) ∨ X(vj , T ). From this clause
and ¬X(vj , T ) ∈ UP (TP ∪ {X(vi, T )}), we conclude that

¬Aj(T ) ∈ UP (TP ∪ {X(vi, T )}).
Inductive hypothesis. Assume that for some k ≥ 0,

¬X(vj , T + k) ∈ UP (TP ∪ {X(vi, T )}) holds for all
facts X(vj) such that ΔGX

(vi, vj) > k. Furthermore,

¬Aj(T + k) ∈ UP (TP ∪ {X(vi, T )}) for all actions Aj

such that X(vj) ∈ pre(Aj) and ΔGX
(vi, vj) > k.

Inductive step. We prove first that ¬X(vj , T + k + 1) ∈
UP (TP ∪ {X(vi, T )}) holds for all facts X(vj) such that
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ΔGX
(vi, vj) > k + 1. Let Aj

1
, Aj

2
, . . . , Aj

m be the actions
that have X(vj) in their add effects. Then TP contains the
clause
¬X(vj , T +k+1)∨Aj

1
(T +k)∨Aj

2
(T +k)∨ . . .∨Aj

m(T +
k) ∨ noopX(vj , T + k).
Since ΔGX

(vi, vj) > k + 1, implies ΔGX
(vi, vj) >

k, by the inductive hypothesis ¬X(vj , T + k) ∈
UP (TP ∪ {X(vi, T )}). From this and the binary
clause ¬noopX(vj , T + k) ∨ X(vj , T + k) we conclude
¬noopX(vj , T +k) ∈ UP (TP ∪{X(vi, T )}). Assume now

that there is some action Aj
c, for 1 ≤ c ≤ m, such that

¬Aj
c(T + k) �∈ UP (TP ∪ {X(vi, T )}), and let X(vb), vb ∈

DX , be a precondition of Aj
c. Then, it can not be the case

that ΔGX
(vi, vb) > k, because then, by the induction hy-

pothesis, ¬Aj
c(T + k) ∈ UP (TP ∪{X(vi, T )}). Therefore,

ΔGX
(vi, vb) ≤ k. Then there must exist a path in GX from

vi to vb of length at most k, and a arc from vb to vj , therefore
ΔGX

(vi, vj) ≤ k+1. However, this contradicts the assump-
tion ΔGX

(vi, vj) > k+1. Therefore, it must be the case that

¬Aj
c(T + k) ∈ UP (TP ∪ {X(vi, T )}), for all 1 ≤ c ≤ m.

Hence, ¬X(vj , T + k + 1) ∈ UP (TP ∪ {X(vi, T )}).
We now prove that ¬Aj(T + k + 1) ∈ UP (TP ∪

{X(vi, T )}) for all actions Aj such that X(vj) ∈ pre(Aj)
and ΔGX

(vi, vj) > k + 1. From the first part of the proof
we know that ¬X(vj , T + k +1) ∈ UP (TP ∪ {X(vi, T )}).
Moreover, theory TP contains the clause ¬Aj(T + k +
1) ∨ X(vj , T + k + 1). Therefore, ¬Aj(T + k + 1) ∈
UP (TP ∪ {X(vi, T )}). This completes the proof.

The results that follow show that all forms of Class B
action londex constraints are forward UP-redundant. The
proofs of these propositions give some insight into the prop-
agation taking place in a UP-based SAT solver, and are pro-
vided only for two of them.

Proposition 7 Let X be a multi-valued variable of a plan-
ning problem P with domain DX , TP the SATPLAN06 en-
coding of P , and v1, v2 ∈ DX such that ΔGX

(v1, v2) > k.
If A1, A2 are actions such that X(v1) ∈ pre(A1) and
X(v2) ∈ pre(A2), then the set of clauses ¬A2(T + k) ∨
¬A1(T ) is forward UP-redundant wrt to TP for all valid
time points.

Proof We show that ¬A2(T + k) ∈ UP (TP ∪ {A1(T )}).
Theory TP contains the clauses ¬A1(T ) ∨ X(v1, T ) and
¬A2(T + k) ∨ X(v2, T + k). Therefore, X(v1, T ) ∈
UP (TP ∪ {A1(T )}). By proposition 6, ¬X(v2, T + k) ∈
UP (TP ∪ {X(v1, T )}, and therefore ¬X(v2, T + k) ∈
UP (TP ∪{A1(T )}). By the clause¬A2(T +k)∨X(v2, T +
k), we obtain ¬A2(T + k) ∈ UP (TP ∪ {A1(T )}).

Proposition 8 Let X be a multi-valued variable of a plan-
ning problem P with domain DX , TP the SATPLAN06 en-
coding of P , and v1, v2 ∈ DX such that ΔGX

(v1, v2) > k.
If A1, A2 are actions such that X(v1) ∈ add(A1) and
X(v2) ∈ add(A2), then the set of clauses ¬A2(T + k) ∨
¬A1(T ) is forward UP-redundant wrt to TP for all valid
time points.

Proof We prove inductively on k that ¬A2(T + k) ∈
UP (TP ∪ {A1(T )}) for any pair of actions A1, A2 such

that X(v1) ∈ add(A1) and X(v2) ∈ add(A2) and
ΔGX

(v1, v2) > k.

Base case: We prove first the case k = 0. Note that
ΔGX

(v1, v2) > 0 for all v1, v2 ∈ DX , j �= i. There-
fore, we must show that ¬A2(T ) ∈ UP (TP ∪ {A1(T )})
for any pair of actions A1, A2 such that X(v1) ∈ add(A1)
and X(v2) ∈ add(A2) with v1 �= v2. Assume first that
X(vp) ∈ pre(A1) ∩ pre(A2) for vp ∈ DX . Then X(vp) ∈
del(A1)∩del(A2), therefore ¬A2(T )∨¬A1(T ) ∈ TP . As-
sume now that X(v1

p) ∈ pre(A1) and X(v2

p) ∈ pre(A2)

with v1

p, v2

p ∈ DX and v1

p �= v2

p. Theory TP contains

the clauses ¬A2(T ) ∨ X(v2

p, T ) and ¬A1(T ) ∨ X(v1

p, T ).

By proposition 3, it also contains the clause ¬X(v1

p, T ) ∨

¬X(v2

p, T ). From these clauses it follows that ¬A2(T ) ∈
UP (TP ∪ {A1(T )}).

Inductive hypothesis. Assume that for some k ≥ 0,
¬A2(T + k) ∈ UP (TP ∪ {A1(T )}) holds for all pairs of
actions A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈
add(A2) and ΔGX

(v1, v2) > k.

Inductive step: We prove that ¬A2(T + k + 1) ∈
UP (TP ∪ {A1(T )}) holds for all pairs of actions A1, A2

such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2) and
ΔGX

(v1, v2) > k + 1. Let v2

p ∈ pre(A2) with v2

p ∈ DX ,

and let Apc

2
, 1 ≤ c ≤ n, be the set of actions that have

X(v2

p) in their add effects. Clearly, ΔGX
(v1, v

2

p) > k.

From the inductive hypothesis we know that ¬Apc

2
(T +k) ∈

UP (TP ∪ {A1(T )}) for all 1 ≤ c ≤ n. Theory TP contains
the clause ¬X(v2

p, T +k+1)∨Ap1

2
(T +k)∨ . . .∨Apn

2
(T +

k) ∨ noop(v2

p, T + k).

We prove now that¬noop(v2

p, T +k) ∈ UP (TP∪{A1(T )}).

Let v1

p ∈ pre(A1) with v1

p ∈ DX and assume first that

v1

p �= v2

p. First note that X(v1

p, T ) ∈ UP (TP ∪ {A1(T )})

and assume that ¬X(v2

p, T + k) �∈ UP (TP ∪ {A1(T )}),

therefore ¬X(v2

p, T + k) �∈ UP (TP ∪ {X(v1

p, T )}). By

proposition 3 this means that ΔGX
(v1

p, v2

p) ≤ k, which im-

plies ΔGX
(v1, v2) ≤ k, contradicting the assumption that

ΔGX
(v1, v2) > k + 1. Hence, ¬X(v2

p, T + k) ∈ UP (TP ∪

{A1(T )}). From this and the clause ¬noop(v2

p, T + k) ∨

X(v2

p, T + k) we obtain ¬noop(v2

p, T + k) ∈ UP (TP ∪

{A1(T )}). Similar arguments hold in the case v1

p = v2

p .

From the above analysis we conclude that ¬X(v2

p, T + k +
1) ∈ UP (TP ∪ {A1(T )}). From this, and the clause
¬A2(T + k + 1) ∨X(v2

p, T + k + 1) we obtain ¬A2(T +
k + 1) ∈ UP (TP ∪ {A1(T )}).

Analogous results can be proven for the other two types
of Class B londex constraints.

Proposition 9 Let X be a multi-valued variable of a plan-
ning problem P with domain DX , TP the SATPLAN06 en-
coding of P , and v1, v2 ∈ DX such that ΔGX

(v1, v2) >
k. Then, the following sets of clauses are forward UP-
redundant wrt to TP for all valid time points.

1. ¬A2(T +k)∨¬A1(T −1), for A1, A2 such that X(v1) ∈
add(A1) and X(v2) ∈ pre(A2).
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2. ¬A2(T +k−1)∨¬A1(T ), for A1, A2 such that X(v1) ∈
pre(A1) and X(v2) ∈ add(A2).

Since BB-31 ≥SUP SATPLAN06, the same results hold
for the BLACKBOX encoding. However, it can be shown
that BLACKBOX encoding can not propagate backwards
some of the mutex constraints (details regarding this is-
sue can be found in an extended version of the paper).
Therefore, londex constraints increase propagation in both
SATPLAN06 and BLACKBOX encodings.

Londex Propagation in SATPLANmax

In this section we prove that in the SATPLANmax encoding
all londex constraints are UP-redundant in both directions,
forward and backwards.

It was proved earlier that (clauses that correspond to) lon-
dexes are forward UP-redundant in the SATPLAN06 encod-
ing. Since SATPLANmax >SUP SATPLAN06, lon-
dexes are forward UP-redundant in SATPLANmax as well.

Proposition 10 Let X be a multi-valued variable of a plan-
ning problem P with domain DX , TP the SATPLANmax

encoding of P , and v1, v2 ∈ DX such that ΔGX
(v1, v2) >

k. The set of clauses ¬X(v2, T + k) ∨ ¬X(v1, T ) is back-
ward UP-redundant wrt to TP , for all valid time points.

Proof We prove inductively on k that ¬X(v1, T ) ∈
UP (TP ∪ {X(v2, T + k)}).

Base case. For k = 0, it follows form proposition 3
that X(v1) and X(v2) are marked mutually exclusive on
all planning graph levels, therefore TP contains the clause
¬X(v2, T ) ∨ ¬X(v1, T ). Hence ¬X(v1, T ) ∈ UP (TP ∪
{X(v2, T )}).

Inductive hypothesis. Assume that for any pair of facts
X(v1), X(v2) and some k ≥ 0 with ΔGX

(v1, v2) > k, it
holds that ¬X(v1, T ) ∈ UP (TP ∪ {X(v2, T + k)}).

Inductive step. We show that for any pair of facts
X(v1), X(v2) with ΔGX

(v1, v2) > k + 1, it holds that
¬X(v1, T ) ∈ UP (TP ∪ {X(v2, T + k + 1)}).
By the definition of the DTG, in the GX = (V, E) contain-
ing variables X(v1) and X(v2) with ΔGX

(v1, v2) > k + 1,
there exist (other) variables X(v21), X(v22), . . . , X(v2n)
such that {(X(v1), X(v21)), . . . , (X(v1), X(v2n))} ⊂ E,
ΔGX

(v1, vi) = 1 and ΔGX
(vi, v2) > k for X(vi) ∈

{X(v21), X(v22), . . . , X(v2n)}. For any variable X(vi) ∈
{X(v21), X(v22), . . . , X(v2n)}, there is an associated set
of actions {Avi

1
, Avi

2
, . . . , Avi

mvi
} each one having X(vi)

as an add effect, and X(v1) as a precondition and
delete effect. It holds that {¬Av21

1
(T ) ∨ X(v21, T +

1), . . . ,¬Av21

mv21

(T ) ∨ X(v21, T + 1), . . . ,¬Av2n

1
(T ) ∨

X(v2n, T + 1), . . . ,¬Av2n
mv2n

(T ) ∨ X(v2n, T + 1)} ⊂

TP and {¬X(v1, T ) ∨ X(v1, T + 1) ∨ Av21

1
(T ) ∨ . . . ∨

Av21

mv21

(T ) ∨ . . . ∨ Av2n

1
(T ) ∨ . . . ∨ Av2n

mv2n
(T )} ⊂ TP .

Since ∀X(vi) ∈ {X(v21), X(v22), . . . , X(v2n)} holds that
ΔGX

(vi, v2) > k by the inductive hypothesis it holds that
{¬X(v21, T +1),¬X(v22, T +1), . . . ,¬X(v2n, T +1)} ⊆
UP (TP ∪ {X(v2, T + k + 1)}), which are further (unit)
resolved with the binary clauses ¬Av21

1
(T ) ∨ X(v21, T +

1), . . . ,¬Av21

mv21

(T ) ∨ X(v21, T + 1), . . . ,¬Av2n

1
(T ) ∨

X(v2n, T + 1), . . . ,¬Av2n
mv2n

(T ) ∨ X(v2n, T + 1), giving

{¬Av21

1
(T ), . . . ,¬Av2n

mv2n
(T )} ⊆ UP (TP ∪ {X(v2, T +

k + 1)}). Hence the clause ¬X(v1, T ) ∨ X(v1, T + 1) ∨
Av21

1
(T )∨. . .∨Av21

mv21

(T )∨. . .∨Av2n

1
(T )∨. . .∨Av2n

mv2n
(T )

is resolved to the binary clause ¬X(v1, T ) ∨X(v1, T + 1).
But because ΔGX

(v1, v2) > k (since ΔGX
(v1, v2) > k+1),

by the inductive hypothesis it holds that ¬X(v1, T + 1) ∈
UP (TP ∪ {X(v2, T + k + 1)}), which further resolves the
binary clause ¬X(v1, T ) ∨X(v1, T + 1) to ¬X(v1, T ).

Based on proposition 10, we can prove that all six cate-
gories of action londexes are backward UP-redundant. By
combining the results of this and the previous section, we
obtain the following property for the SATPLANmax encod-
ing.

Theorem 1 Let P be STRIPS planning domain and TP its
SATPLANmax encoding. All clauses that correspond to lon-
dex constraints derived from P are UP-redundant wrt TP .

Note that the above result holds for SMP as well, as it is a
simplification of SATPLANmax obtained by removing UP-
redundant clauses.

Experimental evaluation

In this section we present the results of the experimental
comparison of various encodings discussed earlier, in do-
mains from the last planning competitions. Our implemen-
tation is an extension of the SATPLAN06 system with new
encodings for BLACKBOX and SMP as well as the integra-
tion of precosat. Hence, all experiments are runs of the
same system with different values for the parameters encod-
ing and solver. The experiments were run on an IBM X3650
with Intel Xeon processors at 2.0 GHz and 32GB of RAM,
running under CentOS 5.2.

Table 1 presents the number of problems solved with
different combinations of encodings and SAT solvers,
within a CPU time limit of 2500 seconds. The encod-
ings compared are SATPLAN06 (encoding SATPLAN06-
4), BLACKBOX (encoding BB-31), and SMP. The SAT
solvers that are used are siege (Ryan 2003) and
precosat (Biere 2009) version 236, a new system that
seems to outperform Siege and many other solvers that
we have tested on a large number of planning domains.
In Table 1 (as well as Table 2) SATPLAN06 is denoted
by SP, BLACKBOX by BB, whereas siege by SI and
precosat by PR.

The entries under ”Problems” in Table 1 are of the form
p/q, where p is the total number of problems contained in
each domain, and q the number of problems for which either
one of the methods found a solution, or they all reached their
CPU limit and terminated without a solution. Hence, p − q
is the number of problems that were not solved by any of the
systems due to memory problems at parsing or solving time.

Table 2 presents characteristic run times of different en-
codings on some of the hardest problems that have been
solved by both BLACKBOX and SMP. All times were ob-
tained with precosat as the underlying SAT solver, and a
CPU time limit of 3600 seconds.
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Domain Problems SP-SI BB-SI SMP-SI SP-PR BB-PR SMP-PR

Depots 22/22 16 16 18 17 17 19
DriveLog 20/20 16 16 16 17 17 17
Zenotravel 20/19 15 15 16 15 15 16
Freecell 20/20 4 4 6 5 5 6
Satellite 36/24 17 17 17 17 18 18
Pathways 30/30 9 9 10 12 12 16
Trucks 30/30 5 6 8 7 7 11
Pipes 50/31 17 23 23 15 24 27
Storage 30/30 15 15 15 15 15 16
TPP 30/30 27 28 28 28 29 29
Elevators 30/30 9 9 12 12 13 14
ScanAnalyser 30/23 17 17 19 15 16 18
Sokoban 30/30 2 2 4 2 5 7
Transport 30/21 11 11 12 11 11 13

Total 408/360 180 188 204 188 204 227

Table 1: Number of problems solved by each encoding in different domains.

Domain-Problem SMP BB SP

Depots-11 176 1674 2134
DriveLog-16 897 1156 2453
Zenotravel-15 84 307 383
Pathways-17 971 980 1940
Trucks-8 161 637 1140
TPP-21 1580 1908 2554
Pipes-12 189 348 1429
Transport-4 81 312 563
Sokoban-13 474 1869 -
Elevator-21 2099 2424 -
ScanAnalyser-8 59 208 -

Table 2: Run times in seconds for different encodings of
problems. A dash indicates CPU timeout.

The relative performance of the different encodings,
as depicted in Tables 1 and 2, is consistent with the
theoretical results obtained in earlier sections. Indeed,
BLACKBOX outperforms SATPLAN06, whereas SMP dom-
inates all other encodings. Moreover, solution times im-
prove when precosat instead of siege is used as the
SAT solver.

Conclusions

In this work we compared different encodings of planning as
satisfiability wrt to the propagation they achieve in a mod-
ern SAT solver. Our theoretical results explain some of the
differences observed in the performance of various plan-
ners. One interesting finding is that BLACKBOX encoding is
stronger than the one of SATPLAN06. Thus, new encodings
of planning as satisfiability need to be compared with both
systems. Another practical outcome of our results is SMP, a
new encoding that renders londex constraint redundant, and
seems to offer performance improvements in a number of
domains.

Our ongoing work includes the study of action based en-

codings, the new londex constraints of (Chen et al. 2009),
and the propagation in the split action model of (Robinson
et al. 2009).
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