
A Comparison of Algorithms for Solving the
Multiagent Simple Temporal Problem

James C. Boerkoel Jr. and Edmund H. Durfee
Computer Science and Engineering

University of Michigan, Ann Arbor, MI 48109, USA
{boerkoel, durfee}@umich.edu

Abstract

The Simple Temporal Problem (STP) is a popular rep-
resentation for solving centralized scheduling and plan-
ning problems. When scheduling agents are associated
with different users who need to coordinate some of
their activities, however, considerations such as privacy
and scalability suggest solving the joint STP in a more
distributed manner. Building on recent advances in STP
algorithms that exploit loosely-coupled problem struc-
ture, this paper develops and evaluates algorithms for
solving the multiagent STP. We define a partitioning of
the multiagent STP with provable privacy guarantees,
and show that our algorithms can exploit this partition-
ing while still finding the tightest consistent bounds on
timepoints that must be coordinated across agents. We
also demonstrate empirically that our algorithms can ex-
ploit concurrent computation, leading to solution time
speed-ups over state-of-the-art centralized approaches,
and enabling scalability to problems involving larger
numbers of loosely-coupled agents.

Introduction

A person must often develop her schedule with a local, my-
opic view of how it will interact with the schedules of other
individuals. For example, consider a research group consist-
ing of graduate students and a professor. In a given week,
each student may need to schedule an individual meeting
with the professor, the group as a whole may need to meet
once, and the students may need to coordinate over the use of
some devices available in the lab. Now suppose each group
member enters the week with a tentative, rough schedule of
the week: which meetings, social events, personal events,
etc. to attend, plus an ordering over when to achieve the
events. The problem of determining if these tentative sched-
ules are mutually consistent is an example of a Simple Tem-
poral Problem (STP) (Dechter, Meiri, and Pearl 1991).

Any of several approaches could be taken to determine
the consistency of this STP. One is to gather all members’
scheduling constraints, and solve the corresponding STP in
a centralized fashion. However, this would require that each
person reveal his full schedule, which could include doc-
tor’s appointments, visits to the parking ticket office, or daily

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dates with a favorite afternoon soap opera – some informa-
tion that people may like to keep private. It may also require
accumulating a large collection of information that would be
daunting to manage. Relative to this illustrative example, the
importance of time-critical coordination and privacy can be
even more pronounced in military and health care applica-
tions, where disclosure of private information or an inability
to concurrently calculate and execute a schedule may have
significant, adverse effects.

While technology for solving centralized STPs exists, this
paper develops a new multiagent approach for computa-
tional agents to use in assisting human users both in manag-
ing their personal schedules and also in ensuring consistency
across the more global STP of which they are a part. Our
multiagent approach has several important benefits. First,
it respects users’ privacy because each scheduling agent re-
veals only the information necessary to coordinate over a
joint constraint with another agent. Thus, agents can identify
consistent group meeting times without revealing doctor’s
appointments or private meetings, even though these other
events may indirectly impact when the group can meet. Sec-
ond, by maintaining this privacy, each agent also retains con-
trol over private events, allowing its user to autonomously
decide, for example, to skip a television program in favor of
work. Finally, a multiagent approach has the advantage of
parallel computation, which could speed up the overall solve
time. Not only does this avoid the up-front overhead of cen-
tralizing a problem that is inherently distributed, but also ex-
ploits the near independence of local scheduling problems.

One of the strengths of the STP formulation is that it
can be solved to model sets of feasible schedules that are
more robust to small scheduling disturbances than a sin-
gle, fully instantiated schedule would be (Cesta and Oddi
1996). This paper describes extending these methods to
establish feasible sets of joint schedules across multiagent
STPs. Both Smith et al. (2007) and Hunsberger (2002) use
STPs to increase the resilience of multiagent schedules, not
by establishing the full set of joint schedules as we pro-
pose, but instead by exploiting sets of individual agents’
schedules to absorb minor disturbances within an agent’s
schedule. In fact, Hunsberger’s approach proactively pares
down a consistent set of multiagent schedules into decou-
pled sets of agent schedules by imposing additional local
constraints with respect to a common reference point. For

26

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

example, if Ann must complete a task before Bill can begin
his task, both Ann and Bill can decouple their schedules if
Ann agrees to complete her task no later than 3:00 and Bill
agrees to begin his task no earlier than 3:00.

This paper’s contributions include (1) a novel partition-
ing of a distributed STP into components that have (2)
well-defined, provable properties. Further, this paper con-
tributes (3) novel algorithms for exploiting this partitioning
with varying degrees of distributed computation, and finally,
(4) an evaluation of these algorithms with respect to non-
concurrent computation. This paper proceeds with sections
summarizing current approaches for solving STPs, defining
the multiagent STP along with proving properties about a
partitioning over this STP, describing novel algorithms for
establishing multiagent STP consistency, evaluating these
algorithms empirically, and summarizing our contributions
and a description of our future directions.

Background

The Simple Temporal Problem (STP) consists of a set of
timepoint variables, V , and a set of temporal difference
constraint edges, E. Each timepoint variable represents
an event, and has an implicit, continuous numeric domain.
Each temporal difference constraint is of the form vi − vj ∈
[−Bji, Bij], where vi and vj are distinct timepoints, and Bij

(≥ vi−vj) and Bji (≥ vj −vi) are bounds on the difference
between vi and vj . Every STP has a corresponding distance
graph, where each timepoint is a vertex (also called node)
and there exists an edge for every temporal differences con-
straint vi − vj ∈ [−Bji, Bij] from vj to vi labeled by the
bounds interval [−Bji, Bij]. Our use of V (vertices) and
E (edges) to notate a STP is based on this relationship to
distance graphs.

A STP is consistent if there exist no negative cycles in
the corresponding distance graph. A consistent STP con-
tains at least one solution, which is a feasible assignment of
specific time values to timepoint variables to form a sched-
ule. In many cases, it is desirable to model the entire set of
feasible solutions. A decomposable STP does this by estab-
lishing the tightest bounds on timepoint variables such that
(1) no feasible scheduling assignments are eliminated and
(2) any assignment of a specific time to a timepoint vari-
able that respects these bounds can be extended to a solu-
tion. A decomposable STP instance is extended to a full
solution through an iterative cycle of timepoint assignment
followed by propagation of this assignment to reestablish de-
composability. Using a decomposable STP instance allows
a scheduling agent to naturally provide a range of times for
each user event such that, if the user executes the event at
one of its suggested times, the agent can refine the ranges of
remaining events to guarantee a successful schedule.

Figure 1 shows an example distance graph correspond-
ing to the STP formed by two research group members’
scheduling problems. This STP includes start and end time
events (ST,ET) for a study session (SS), a take-home exam
(EXAM), a group project (GP1), and a research paper (RP)
for agent 1, and a programming assignment (PA), home-
work assignment (HW), group project (GP2), and a run

Agent 2Agent 1

RP.ST RP.ET

EXAM.ST EXAM.ET

SS.ST SS.ET

GP1.ST GP1.ET

[30,240]

[20,60]

[30,90]

[90,120]

[0,]

[0,

RUN.ST RUN.ET

HW.ST HW.ET

PA.ST PA.ET

GP2.ST GP2.ET

[60,120]

[60,90]

[45,120]

[30,60]

[0,]

[0,]

[0,]

8AM1

[0,]

[- ,480] 8AM2

[0,]

[- ,480]

[0,0]

[0,0][0,

Figure 1: An example STP for two group members

(RUN) for agent 2. In this example, solid edges repre-
sent minimum/maximum duration constraints, dashed edges
represent precedence constraints, dotted edges represent
an overall makespan constraint, and bold edges that span
both agents (interagent constraints) represent synchroniza-
tion constraints. The two agents are synchronized so that
their users can exchange project deliverables as they start
working on the group project and so that 8AM represents
the same reference timepoint (synchronized clocks).

Full-Path Consistency (FPC) determines the consistency
of an STP instance in O(|V |3) time by applying an all-
pairs-shortest-path algorithm such as Floyd-Warshall to the
distance graph to find the corresponding d-graph (Dechter,
Meiri, and Pearl 1991). A d-graph is a complete, decom-
posable distance graph. In this case, decomposability is cal-
culated by tightening the bounds on each edge, eij , to rep-
resent the tightest possible path between vi and vj (Bij ≤
Bik + Bkj∀i, j, k) and verifying that there are no negative
paths (if Bij + Bji ≥ 0 ∀ vi �= vj).

Xu and Choueiry (2003) were the first to recognize that
Partial Path Consistency (PPC) (Bliek and Sam-Haroud
1999) is sufficient for establishing decomposability on an
STP instance. Applying PPC-based algorithms to calcu-
late STP decomposability requires a triangulated or chordal
distance graph representation. A triangulated graph is one
whose largest non-bisected cycle is a triangle (of length
three). PPC-based algorithms operate by establishing path
consistency for each such triangle, thus calculating the tight-
est possible bounds for each edge in the triangulated graph.
Depending on constraint structure, the number of edges in
the triangulated graph may be much smaller than the num-
ber of edges in the complete d-graph, and so PPC-based
algorithms may establish STP decomposability much more
quickly than FPC-based algorithms can. If a user is inter-
ested in learning the tightest bounds between two timepoint
variables that are not mutually constrained (and thus have
no edge in the distance graph), the scheduling agent can add
this edge explicitly prior to triangulation to ensure its inclu-
sion in the STP decomposability calculation.

Conceptually, a graph is triangulated by the process of
considering vertices and their adjacent edges, one-by-one,
adding edges between neighbors of the vertex if no edge
previously existed, and then eliminating that vertex from
further consideration, until all vertices are eliminated. The

27

Shared STP Triangulation

Agent 1's Triangulation

RP.ST RP.ET

EXAM.ST EXAM.ET

SS.ST SS.ET

GP1.ST GP1.ET

8AM1

1

2

3

4

5

6

(Interagent
Constraint)

(Interagent
Constraint)

8AM1 8AM2

GP1.ST GP2.ST

(Local
Constraint)

(Local
Constraint)7

A1

B1

C1

D1

E1

G1 H

F1

I

JK

Figure 2: The triangulation process occurring on Agent 1’s
problem (left) followed by triangulation of the shared STP
(right) for the example in Figure 1.

set of edges that are added during this process are called fill
edges and the order in which timepoints are eliminated from
consideration is referred to as an elimination order. Elim-
ination orders are often chosen so as to minimize the total
number of fill edges. While, generally speaking, finding the
minimum triangulation of a graph is NP-complete, heuris-
tics such as the minimum degree (vertex with fewest edges)
and minimum fill (vertex that adds fewest fill edges) are used
to approximately minimize triangulations (Kjaerulff 1990).

Figure 2 illustrates triangulation as applied to the exam-
ple in Figure 1. During this process, edge directionality is
ignored. For illustrative purposes, we triangulate agent 1’s
subproblem first, waiting to eliminate timepoints involved
with interagent constraints until the local problems have
been completely triangulated. Figure 2 (left) demonstrates
the triangulation process on agent 1’s STP using the elimi-
nation order captured in the labeled diamonds (A1, B1, C1,
D1, E1, F1, G1). We label the fill edges (bold) added during
the process with the order in which the edges were added.
By symmetry, we could triangulate agent 2’s local STP in
the same manner, leaving the shared STP (with Agent 1’s
duplicated components shaded) in Figure 2 (right). This
particular triangulation results in 6 new local fill edges for
each agent and one new interagent edge for a total of 30 in-
traagent edges (15 for each agent) and 3 interagent edges
(not including the two duplicated edges). Once complete,
PPC-based algorithms calculate the tightest path for each of
these 33 edges. FPC-based algorithms, on the other hand,
calculate the d-graph, thus determining the tightest path for
each edge in a fully connected distance graph (in this case,
18 × 17 ÷ 2 = 153 total edges), making FPC much slower
than PPC in practice.

Xu and Choueiry’s algorithm ΔSTP (2003) processes
and updates a queue of all potentially inconsistent triangles
(Δ) from the triangulated graph. Alternatively, in their al-
gorithm P3C, Planken, de Weerdt, and van der Krogt (2008)
sweep these triangles in a systematic order, resulting in an
improved performance (over ΔSTP ’s O(|Δ|2)) of O(|Δ|).
While in the worst case, a triangulated STP instance could
have as many as O(|V |3) triangles, in practice, triangulated
graphs tend to exploit sparse constraint structures, leading
to far fewer triangles than the fully-connected d-graph and
much lower expected case complexity than FPC. We point
the reader to each of these respective works for more details

on centralized PPC algorithms.

Our Multiagent STP Partitioning

Figure 1 provides an example of a multiagent STP. Intu-
itively, we define a multiagent STP, S, as the union over
agents’ local STPs. More formally, we define agent i’s local
STP, Si, as the tuple 〈V i, Ei〉. V i is partitioned into V i

A, the
set of timepoint variables agent i is responsible for assign-
ing (in Figure 1, V 1

A includes the timepoints in the shaded
area labeled Agent 1), and V i

X , the set of timepoints exter-
nal to agent i but involved in agent i’s interagent constraints
(V 1

X = {GP2.ST , 8AM2}). Note, the sets V i
A for all agents

i are defined to partition the global set of timepoint variables,
V . Additionally, Ei is partitioned into the set Ei

N , the (iN-
ternal) intraagent edges (E1

N = the edges included in Agent
1’s shaded region) and the set Ei

X , the (eXternal) interagent
edges (E1

X = E2
X and consists of the bold edges spanning

the agents).
An important insight that we exploit in our work is that we

can further partition the local STPs into shared and private
components that have well-defined properties. Figure 2 pro-
vides an intuitive glimpse into this, where everything agents
1 and 2 need to know about each other is contained within
the Shared STP box. More formally, we partition V i

A into
two sets: V i

AP are agent i’s private timepoints (which do not
appear in V j

X for any agent j) and V i
AS are agent i’s shared

timepoints (which appear in V j
X for some other agent(s) j).

In our running example, V 1
AP = V 1

A − {GP1.ST, 8AM1}
(all non-shaded timepoints in Figure 2 (left)), and V 1

AS =
{GP1.ST, 8AM1} (Agent 1’s shaded timepoints, which
also appear in the shared STP). Similarly, we partition Ei

N

into two sets: Ei
NP is the set of private edges, or edges that

have at least one endpoint in the set V i
AP (E1

NP corresponds
to all edges except edge 6 in Agent 1’s triangulation), and
Ei

NS is the set of shared intraagent edges whose endpoints
are contained within the set V i

AS (Agent 1’s edge 6, which
also appears in the Shared STP).

We are now able to define agent i’s private STP, Si
P , as

the tuple 〈V i
A, Ei

NP 〉, where both V i
A and Ei

NP have already
been defined. Additionally, we can define the multiagent
shared STP, SS , as the tuple 〈VS , ES〉, where the set of
shared timepoints, VS = ∪iV

i
AS (notice v ∈ V j

X will be
included in V i

AS for some i), and where the set of shared
edges, ES = {∪iE

i
NS} ∪ {∪iE

i
X}. Figure 2 displays both

the shared STP (right), and Agent 1’s private STP (left).
Before any coordination occurs in Figure 1, notice that

Agent 1 is already aware of Agent 2’s timepoints GP2.ST
and 8AM2 due to the shared interagent constraints. Further,
if, after eliminating all private timepoints (Figure 2 left),
Agent 1 also eliminates GP1.ST , it will create and bound
an interagent edge between 8AM1 and GP2.ST (Figure
2 right). Then, if Agent 1 also eliminates 8AM1, it will
have inferred the existence of and bounds on an edge (Agent
2’s analogue of Agent 1’s edge 6) between GP2.ST and
8AM2, two timepoints assignable by Agent 2. The ques-
tion becomes: can Agent 1 continue this process to draw
inferences about Agent 2’s private timepoints and edges?

28

Obviously, any coordination between agents’ activities
has some inherent privacy costs. However, we now prove
that these costs are limited to the shared timepoints and
edges between them. Theorem 1 guarantees that Agent 2
will not be able to infer the existence of, the number of, or
bounds on private activities of Agent 1 (to study, take an
exam, etc.) that influence the start time of the group project.

Theorem 1. No agent can infer the existence of or bounds
on another agent’s private edges, or subsequently the exis-
tence of private timepoints, from the shared STP.

Proof. First, we prove that the existence and bounds of a pri-
vate edge cannot be inferred from the shared STP. Assume
agent i has a private edge, exz ∈ Ei

NP . By definition, at
least one of vx and vz is private; WLOG assume vx ∈ V i

AP .
For every pair of edges exy and eyz that are capable of form-
ing a triangle that implies exz , regardless of whether vy is
shared or private, vx ∈ V i

AP implies exy ∈ Ei
NP is private.

Hence, any pair of edges capable of implying a private edge
must also contain at least one private edge. Therefore, a pri-
vate edge cannot be inferred from shared edges alone.

Now, since an agent cannot extend its view of the shared
STP to include another agent’s private edge, it cannot infer
another agent’s private timepoints.

Theorem 1 confirms that, while Agent 1 can infer the
shared edge between GP2.ST and 8AM2, it can infer noth-
ing further about Agent 2’s timepoints or edges.

Multiagent STP Algorithms

This section presents three algorithms: a centralized, a
partially-centralized, and a distributed algorithm, all of
which exploit our partitioning to achieve varying levels of
computational concurrency.

A Centralized Algorithm

The original P3C takes, as input, a variable elimination or-
dering and corresponding triangulated STP instance. P3C
then sweeps through timepoints in elimination order, propa-
gating the implications of pairs of edges to the edge opposite
of the timepoint for each triangle for which it is a part. Once
this forward sweep is complete, P3C revisits each triangle
in reverse order, tightening all edges to reflect the tightest
possible path between each pair of timepoint variables.

Our new triangulating version of P3C, ΔP3C (Algorithm
1), adapts the original P3C algorithm to foster its incorpora-
tion into multiagent algorithms. ΔP3C, like P3C, operates in
two stages (ΔP3C-1 and ΔP3C-2) and takes as input an STP
instance, where we assume that if eij ∈ E so is eji. How-
ever, ΔP3C does not require the input STP instance to be
triangulated or its associated elimination ordering. Instead,
it triangulates the STP on the fly. The key insights that allow
this modification are (1) that ΔP3C-1 can construct the vari-
able elimination order during execution by applying the SE-
LECTNEXT procedure, which heuristically chooses the next
timepoint, vk, to eliminate (line 4) and (2) as ΔP3C-1 con-
siders the implications of each pair of temporal difference

constraints involving the removed timepoint variable, it nec-
essarily considers the exact fill edges that the triangulation
process would have added. Thus, we introduce procedure
JOINNEIGHBORS (line 7), which not only propagates the
implications of the eliminated timepoint’s constraints for-
ward, but also adds any newly created fill edges (between
vk’s non-eliminated neighbors, N(vk), line 6) to E. In line
8, ΔP3C-1 pushes each triangle it creates onto a stack, so
that ΔP3C-2 can retighten each triangle (using the TIGHT-
ENTRIANGLE procedure, line 16) in reverse elimination or-
der.

Algorithm 1 TRIANGULATING-P3C (ΔP3C)
Input: An STP instance S = 〈V, E〉, and VE , the elimination subset of V .
Output: The PPC network of S or INCONSISTENT
1: ΔP3C-1(S, VE):

2: Δ← new, empty stack of triangles
3: while VE ∩ V �= {} do

4: vk ←SELECTNEXT(V ∩ VE)
5: V .remove(vk)
6: for all vi, vj ∈ N(vk)i �= j do

7: E ← E ∪ JOINNEIGHBORS(vk, vi, vj)

8: return INCONSISTENT if (Bij + Bji < 0)
9: Δ.push(vi, vj , vk)

10: end for

11: end while

12: V ← V ∪ VE

13: return Δ

14: ΔP3C-2(Δ) :

15: while Δ.size() > 0 do

16: t← Δ.pop()
17: TIGHTENTRIANGLE(t)

18: end while

19: return S

JOINNEIGHBORS(vk, vi, vj): Creates edges, eij and eji, if they do not already
exist, initializing the weights to∞. Then tightens the bounds of these edges using
the rule Bij ←min(Bij , Bik + Bkj). Returns the set of any edges that are
created during the process.
TIGHTENTRIANGLE(vi, vj , vk): Tightens any of the triangle edges that need to
be tightened using the rule Bij ←min(Bij , Bik + Bkj). Returns the set of any
edges that are tightened during the process.

Incorporating the triangulation process into the ΔP3C al-
gorithm reduces the problem of distributing both the P3C
and graph triangulation algorithms to that of distributing the
execution of the ΔP3C algorithm alone. We also adjust P3C
so that we can control the exact subset of timepoint vari-
ables, VE ⊆ V , to consider eliminating (lines 3-5). Ap-
plying ΔP3C to an STP instance S with VE = V is se-
mantically identical to applying the original P3C algorithm
to ST and variable elimination ordering oT , where oT is
the elimination order formed by applying ΔP3C to S, and
ST is the triangulated version of S corresponding to oT .
Our centralized algorithm for solving the multiagent STP,
CΔP3C, is now conceptually very simple: aggregate agent
subproblems, Si, into one, centrally-located problem, S, ap-
ply ΔP3C with VE = V to get S′, and then redistribute,
to each agent, its portion, Si′, of the tightened edges of the
decomposable solution.

29

A Partially-Centralized Algorithm

By centralizing the problem, not only does an agent reveal
its entire private STP, but it now must wait for the central
solver. However, in Figure 2, each agent independently tri-
angulated a portion of the STP by eliminating its private
timepoints before the agents had to coordinate to triangulate
the shared STP. Each agent independently created seven tri-
angles, and coordinated to create two more shared triangles.
Our partially-centralized algorithm generalizes this idea so
that each agent can independently eliminate its private time-
points and tighten its triangles, thus limiting the need for
centralization to only the shared STP.

In our partially-centralized algorithm PCΔP3C (Algo-
rithm 2), each agent starts by applying ΔP3C-1 on its STP
and set of private timepoints (lines 1-2). Then it sends the
shared portion of its STP to a centralized coordinator (line
3). The coordinator blocks until it receives the entire shared
STP (line 5). The coordinator then applies ΔP3C to the
shared STP, which completes the triangulation of the entire
multiagent STP (lines 6-7) and fully tightens all shared tri-
angles (line 8). The coordinator then sends each agent its
updated portion of the shared STP (line 9). Each agent up-
dates the shared portion of its STP (line 11), and finishes
tightening the triangles created during elimination of its pri-
vate timepoints (line 12) before returning the consistent Si

instance (line 13).

Algorithm 2 PART. CENT. ΔP3C (PCΔP3C)
Input: Agent i’s local STP instance Si =

〈
V i, Ei

〉
, and the id of the coordinator

coordID

Output: The PPC network of Si or INCONSISTENT
1: Δi ←ΔP3C-1(Si, V i

AP)

2: return INCONSISTENT if ΔP3C-1 does
3: SEND(coordID,

〈
V i

AS , Ei
NS ∪ Ei

X

〉
)

4: if (i = coordID) then

5: SS ← ∪iBLOCKRECEIVE(Agent j, Sj
S
) ∀j

6: ΔS ←ΔP3C-1(SS , V S)

7: return INCONSISTENT if ΔP3C-1 does
8: ΔP3C-2(ΔS)

9: SEND(Agent j, Sj
S

) ∀j
10: end if

11: Si ← BLOCKRECEIVE(coordId, Si
S)

12: ΔP3C-2(Δi)

13: return Si

Proposition 1. PCΔP3C correctly applies ΔP3C to the
multiagent STP.

Proof (Sketch). We first prove that each agent i correctly ap-
plies ΔP3C-1 to V i

AP . The idea is that in order for each
agent i to correctly eliminate timepoint vx ∈ V i

AP , it must
know current, correct bounds for any edges involving vx.
The only way for an edge involving vx to be added or up-
dated is if a neighboring timepoint of vx is eliminated. How-
ever, since by definition, the neighbors of vx are a subset of
V i

AP and since agent i never eliminates a timepoint in V i
AS

before vx (which could introduce a new interagent edge),
agent i can consistently eliminate vx without any impact
from (and without impacting) any other agent j.

We then prove that the coordinator correctly applies
ΔP3C to the shared STP. The idea is that, while eliminat-
ing timepoints in V i

AP may affect shared edges, by waiting
for all such updates from each agent, the coordinator will be
sufficiently aware of all edges that have been added or up-
dated during agents’ local triangulation. Once this handoff
completes successfully, the shared STP is simply a new STP
instance on which the coordinator applies ΔP3C.

Finally, we prove that each agent i correctly applies
ΔP3C-2 to Δi. The idea here is that some of the triangles
that agent i creates applying ΔP3C-1 to V i

AP share edges
with triangles in the shared STP. However, given that the co-
ordinator correctly achieves decomposability on SS , each of
these shared edges is guaranteed to be the tightest possible
consistent with the overall multiagent STP S. Hence, simi-
larly to the application of ΔP3C-1 which created this stack,
an agent i can tighten its triangle stack Δi independently of
any other agent j tightening its triangle stack Δj

A Fully Distributed Algorithm

In our partially-centralized algorithm, the coordinator waits
for each agent to triangulate its private portion of the mul-
tiagent STP, and in turn, each agent must wait for the co-
ordinator to send back its tightened edges. In the example
in Figure 2, upon triangulating its private timepoints, agent
1 could optimistically proceed with eliminating, for exam-
ple, GP1.ST . However, unlike when Agent 1 eliminated
its private timepoints, it now must worry about Agent 2 per-
forming eliminations that affect how Agent 1 should trian-
gulate the shared STP. For example, suppose, unbeknownst
to Agent 1, Agent 2 has already eliminating GP2.ST . In
this case, Agent 1 will be eliminating GP1.ST assum-
ing N(GP1.ST) = {8AM1, GP2.ST}, when in reality
N(GP1.ST) = {8AM1, 8AM2}. Thus, Agent 1’s opti-
mistic elimination of GP1.ST will be inconsistent.

Meanwhile, suppose that Agent 2 has eliminated all its
timepoints, and now would like to proceed with its back-
ward sweep to tighten all its triangles. Instead of waiting
for Agent 1 to finish its forward sweep, it can proceed, op-
timistically trusting its calculation of bounds over shared
edges (in this case [120,405] for both GP1.ST−8AM1 and
GP2.ST−8AM2). So when Agent 1 subsequently tightens
these bounds to [120,360], Agent 2 will have to retighten any
of its triangles that depend on the new, tighter upper bound
of 360. Agent 2’s optimism pays off for all triangles de-
pendent on only the lower bound, since it already tightened
triangles using the correct lower bound. Note, the alterna-
tive to this optimistic computation is idleness, so optimism
has no time costs, even when triangles must be retightened.

In our distributed algorithm DΔP3C (Algorithm 3), each
agent starts by applying ΔP3C-1 on its STP and set of pri-
vate timepoints (lines 1-2). An agent then continues to opti-
mistically eliminate its shared timepoints in lines 4-22, using
a copy of its edge set E and triangle stack Δ to recover in
case its optimism is misguided. The agent, after selecting a
variable, vk, to eliminate (tentatively) and computing what
edges to add and/or update, then calls REQUESTELIMINA-
TIONORDERLOCK(line 12) to obtain write permission on an

30

object containing the shared timepoint elimination order and
added/updated edges. First, the agent must confirm that no
neighbors of vk have been eliminated in the meantime (line
13). If not, its bounds on all edges involving vk are current,
and so it can commit to eliminating the timepoint (lines 14-
16). Otherwise, it extracts all updates to any affected edges
(UPDATEEDGES) to revise its local STP and abandons the
changes calculated in Ẽi and Δ̃i. Whether it succeeds at
eliminating a timepoint or not, the agent loops until all its
remaining shared timepoints have been eliminated.

We purposely label the backward sweep of DΔP3C as
ΔP3C-MAINTENANCE, because this procedure could nat-
urally be extended to a multiagent STP consistency mainte-
nance algorithm that is capable of processing dynamic tight-
ening of bounds as users execute their schedules. Here, an
agent tightens triangles in the order in which they appear in
its stack (lines 29-30). An agent can receive notice of a new,
tighter bound on an edge from RECEIVEEDGEUPDATE(). If
an agent receives any such updates, it inserts all adjacent tri-
angles into their proper locations in the stack, if they are not
already there, by calling INSERTADJACENTTRIANGLES()
on the set of updates (line 27). We define a triangle to be
adjacent to an edge eij if a triangle was created upon elimi-
nation of some timepoint, vk, such that vi, vj ∈ N(vk) at the
time of elimination. The agent also records the set of edges
that it tightens (line 30), so that it can update other agents by
calling BROADCASTANYSHAREDEDGEUPDATES(), which
filters out and broadcasts shared updated edges, and also en-
sures that subsequently-affected local triangles are inserted
into the triangle stack.
Proposition 2. DΔP3C correctly applies ΔP3C to the mul-
tiagent STP.

Proof (Sketch). We borrow much of the intuition for the
triangulation portion (ΔP3C-1) of the algorithm from the
PCΔP3C proposition. However, an agent eliminating a
shared timepoint is no longer independent from the actions
of other agents. So the idea here is that an agent assumes
it has sufficient knowledge to eliminate a shared timepoint,
but only commits to it once it receives a lock on the elimina-
tion ordering – that is, once it confirms that no other agents’
eliminations will affect this timepoint elimination.

The basic idea for the triangle tightening portion of the
algorithm is similar to that of the ΔSTP algorithm. That
is, every triangle is processed at least once, and any tri-
angle that becomes ‘untightened’ (due to a tightened edge
bound), will be inserted into the stack to be tightened again.
In addition to this intuition, in the worst case (where every
tightened bound requires retightening every adjacent trian-
gle), the triangles of the multiagent STP will be processed in
the same order as they would be in the PCΔP3C algorithm.
Even if DΔP3C cannot avoid this worst-case computation
performance, it will calculate the same decomposable STP
instance as PCΔP3C, and hence, ΔP3C.

Evaluation

In this section, we empirically evaluate our hypothesis that
the restrictions our algorithms place on agent’s timepoint

Algorithm 3 DISTRIBUTED ΔP3C (DΔP3C)
Input: Agent i’s local STP instance Si =

〈
V i, Ei

〉

Output: The PPC network of Si or INCONSISTENT
1: Δi ←ΔP3C-1(Si, V i

AP)

2: return INCONSISTENT if ΔP3C-1 does
3: V i

E ← V i
AS .copy()

4: while V i
E ∩ V i �= {} do

5: Ẽi ← Ei.copy(), Δ̃i ← Δi.copy()
6: vk ←SELECTNEXT(V i ∩ V i

E)
7: for all vi, vj ∈ N(vk) do

8: Ẽi ← Ẽi ∪ JOINNEIGHBORS(vk, vi, vj)

9: return INCONSISTENT if (Bij + Bji < 0)
10: Δ̃i.push(vi, vj , vk)

11: end for

12: o←REQUESTELIMINATIONORDERLOCK()
13: if (o ∩N(vk) = ∅) then

14: o.append(vk)

15: V .remove(vk)
16: Ei ← Ẽi, Δi ← Δ̃i

17: else

18: Si ← UPDATEDEDGES(o ∩N(vk))

19: end if

20: RELEASEELIMINATIONORDERLOCK(o)
21: end while

22: V i = V i ∪ V i
E

23: ΔP3C-MAINTENANCE(Δi):

24: U ← new updated edge stack
25: while Δi.size() > 0 or PENDINGEDGEUPDATES do

26: U.push(RECEIVEEDGEUPDATES())
27: Δi.INSERTADJACENTTRIANGLES(U)

28: U.clear()

29: t← Δi.pop()
30: U.push(TIGHTENTRIANGLE(t))

31: BROADCASTANYSHAREDEDGEUPDATES(U)

32: end while

33: return Si

INSERTADJACENTTRIANGLES(U): Updates the triangle stack to include any
(externally or internally) updated triangle adjacent to updated edges (except the
triangle that caused the update) to its specified location in the triangle stack Δi.

elimination heuristics hurts its performances (in terms of
total number of fill edges added). We also evaluate our
hypothesis that algorithms exploiting our agent partitioning
can lead to reduced non-concurrent computation.

Experimental Setup

We evaluate our algorithms for solving multiagent STPs
on randomly-generated STP instances. While real prob-
lem instances would allow us to better characterize the per-
formance of our algorithms on naturally structured prob-
lems, random problem generation allows us to control
the complexity of and the relative private-to-shared time-
point ratio in the composition of problem instances. The
random problem generator is parameterized by the tuple
〈A, T, P, CIntra, CInter〉 where A is the number of agents,
T is the number of timepoint variables per agent, P is the
percentage of its timepoints that an agent keeps private,
CIntra is the number of local constraints per agent, and
CInter is the total number of interagent constraints. Our
default parameter settings are A = 25, T = 25, P = 67%,

31

CIntra = 200, and CInter = 3350. Using our default pa-
rameter settings as a basis, we normalize our results as we
vary P by scaling the number of constraints (CIntra and
CInter) so that, in expectation, the complexity of the central-
ized algorithm is constant (falls within 5% of the complexity
of our default settings).

To confirm the significance of our results, we run our ex-
periments using 25 trials (each with a distinct random seed).
Our algorithms were programmed in Java, on a 2 GHz pro-
cessor with 2 GB of RAM. For the purposes of modeling
a concurrent, multiagent system, we interrupted each agent
after it was given the opportunity to perform one constraint
check and send one message, systematically sharing the pro-
cessor between all agents involved. All our approaches use
the minimum fill heuristic (Kjaerulff 1990). Our approaches
were applied to connected networks of agents, although in-
tuitively, the performance of any of our algorithms would be
enhanced by applying them to disparate agent networks, in-
dependently. Finally, all problem instances were generated
to lead to consistent, decomposable STP instances to evalu-
ate a full application of each algorithm. In general, however,
unlike previous approaches, our algorithms do not require
input STPs to be consistent (Hunsberger 2002) or triangu-
lated (Planken, de Weerdt, and van der Krogt 2008).

Impact on Fill Edge Heuristics

The minimum fill heuristic selects the timepoint, from a
set of timepoints, that it expects will lead to the fewest fill
edges. Since the centralized algorithm, CΔP3C, places no
restrictions on this heuristic, we expect it to perform well.
PCΔP3C and DΔP3C, on the other hand, both exploit the
partitioning by restricting private timepoints to be elimi-
nated prior to shared timepoints. And whereas the coordi-
nator in the PCΔP3C can apply fill heuristics to the set of
all shared timepoints, each agent in DΔP3C is restricted to
applying this heuristic to only its timepoints. Intuitively, we
expect each of these additional restrictions to hurt heuristic
performance, that is, to add more fill edges. We test this hy-
pothesis on problems by increasing the proportion of private
timepoints (P); the results are displayed in Figure 3.

Overall, the number of fill edges decreases as P in-
creases, since, as constraints become more dense in the pri-
vate STPs, more triangles are formed inherently, resulting
in fewer added fill edges. While, as expected, DΔP3C adds
more fill edges than the other two algorithms, surprisingly,
the expected number of fill edges (Figure 3, top) added us-
ing CΔP3C and PCΔP3C is nearly indistinguishable. As
P nears 1.0, the fill edge curve of DΔP3C eventually ap-
proaches that of CΔP3C, since the restrictions on the heuris-
tic have diminishing impact as interagent constraints grow
more sparse.

The specific differences between the expected number of
fill edges for CΔP3C and PCΔP3C are statistically insignif-
icant. By performing a paired Student’s T-test, however, we
find that the number of fill edges is statistically unlikely to
come from the same populations. This means that differ-
ences do in fact exist. In Figure 3 (bottom), we plot the
ratio of the number of fill edges for both PCΔP3C and
DΔP3C to the number of fill edges generated by CΔP3C.

0

2000

4000

6000

8000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 F

ill
 E

dg
es

Private to Global Timepoint Ratio (P)

Distributed
Partially Centralized
Centralized

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ra
ti

o
(t

o
Ce

nt
ra

liz
ed

)
of

 F
ill

 E
dg

es

Private to Global Timepoint Ratio (P)

Distributed
Partially Centralized

Figure 3: Fill edges vs. P (top). Ratio (to centralized) of fill
edges vs. P (bottom).

This shows that the restrictions imposed by our partition-
ing of the STP hurt when P is low (when most triangles
end up being shared), increasing the ratio fill edges up to
5% and help when P is high (when most triangles end up
being private), decreasing the ratio of fill edges up to 10%.
The additional restrictions placed on DΔP3C lead to up to
a 50% increase in fill edges and never significantly fewer
edges than CΔP3C.

These results are important, since they imply that, before
computational concurrency is taken into account, the struc-
tural knowledge of our STP partitioning, as shown by the
PCΔP3C curve, can reduce the total amount of computa-
tion. Clearly, if agents use a method for determining the best
elimination ordering (an NP-complete problem), the central-
ized approach would be guaranteed to find it, though these
results suggest that centralized heuristics could benefit from
using the structural knowledge embedded in our partition-
ing. While these problems were randomly generated (and it
would be easy to generate pathological cases where a cen-
tralized view of the problem is critical to heuristic perfor-
mance), the real-world problems that we are interested in
solving with our multiagent scheduling system tend to have
more locally-dense, well-structured constraints than those of
our randomly-generated problem instances.

Impact on Concurrent Execution

One of the main benefits that we associate with perform-
ing a greater amount of computation in a more distributed
fashion is that it promotes greater concurrency. The more
agents that can be computing at the same time, theoretically,
the less time it takes to complete the same amount of com-
putation. In this section, we explore how well our multia-
gent algorithms can exploit concurrent computation, report-
ing the number of non-concurrent computational units. Non-
concurrent computational units measure the number of cy-
cles it takes to establish global STP PPC, where each agent

32

is given an opportunity to perform a single constraint check
each cycle of computation (although agents may spend this
cycle idly blocking on updates from other agents). Since
DΔP3C requires a significant number of messages, we sepa-
rately count the number of computation cycles where at least
one agent sends a message.

Figure 4 (top) shows the non-concurrent computation
curves for CΔP3C, PCΔP3C, and DΔP3C algorithms, as
well as an additional curve that represents the sum of
DΔP3C’s message and computation cycles. We see that
when P is low, PCΔP3C behaves much like CΔP3C, and
when P is high, it performs more similarly to DΔP3C.
When P is low, DΔP3C, in expectation, performs roughly
four times fewer non-concurrent computational units (three
when incorporating messages) than CΔP3C and exceeds 22
times speedup (given 25 agents, perfect speedup is 25) for
high P values. For both PCΔP3C and DΔP3C, the lack
of concurrency is mainly due to the synchrony required to
solve the shared STP. As the size of the shared STP shrinks
relative to the size of the local STPs, this source of non-
concurrency is reduced, resulting in improved performance.
In both cases, imbalance in the complexity of individual
agent problems prevents the algorithms from achieving per-
fect speedup.

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
on

co
nc

ur
re

nt

Co
m

pu
ta

ti
on

 (x
10

00
)

Private to Global Timepoint Ratio (P)

Cent.
Part. Cent.
Dist. + Mess.
Dist.

100

200

300

400

500

600

1 2 4 8 16 32

N
on

co
nc

ur
re

nt

Co
np

ut
at

io
n

(x
10

00
)

Number of Agents

Cent.
Part. Cent.
Dist. + Mess.
Dist.

Figure 4: Non-concurrent computation vs. P (top). Non-
concurrent computation vs. A (bottom).

Finally, Figure 4 (bottom) shows the non-concurrent com-
putation as the number of agents grows. We see that the
number of non-concurrent constraint checks tends to grow
linearly with the number of agents for both CΔP3C and
PCΔP3C. For this set of experiments, P was set at 67%,
thus PCΔP3C grows about a third as quickly as CΔP3C
and has a speedup that hovers around 3. Figure 4 (bottom)
also shows that DΔP3C complexity increases more slowerly
than the PCΔP3C, and DΔP3C’s speedup increases with the
number of agents as seen by the widening relative gap be-
tween the CΔP3C and DΔP3C curves.

Conclusions and Future Work

In this paper, we defined a partitioning over a multiagent
STP that divides agent problems into shared and private
components with provable privacy guarantees. We devel-
oped three algorithms that trade centralized control for in-
creased privacy and concurrency. We evaluated our algo-
rithms and found the benefits of concurrent computation far
exceeded any costs associated with extra fill edges. In fact,
the restrictions on elimination ordering that our STP par-
titioning imposed served to improve heuristic performance
when there was sufficient local STP structure. Finally, we
empirically demonstrated, on randomly-generated problem
instances, that DΔP3C dominates other approaches in terms
of non-concurrent computation, by using idle computational
cycles to proceed optimistically.

In the future, we wish to extend these results to investigate
how agents can react to dynamics within multiagent STPs.
Such dynamics could include the addition or removal of con-
straints or agents, and could take advantage of approaches
that efficiently propagate incremental updates to consistent
STPs (Cesta and Oddi 1996; Planken 2008). Additionally,
we wish to extend our evaluation to real multiagent STP in-
stances. Finally, since STPs are often solved in subroutines
for richer planning or scheduling domains, we would like
to explore how our alternative algorithms fare embedded in
multiagent algorithms for more complex temporal problems.

Acknowledgments

We thank the anonymous reviewers for their comments and
suggestions. This work was supported, in part, by the NSF
under grant IIS-0534280 and by the AFOSR under Contract
No. FA9550-07-1-0262.

References

Bliek, C., and Sam-Haroud, D. 1999. Path consistency on
triangulated constraint graphs. In IJCAI 1999, 456–461.
Cesta, A., and Oddi, A. 1996. Gaining efficiency and flex-
ibility in the simple temporal problem. In Int. Workshop on
Temporal Representation and Reasoning 1999.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In AAAI 2002, 468–475.
Kjaerulff, U. 1990. Triangulation of graphs - algorithms
giving small total state space. Technical report.
Planken, L.; de Weerdt, M.; and van der Krogt, R. 2008.
P3c: A new algorithm for the simple temporal problem. In
ICAPS 2008, 256–263.
Planken, L. 2008. Incrementally solving the stp by enforcing
partial path consistency. In PlanSIG 2008, 87–94.
Smith, S. F.; Gallagher, A.; Zimmerman, T.; Barbulescu,
L.; and Rubinstein, Z. 2007. Distributed management of
flexible times schedules. In AAMAS 2007, 472–479.
Xu, L., and Choueiry, B. Y. 2003. A new efficient algorithm
for solving the simple temporal problem. In 4th Int. Conf.
on Temporal Logic 2003, 210–220.

33

