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Abstract

Efficient management and propagation of temporal con-
straints is important for temporal planning as well as for
scheduling. During plan development, new events and tem-
poral constraints are added and existing constraints may be
tightened; the consistency of the whole temporal network
is frequently checked; and results of constraint propagation
guide further search. Recent work shows that enforcing par-
tial path consistency provides an efficient means of propagat-
ing temporal information for the popular Simple Temporal
Network (STN). We show that partial path consistency can be
enforced incrementally, thus exploiting the similarities of the
constraint network between subsequent edge tightenings. We
prove that the worst-case time complexity of our algorithm
can be bounded both by the number of edges in the chordal
graph (which is better than the previous bound of the number
of vertices squared), and by the degree of the chordal graph
times the number of vertices incident on updated edges. We
show that for many sparse graphs, the latter bound is better
than that of the previously best-known approaches. In ad-
dition, our algorithm requires space only linear in the num-
ber of edges of the chordal graph, whereas earlier work uses
space quadratic in the number of vertices. Finally, empirical
results show that when incrementally solving sparse STNs,
stemming from problems such as Hierarchical Task Network
planning, our approach outperforms extant algorithms.

1. Introduction

Quantitative temporal constraints are essential for many
real-life planning and scheduling domains (Smith, Frank,
and Jonsson 2000). The Simple Temporal Network (STN)
(Dechter, Meiri, and Pearl 1991) is a popular model for
temporal events and simple temporal constraints among
them. The central role of STNs in deployed planning sys-
tems (Laborie and Ghallab 1995; Bresina et al. 2005;
Castillo, Fdez-Olivares, and O. Garca-Pérez 2006) makes
efficient inference with STNs especially important.

During plan development, new events and temporal con-
straints are added and existing constraints may be tightened,
and the consistency of the whole temporal network is fre-
quently checked. Recent work has shown that enforcing
partial path consistency provides an efficient means of prop-
agating temporal information for an STN (Xu and Choueiry
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2003; Planken, de Weerdt, and van der Krogt 2008), answer-
ing queries such as:

e Is the information represented by the STN consistent?
e How can the events be scheduled to meet all constraints?

e What are all possible times at which some event X; could
occur?

e What relation between two events X; and X is implied
by the current set of constraints?

These types of queries Dechter, Meiri, and Pearl (1991)
identified as the most relevant when solving STNs.

This paper introduces a new algorithm that maintains par-
tial path consistency when new constraints are added or ex-
isting constraints are tightened. Our method, I/PPC, is based
on the idea that, in order to maintain partial path consistency,
the weights of edges in a chordal graph only need to be up-
dated if at least one of the neighbours has an incident edge
that is updated. Both theoretical and empirical results show
that our new approach outperforms extant algorithms for in-
crementally solving sparse STNs, such as those generated
from Hierarchical Task Network planning.

We first give the necessary definitions, followed by the de-
tails of our algorithm. We present proofs of correctness and
upper bounds on run time and space. We next discuss alter-
native approaches and then empirically compare IPPC with
two of the most efficient existing methods for incrementally
solving STNs. Ideas for future work conclude the paper.

2. Preliminaries

A Simple Temporal Problem instance consists of a set X =
{z1,...,x,} of time point variables representing events,
and a set C' of m constraints over pairs of time points,
bounding the temporal difference between events. Every
constraint ¢;_,; has a weight w;.; € R U {oo} corre-
sponding to an upper bound on the difference, and thus rep-
resents an inequality z; — z; < w;—;. Two constraints
¢i—j and c;_; can be combined into a single constraint
Ciesj 1 —Wj—g < Tj — T < W;—j Of, equivalently,
xj —x; € [—wj_, w;—;], giving both upper and lower
bounds. An unspecified constraint is equivalent to a con-
straint with an infinite weight; therefore, if ¢;_.; exists and
¢;j—q does not, we have ¢;.; : x; — x; € (—00, wi—;].



Algorithm 1: IPPC

Input: A PPC STN S = (V, E) with associated weights
{wi—; | {i,j} € E} and a new constraint with
weight w/,_, for some {a,b} € E

Output: INCONSISTENT if the new weight yields

inconsistency; CONSISTENT if PPC has been

reinstated on S

1 if w/_, + wp—q < 0 then return INCONSISTENT;
if w/_, > w,—_ then return CONSISTENT; *

forallv € V do
D, [v] < 00; Dy, [v] « o0; *
COUNT[v] «— 0; TAGGED[v| «— FALSE
end
D, [a] < 0; Dy_,[b] < 0; *
Tag(a); Tag(b)
while 3u € V : COUNT[u] = max{COUNT[v] | v €
V'} A =TAGGED[u] do
10 | Tag(u)
11 end
12 return CONSISTENT

[S]
*

R S Y ]

Instances of this problem represented as an undirected
graph are called Simple Temporal Networks (STNs). In an
STN § = (V, E), each variable x; is represented by a vertex
1 € V, and each constraint c;.,; is represented by an edge
{i,7} € E between vertex ¢ and vertex j with two associated
weights, viz. w;—.; and w;_;. Solving an STN S is often
equated with determining an equivalent minimal network M
(or finding in the process that S is inconsistent). Such a
minimal network has a set of solutions (assignment of val-
ues to the variables that is consistent with all constraints)
identical to that of the original STN S; however, M is de-
composable, which means that any solution can be extracted
from it in a backtrack-free manner. For STNs, the mini-
mal network can be determined by enforcing path consis-
tency (PC), which in turn coincides with calculating all-pairs
shortest paths (APSP) on the constraint graph. Determin-
ing APSP for § = (V, E)), having n vertices and m edges,
yields a complete graph; it takes worst-case time O (n3) or

O (n?logn + nm) using Floyd—Warshall or Johnson’s al-
gorithm, respectively. Note that we always assume the (con-
straint) graph to be connected, so m > n — 1.

Instead of enforcing PC on an STN S, one can opt to
enforce partial path consistency (PPC) (Bliek and Sam-
Haroud 1999). Although this yields a network M* which
is not minimal, M* shares with M the properties of de-
composability and equivalence to S. Moreover, M* can be
used to solve the queries listed in the previous section for
those pairs of time points in which one is interested. Fur-
thermore, while M is represented by a complete graph (hav-
ing © (n2) edges), M* is represented by a chordal graph
(sometimes also called triangulated), requiring that every cy-
cle of length four or more has an edge joining two vertices
that are not adjacent in the cycle. Such a chordal graph has
O (nw}) edges and thus is potentially much sparser than M,
where w}; is the graph width induced by an ordering d of the
vertices in V. As in M, all edges {7, j} in M* are labelled
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by the lengths w;_.; and w;_,; of the shortest paths from ¢
to 7 and from j to 1, respectively.

Partial path consistency can be enforced by the P3C algo-
rithm in O (n(w})?) time (Planken, de Weerdt, and van der
Krogt 2008). Regarded as the current state of the art for
solving an STN non-incrementally, P3C builds on the con-
cept introduced by Xu and Choueiry (2003). (We postpone
discussion of existing methods for incrementally solving an
STN to a later section.) The minimal possible value of w; is
exactly the treewidth of G (denoted simply as w™).

Determining treewidth is NP-hard in general (Arnborg,
Corneil, and Proskurowski 1987). However, if G is already
chordal, we can—in O (m) time, using maximal cardinality
search (MCS) (West 1996)—find an optimal vertex order-
ing d, yielding minimal induced width w;. Moreover, even
a suboptimal choice of d usually results in a shorter run time
than that of PC enforcing algorithms, as empirically demon-
strated by Planken, de Weerdt, and van der Krogt (2008).

3. The IPPC Algorithm

Mixed-initiative planning and multi-agent coordination are
just two of the applications in which new constraints—that
subsume existing constraints—are incrementally imposed,
and for which we are interested in maintaining decompos-
ability of an STN representation, be it PC or PPC. Although
this can of course be done by repeatedly applying standard
single-shot algorithms, a more efficient approach is to use
tailored incremental methods.

In this paper, we refer to the two best known algorithms
for incrementally maintaining PC as IFPC and IAPSP.
IFPC, achieving incremental full path consistency, was first
used by Tsamardinos and Pollack (2003) and later explicitly
presented by Planken (2008). TAPSP is presented as an in-
cremental method for maintaining APSP by Even and Gazit
(1985). This algorithm requires O (n?) space, and O (n?)
and O (m*9) time, where m* equals the number of edges
in M whose label is to be updated because of the addition
of the new constraint, and ¢ is the graph degree of the origi-
nal constraint graph S.

We present an algorithm, called IPPC, that maintains PPC
under edge tightening, i.e., when the weight of edges is re-
duced, in O (m.) and O (nd.) time, where m.., n and o,
are the number of edges in the chordal graph, the number
of endpoints of updated edges in the chordal graph and the
chordal graph’s degree, respectively. The first time bound
of IPPC is always better than that of IAPSP’s first bound.
In general, comparison between the second bounds does not
yield a clear winner; however, in graphs with small treewidth
IPPC gains the upper hand since d.. is then not significantly
higher than §, whereas n; is always smaller than m* regard-
less of the problem instance. Regarding the space complex-
ity, the algorithm we present requires only O (m..) space, in-
stead of O (n2) for IAPSP. These improved bounds can be
obtained because not all shortest paths are maintained, but
only shortest partial paths in the chordal graph. As noted,
this information is still sufficient to check consistency, and
the maintained graph is still decomposable.

Recall that the maximal cardinality search (MCS) algo-



Procedure Tag(v € V)

1 TAGGED[v] «— TRUE
2 forall uw € N(v) do
3 if “TAGGED[u] then
4 Dy [u] «— min{ D, [u], wy—y + Do[v]}; *
5 Dy [u] «— min{Dy_,[u], Dp_[v] + wy—q }; *
6 COUNT[u] « COUNT[u| + 1
7 else
8 Wy—v

min{wy ., Do [u] + w!_, + Dy [v]};  *
9 Wy —y <

min{wy_y, Da[v] +w!,_, + Dy [u]}; =
10 end
1 end

rithm can be used to find an ordering d of the vertices in a
chordal graph, yielding minimal induced width w}; = w*.
This algorithm is at the heart of our incremental approach.
The order in which our algorithm visits vertices is deter-
mined in exactly the same way; the difference lies in the
determination of the new shortest paths resulting from tight-
ening some edge weight w,_.;, to a lower value w/,_,.

Pseudo-code for our method IPPC is given as Algo-
rithm 1; if the lines marked with an asterisk at the right-hand
margin are left out, we obtain the MCS algorithm. IPPC
takes as input a PPC STN and a new or tightened constraint
with weight w/,_, for some {a,b} € E. If this weight
is smaller than the existing weight w,_;, some other con-
straints may need to be tightened as well. That is, for some
other pairs of vertices {u, v} € E, the shortest path between
them may be reduced by using the (tightened) edge between
a and b. In the course of the algorithm, we therefore compute
for every vertex v the length of the shortest path to a, as well
as the length of the shortest path from b, which are main-
tained in arrays D,.[v] and D,_, [v], respectively. Note that
exactly these operations involving edge weights and distance
arrays are additions to the MCS algorithm.

In the procedure Tag(v), we update w,,—.,, for neighbours
u of v, denoted by N (v), that have already been visited if
there is a shorter path from u via a and b to v (and similarly
update w,—,,, if applicable). In order to achieve this, every
vertex v is tagged exactly once; in particular, w,_,; itself
is updated when calling Tag(b). The arrays COUNT][] and
TAGGED]| are used to ensure that the vertices are visited in
a simplicial construction ordering. Such an ordering, whose
existence is a defining property of chordal graphs, was also
employed by the state-of-the-art P*C algorithm and is found
by MCS in O (m..) time. Addition of the marked lines does
not cause this bound to be overstepped.

Lemma 1. The order in which Algorithm 1 calls Tag(v) on
vertices v € V' is a simplicial construction ordering of S.

Proof. The order is solely determined by the arrays COUNT]]
and TAGGED(]; IPPC uses them in exactly the same way as
MCS does. O

Lemma 2. Upon entering Tag(v), for v # a, Dy [v] and
Dy, [v] are equal to the lengths of the shortest paths from v
to a and from b to v, respectively.
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Proof. D, [v] and Dy_,[v] can never be lower than the
length of a shortest path, because they both start at oo for ev-
ery vertex in line 4 of IPPC and are only reduced (in line 4-5
in Tag(v)) when there is a path from v to a or from b to v. We
omit the other case for brevity; it can be found in the online
version of this paper at the authors’ web sites. O

Theorem 3. Algorithm I correctly re-enforces PPC (or de-
cides inconsistency) in O (m..) time and space.

Proof. If some arc u — v must be updated due to tightening
a — b, its new weight is the length of the path v --» a —
b --» v, where --» denotes a shortest path. W.l.o.g. assume
that u is tagged before v. Then, when calling Tag(v), by
Lemma 2, D, [u] and D,_, [v] are correctly set; in line 8 of
Tag(v), wy— 1s correctly updated.

Regarding the run time, note that Tag() is called at most
once per vertex, exactly as MCS does. All operations in
Tag() require amortised constant time per edge; the run time
can thus be bounded by O (m..).

In the course of the algorithm, four arrays of length O (n)
are maintained (D[], Dp—[], COUNT][|, TAGGED][]), and
only one adjacency-list-based graph data structure of size
O (m.), containing all weights w,_.,. Space can thus be
bounded by O (m.). O

Improving Efficiency

The efficiency of our new algorithm can be improved by
considering only vertices for which the weight of one of the
incident edges is to be updated. Consider therefore the in-
duced subgraph G[V*] of G, where V* C V consists of all
endpoints of edges whose weight is to be updated after tight-
ening {a,b} € E. Note that the (implicit) determination of
V* is part of our algorithm. We show that all updated short-
est paths can be traced in G[V*], and that we therefore only
need to consider vertices once we have updated one of their
incident edges in lines 8-9 of Tag(v).

Lemma 4. For all v,w € V*, any updated shortest path
v --» w can be traced in G[V*].

Proof. Assume the contrary, i.e. Jv,w € V* for which
Wy—qy Needs to be updated, but v --» w cannot be traced
in G[V*]. (In case there are multiple shortest paths v --» w,
consider any one of them with the fewest number of edges.)
There is a vertex u ¢ V* on this shortest path v --» a or
on b --+ w. We give proof in case u is on v --» a; the
other case is analogous. There is a cycle v --» u --» a —
b --» w — v in G, and since the path from v to a has the
fewest number of edges, there is no chord from v to any ver-
tex on v --» a. Thus, and since G is chordal, there must
be a chord incident on u. For the same reason, this chord
cannot connect u to any vertex on v --+ a. Thus, the chord
must be between 1 and a vertex v’ on b --» w. Since wy—_q,
needs an update, v --» u --> a — b —-» v --» w is
shorter than v --+ u — v’ --» w. Therefore, the path
u --+a — b --» 4 is shorter than v — «/, and thus w,,_,
needs to be updated. But then u € V'*, a contradiction. [

This lemma suggests a change the algorithm to ensure that
exactly all vertices in V'* are completely visited.



Procedure Tag—improved(v € V)

TAGGED[v] «— TRUE

forall v € LIST[v] do
Wy—sy — Min{wy .y, Do [u] +w!,_, + Dy [v]}
Wy MIn{wy .y, Do [0] + W), + Dy [u]}

if any updates took place, or v = a then

forall u € NV(v) such that ~TAGGED|[u] do
D, [u] < min{D,.[u], wy—, + D [v]}
Dy [u] « min{Dy_, [u], Dp_, [v] + wy— }

10 LIST[u] < LIST[u] U {v}

1 end

12 end

1
2
3
4
5 end
6
7
8
9

We therefore present a new procedure Tag—improved()
which replaces the original Tag(). The array COUNT(] is re-
placed by an array of vertex lists LIST([], initialised to con-
tain an empty list for each vertex. These lists contain for
each vertex the neighbouring vertices in V* that have al-
ready been tagged; in this manner, the algorithm only needs
to iterate over all of the vertex’s neighbours if the vertex it-
self is found to be in V* because an update took place (or the
vertex in question is a which is trivially in V*). In the main
algorithm, instead of checking vertices’ counts, the length
of these lists is checked; and Tag—improved() is only called
when this length is at least two (it is easily verified that oth-
erwise, the vertex does not appear in any cycle with the up-
dated edge, so no checking is necessary). Recall that n}
and ¢, are the number of endpoints of updated edges in the
chordal graph and its degree, respectively.

Theorem 5. With the modifications discussed above, algo-

rithm I correctly re-enforces PPC (or decides inconsistency)
in O (m.) and O (n%d.) time.

Proof. The modifications ensure that exactly all n} vertices
in V* are completely visited. Edges incident on vertices out-
side V* do not need to be updated to maintain partial path
consistency. From Lemma 4 we can then conclude that up-
dates on edges incident on vertices from V* can correctly be
done when restricting the algorithm to G[V*]. Regarding the
run time, the first bound is proven in Theorem 3 and still ap-
plies, because the inserted lines all take constant amortised
time per edge. The second bound can be derived as follows.
Only vertices in V* are completely visited, and when they
are, all neighbours in the chordal graph are visited. Each ver-
tex has at most d. neighbours in the chordal graph, and each
visit takes only constant time (amortised) per edge. Conse-
quently, the run time can be bounded by O (n%d.). O

4. Existing Algorithms

We briefly review existing methods for incrementally solv-
ing an STN. The list of methods we include here is not com-
plete; especially in the case of incremental algorithms, many
other approaches exist, some of which are designed for spe-
cial cases, e.g. where all edge weights are positive. We give
particular attention to incremental algorithms that have been
used as components of solvers for the Disjunctive Temporal
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Problem (DTP) (Stergiou and Koubarakis 2000), as the DTP
has spurred advances in incremental STN solving.

The Bellman—Ford algorithm can be used as a single-shot
approach if one is interested only in determining consis-
tency, or single-source shortest paths. Cesta and Oddi (1996)
published an incremental variant tailored to the STN that re-
tains a theoretical upper bound on the run time of O (mn).
Further work on incremental consistency checking for the
STN has been done by Ramalingam et al. (1999), who also
list some algorithms for special cases of the STN.

It is also possible to incrementally maintain full path con-
sistency (IFPC) explicitly. Tsamardinos and Pollack (2003)
use this approach, citing Mohr and Henderson (1986); how-
ever, instead of an incremental approach, the latter authors
presented (only) a new single-shot path consistency algo-
rithm for general constraint satisfaction problems. Never-
theless, an incremental version can be obtained that operates
within a time bound of O (n + n*2) , as shown by Planken
(2008)—although the time bound was left implicit. We note
that n* is never lower than n}, and may be much higher; e.g.
in a tree, n; = 2 while n* may be as high as n. Recall that
for STNGs, this approach is equivalent to calculating APSP.

Demetrescu and Italiano (2006a) give an overview of
available algorithms for the dynamic all-pairs shortest paths
problem. They also consider the problem with only positive
edge-weights, and moreover list algorithms that can handle
not only decreasing edge weights and edge additions, but
also increases in edge weights and edge deletions; hence the
name ‘dynamic APSP’ instead of ‘incremental APSP’. The
same authors (Demetrescu and Italiano 2006b) compare em-
pirically a number of algorithms.

Thorup (2004) presents an algorithm for dynamic APSP
that allows negative edge weights, based on graph-
theoretic combinatorial properties. This algorithm requires
O (n?(logn + log®((m + n)/n))) amortized time per up-
date, and O (mn) space.

Hunsberger (2008) presents a complete temporal con-
straint management system to support planning, scheduling,
and real-time execution, based on an STN in which so-called
rigid components are collapsed (in the case of constraint
tightening only). These rigid components are subgraphs
where for every edge one weight is equal to the negative
of the other. Attention is paid to practical space complex-
ity as well as time complexity. The temporal network sep-
arates the temporal reference time point into a pair and in-
cludes a ‘now’ time point; together, these eliminate the need
for certain common forms of constraint propagation when
considering the passage of time. The constraint propagation
algorithm is based on a two-phase pass over undominated
paths propagated from a changed edge. It provides dynamic
APSP information; a variant can provide incremental APSP
information with complexity O(m*d). This algorithm is es-
sentially the same as the one introduced by Even and Gazit
(1985), which we dubbed IAPSP, and can be shown to have
the best attainable general upper bound on the time complex-
ity for an incremental APSP algorithm. The later improve-
ments by Hunsberger (2008) do not change the theoretical
upper bound, but improve efficiency in practice. These im-
provements can be applied to IPPC as well. However, in the
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Figure 1: An example of an HTN in a satellite domain.

next section we compare the performance of IAPSP to that
of IPPC, both without these improvements.

One earlier attempt to define an incremental algorithm
based on PPC has been made (Planken 2008). The approach
taken is, roughly, to perform the second half of the P3C al-
gorithm, with a few improvements. The time complexity
is O (n(w})?), i.e. equal to that of P3C, which is worse
than the other methods in the literature, and the empirical
performance was likewise disappointing. Our new approach
for an incremental PPC algorithm is completely different;
it makes more use of the properties of chordal graphs and
enjoys tighter theoretical bounds.

5. Experimental Evaluation

We next empirically compare our new IPPC algorithm to
the state of the art in incremental path consistency, i.e. the
IAPSP algorithm by Even and Gazit (1985), and also IFPC
as described by Planken (2008).

We evaluate the performance of IPPC on two sets of
benchmarks, which we believe are representative of the tem-
poral sub-problems encountered when solving planning or
scheduling problems. The first set of STNs are extracted
from a set of job-shop scheduling benchmark problems. The
second set of STNs are so-called sibling-restricted STN,
which are obtained from (automatically generated) Hierar-
chical Task Networks (HTNSs).

Job-shop STNs

Job-shop problem instances of different sizes are included
in SMT-LIB (Ranise and Tinelli 2003). The temporal sub-
problem in a job-shop problem consists of checking consis-
tency of a given ordering of jobs. We thus generate STN sub-
problems by creating constraints based on a guessed order of
the jobs, and then change the weights of the STN to ensure
their consistency while maintaining structure. Because of
the fixed size of the benchmark problems in SMT-LIB, this
process results in STNs with up to 250 vertices.

Sibling-Restricted STNs

The Hierarchical Task Network (HTN) planning paradigm
(Erol, Hendler, and Nau 1994) assumes a hierarchical
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flow, with high-level tasks being decomposed progressively
into collections of lower-level tasks through the applica-
tion of matching methods with satisfied preconditions. The
HTN planning process gives rise to STNs with the sibling-
restricted (SR) property (Bui, Tyson, and Yorke-Smith
2008). In a sibling-restricted STN, constraints may occur
only between parent tasks and their children, and between
sibling tasks. This restriction on what STN constraints may
exist between plan elements is inherent to HTN planning
models; in particular, there is no way in standard HTN rep-
resentations to specify temporal constraints between tasks
in different task networks (Erol, Hendler, and Nau 1994).
Hence, standard HTN representations have been extended
to support limited coordination between different task net-
works via landmark variables (Castillo, Fdez-Olivares, and
O. Garca-Pérez 2006) that allow synchronisation of key
events in the plan.

Apart from the temporal reference time point TR, vertices
in the STN derived from an HTN occur in pairs, because
each task in the HTN corresponds to two variables, the start
and end time points. It follows that the constraint graph is
biconnected and decomposes only via separator sets of car-
dinality at least two. The structure in HTN-derived STNs is
exploited by single-shot temporal solvers such as Prop-STP
(Bui, Tyson, and Yorke-Smith 2008).

An HTN planning scenario in a satellite domain is given
by Figure 1; Figure 2 depicts an STN that arises. The top-
level task, acquire-image, is being achieved by a task net-
work with three second-level tasks, turn-to-position, align,
and take-image. In the HTN, selected temporal constraints
are shown; implied temporal constraints from the HTN
structure are not shown. In the STN, all temporal constraints
are shown, except unary constraints from the temporal ref-
erence time point TR to other time points. An omitted edge
weight corresponds to the unconstraining weight [0, o). In-
terval notation is used: the lower bound of an interval corre-
sponds to a reverse arc with negative weight. Thus, the STN
has many arcs labelled -10, and one each labelled -1 and -2.

As the HTN planning process proceeds, task networks are
considered for matching with non-ground tasks. When each
candidate network is considered, its time points and edges,
and specified edges between its time points and existing time
points, are added to the STN. Thus, incrementally the STN
is built up; propagation is required at each step. The prop-
agation determines if the candidate network will cause in-
consistency (indicating that an alternate network is required,
or if none exist, backtracking). It also narrows the temporal
bounds (i.e. the domains) for the time points.

In the scenario, suppose that a matching task network
for task expose is being considered. If the depicted net-
work, consisting of primitive actions open and close, and the
temporal constraint between them, is added, then the corre-
sponding time point pairs and edges are added to the STN, as
shown, and incremental propagation should be performed.

As noted, landmark time points are introduced in order
to support limited coordination between different task net-
works. This allows synchronisation of key events in the plan,
but breaks the full sibling-restricted property. Such a land-
mark time point may be an existing task start or end, or it
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Figure 2: STN derived from temporal HTN planning in a satellite domain, based on Figure 1. Initial domains shown.

may be additional time point that does not equate to the start
or end of any task. In Figure 1, take-image-start is an exam-
ple of the former.

We generate HTNs using the following parameters: (i) the
branching factor, determining the number of children for
each node, (ii) the depth of the HTN tree, (iii) the ratio of
landmark time points to the number of tasks in the HTN, and
(iv) the ratio of constraints between siblings versus the total
number of possible sibling constraints (which is the branch-
ing factor squared). From the worst-case bounds, we expect
IPPC to perform especially well in sparse graphs, such as
when the landmark ratio and sibling ratio are small.

Experimental Setup

The benchmark sets described above contain large STNs. As
discussed before, for IPPC to run, the constraint graph must
be chordal. In our experiments we therefore always first con-
struct the graph consisting of all constraint edges that will be
added and triangulate it once with the minimum-fill heuris-
tic. We thus reserve incrementally maintaining chordality
for future work. It is known that this can be done time at
most linear in the number of vertices (Berry, Heggernes, and
Villanger 2006; Ibarra 2008).

To evaluate the performance of incrementally solving
these STNs, we start with an empty graph and add new con-
straints with weights w/ _, one by one. We run our imple-
mentation of the algorithm under evaluation in a Java vir-
tual machine with 1 GB of memory assigned on a 2.4 GHz
AMD processor, and measure the accumulated time needed
to add all constraints.

Results

The results of the experiment on the job-shop STNs can be
found in Figure 3. Surprisingly, the very simple IFPC al-
gorithm clearly outperforms the others on these instances,
showing even better performance than reported by its orig-
inators (Planken 2008). The run times of IPPC and TAPSP
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Figure 3: IFPC run time outperforms both IAPSP and IPPC
on the job-shop benchmarks.

250

are quite close, although IAPSP is slightly better. The re-
sults are all the more surprising because the theoretical up-
per bounds for these instances are better for IPPC than for
either IFPC or IAPSP, as can be seen in Figure 4; again,
it is notable that the very simple approach taken by IFPC
has a better theoretical upper bound than the more complex
IAPSP algorithm. We believe that these differences can be
attributed to the fact that the bounds on IAPSP and IFPC are
not as tight as the bound on IPPC, and, further, some of the
ideas in the implementation of IAPSP such as making effi-
cient use of a shortest path tree have not (yet) been used to
improve IPPC.

To model a representative set of HTN benchmarks we
vary the branching factor between 4 and 10, the depth of
each branch between 3 and 7, set the landmark ratio to 0.15,
and the sibling ratio to 0.5. The results for these HTN bench-
marks show a completely different picture than the job-shop
benchmarks, as can be seen in Figure 5. For large problem
instances, the run times of IAPSP and IFPC are significantly
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Figure 4: For the job-shop benchmarks, the theoretical upper
bound on the run time of IPPC is lower than those for both
IAPSP and IFPC.
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Figure 5: IPPC outperforms IAPSP and IFPC on the HTN
benchmarks.
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higher than that of IPPC.

In a similar experiment, we studied the influence of the
number of sibling constraints, varying the ratio of sib-
ling constraints to possible sibling constraints between 0.1
and 0.9, both for a setting with landmark ratio 0.0 as well as
with landmark ratio 0.2. The result of this experiment is sur-
prising. Increasing the sibling ratio seems to have no effect
on the performance of the algorithms at all. (The resulting
graphs are therefore uninteresting, and are omitted here due
to space limitations.) We believe this result may occur as, al-
though these constraints increase the density, they do so only
in a very local manner, having only a marginal influence on
the total number of weights to update.

In a final experiment, we varied the landmark ratio from
0.0 to 0.3. The effect of increasing the density in this man-
ner is the expected behaviour, shown in Figure 6. IPPC is
slower on problem instances with a high landmark ratio, but
for sparse instances outperforms the other algorithms.

From these experiments we conclude that IPPC can be
competitive with TAPSP when problem instances are de-
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Figure 6: IPPC outperforms IAPSP and IFPC when the ratio
of the landmarks versus other vertices is limited.

rived from for example job-shop scheduling, but that IFPC
is a surprisingly serious alternative. However, when dealing
with STNs that occur as a sub-problem of HTNs with low
enough landmark ratio, IPPC is the most efficient method.

6. Conclusions and Future Work

When solving temporal planning or scheduling prob-
lems, consistency of temporal constraints is frequently
checked, and temporal propagation is frequently performed.
Prior to the work reported here, the most successful ap-
proach has been to incrementally maintain all-pairs-shortest-
paths (IAPSP) (Even and Gazit 1985; Ramalingam et
al.  1999; Hunsberger 2008), or full path consistency
(IFPC) (Tsamardinos and Pollack 2003; Planken 2008). The
primary contribution of this paper is to demonstrate that
these algorithms perform unnecessary work, especially in
sparse graphs. We leverage recent results that have shown
that enforcing partial path consistency (Xu and Choueiry
2003; Planken, de Weerdt, and van der Krogt 2008) is suf-
ficient to answer the relevant temporal inference questions,
and we propose the first successful method to enforce partial
path consistency incrementally.

Our algorithm, IPPC, has a worst-case time complexity
bounded by the number of edges in the chordal graph, which
is better than the bound on IAPSP of the number of vertices
squared. The time complexity can also be bounded by the
degree of the chordal graph times the number of endpoints
of updated edges in the chordal graph. For sparse graphs,
this latter bound is also better than that of IAPSP, which is
the degree times the number of updated edges in the original
graph, as well as better than that of IFPC, which is the num-
ber of vertices plus the number of updated vertices squared.
In addition, IPPC requires space only linear in the number of
edges of the chordal graph, whereas earlier work uses space
quadratic in the number of vertices. We also find that IFPC’s
bound is lower than that of the other algorithms on job-shop
STNs, a surprising result given its simplicity.

In the experiments presented in this paper, we compared
IPPC to an efficient implementation of IAPSP as described
by Even and Gazit (1985), and an implementation of IFPC



described by Planken (2008). Ausiello et al. (1991) de-
scribe an algorithm which can be adapted for the incremental
APSP problem, that generally shows better empirical per-
formance than IFPC; more recently, Hunsberger (2008) has
proposed some ideas for ITAPSP which do not improve the
worst-case bound, but can reduce the computational load in
certain cases (e.g., splitting the reference point and collaps-
ing rigid components). As part of our future work we plan
to include these ideas both in our implementation of IAPSP
as well as in our implementation of IPPC, and then compare
these improved methods experimentally.

Secondly, in this paper we focused on enforcing par-
tial path consistency incrementally, assuming the constraint
graph is already chordal. For the method to be fully incre-
mental, it should also allow addition of new edges which
may break chordality. To this end we plan on including
one of the recently discovered efficient algorithms for main-
taining chordality (Berry, Heggernes, and Villanger 2006;
Ibarra 2008). Since these methods take time at most lin-
ear in the number of vertices, we do not expect their incor-
poration to result in any significant change in performance.
Thirdly, we plan to develop methods to also deal with con-
straint loosening and edge deletions. With these additions,
we expect to arrive at a fully dynamical method that not only
performs significantly better than any existing approach for
dynamically solving STNs, but can immediately be used as
part of a planning or scheduling algorithm.
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