
Improving Determinization in Hindsight for Online Probabilistic Planning

1Embedded Reasoning Area
Palo Alto Research Center
Palo Alto, CA 94304 USA

sungwook.yoon at parc.com
minhdo at parc.com

Sungwook Yoon1 and Wheeler Ruml2 and J. Benton3 and Minh B. Do1

2Department of Computer Science
University of New Hampshire

Durham, NH 03824 USA
ruml at cs.unh.edu

3Dept. of Computer Science and Eng.
Arizona State University
Tempe, AZ 85287 USA
j.benton at asu.edu

Abstract

Recently, ‘determinization in hindsight’ has enjoyed surpris-
ing success in on-line probabilistic planning. This technique
evaluates the actions available in the current state by using
non-probabilistic planning in deterministic approximations of
the original domain. Although the approach has proven itself
effective in many challenging domains, it is computationally
very expensive. In this paper, we present three significant
improvements to help mitigate this expense. First, we use a
method for detecting potentially useful actions, allowing us to
avoid estimating the values of unnecessary ones. Second, we
exploit determinism in the domain by reusing relevant plans
rather than computing new ones. Third, we improve action
evaluation by increasing the chance that at least one determin-
istic plan reaches a goal. Taken together, these improvements
allow determinization in hindsight to scale significantly better
on large or mostly-deterministic problems.

Introduction

The unexpected success of FF-Replan (Yoon, Fern, and
Givan 2007) in the 2004 International Probabilistic Plan-
ning Competition (IPPC) has led to great interest in the
use of deterministic planning techniques to solve on-line
probabilistic problems (Mausam, Bertoli, and Weld 2007;
Yoon et al. 2008). In the latest IPPC in 2008, many com-
peting planners, including the winner, used a deterministic
planner in some manner. Rather than precomputing a policy,
FF-Replan selects an action by performing planning when it
reaches a new state. It first creates a deterministic version
of the probabilistic domain model in which action outcomes
are assumed to be known, then uses a fast deterministic plan-
ner, specifically FF (Hoffmann and Nebel 2001), to find a
plan from the current state using the determinized model. It
issues the first action in the resulting plan and waits to ob-
serve the resulting state. If FF-Replan re-visits a state, it re-
peats the previously selected action. By planning on-the-fly
when unseen states are observed, FF-Replan can often cope
with stochastic state transitions despite using a deterministic
planner at each step, especially when the problem is dead-
end free. However, the approach discards probability infor-
mation completely and it is not hard to construct domains
that exploit its weaknesses (Little and Thiebaux 2007).

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yoon et al. (2008) re-interpreted this method as a degen-
erate form of ‘determinization in hindsight’, a principled ap-
proach to probabilistic planning and scheduling (Chong, Gi-
van, and Chang 2000; Mercier and Hentenryck 2007). As
we explain in more detail later, the hindsight approach sam-
ples multiple possible determinizations of the probabilistic
planning domain model, representing different possible ac-
tion outcomes. The deterministic planner is then used to find
a plan for each determinization and the set of resulting plans
is analyzed to select the action that leads to the best out-
come, according to the plans for the sampled futures. Yoon
et al. showed that their system, FF-Hindsight, could exhibit
significant probabilistic reasoning, solving problems even in
‘probabilistically interesting’ domains designed to exploit
the weaknesses of determinizing planners. However, the ap-
proach is very computationally expensive. Specifically, the
amount of computation needed at each state scales linearly
in the number of actions applicable at that state and in the
number of determinizations sampled, leading to enormous
wasted effort in domains with many applicable-but-useless
actions and when actions have few probabilistic effects.

In this paper, we present three enhancements to the hind-
sight planning approach that collectively improve its scal-
ability significantly. First, we break the linear dependence
on the number of applicable actions by detecting a small set
of probabilistically helpful actions from the current state.
We consider only those actions, estimating their expected
cost while skipping all other applicable actions. This idea
was originally termed consensus and expectation by Bent
and Van Hentenryck (2004), who used it in the context of
stochastic scheduling. We discuss the properties of this tech-
nique, which is also similar to the ‘helpful actions’ of the FF
planner (Hoffmann and Nebel 2001). Second, we show how
to exploit determinism in the domain by reusing relevant so-
lution plans. When a state transition happens as was pre-
dicted by previously sampled determinizations, those sam-
ples and their corresponding plans can be directly reused.
This avoids the need to replan when the state evolves ac-
cording to the anticipated trajectory. In effect, the algo-
rithm gracefully adapts its planning effort to the determin-
ism of the domain. Third, we improve estimation accuracy
in hard instances, where most determinizations fail to reach
a goal, by supplementing the sampled determinizations with
all-outcome determinization, where every probabilistic out-
come is incarnated as a possible action. This provides the

209

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

deterministic planner a chance to reach the goal, regardless
of how unlikely the path is. By mixing this all-outcome de-
terminization into the regular determinizations, we promote
a minimal level of search guidance. This is particularly use-
ful when there are goals that can only be achieved by the
low-probability outcomes of actions that are unlikely to be
selected under ordinary sampling.

After discussing these techniques in more detail, we
present an empirical evaluation of our approach on domains
from previous International Probabilistic Planning Compe-
titions (IPPC). Our improved determinzation in hindsight
planner, FF-Hindsight+, scales significantly better than the
original FF-Hindsight system, and is competitive with the
winner of each IPPC on its respective benchmarks.

Background

We formalize a probabilistic planning problem as a Markov
decision process (MDP) M = {S, s0, A, T, C, G}, where S
is a finite set of states, s0 ∈ S is the initial state, A is a
finite set of actions, T defines transition probabilities, C is
the cost function, and G is a set of goal states. T defines
the distribution of the next state s′ after applying an action
a ∈ A to s, written T (s′|s, a). The cost function C : S ×
A→ R assigns a real valued cost to a state/action pair. Goal
states are sink states—that is, there is no action that leads
out of them—effectively terminating the on-line trial. This
is the setting used in the International Probabilistic Planning
Competition (IPPC) (Younes and Littman 2004; Bonet and
Givan 2006).

The IPPC takes an on-line simulation approach to evalu-
ate competing planners. The competition host sends a state
s to the participant, with the very first one being the ini-
tial state s0. The participant then returns an action a. The
host simulates the application of a in s, choosing a next state
s′ according to T (s′|s, a), and then initiates a new turn by
sending s′ to the participant. The interaction continues un-
til the participant succeeds in reaching a goal s′ ∈ G or the
predefined time expires, which is typically set at 30 CPU
minutes. One such complete session is called a round. Mul-
tiple rounds (typically 30 in the IPPC) are used to compute
the average performance of a participant on the same MDP.
The number of successful rounds and the total time taken are
criteria used to compare the participating planners.

Simulation-based testing makes it reasonable to adopt
an on-line planning approach, finding actions as they are
needed rather than solving the entire MDP as traditional
algorithms do. Surprisingly, many IPPC competitors use
deterministic planners as key components of their systems.
This is motivated by the huge advantages in speed of de-
terministic planners over traditional probabilistic planners.
The simplest way to use deterministic planners in probabilis-
tic planning is replanning, which only plans when unseen
states are visited (Yoon, Fern, and Givan 2007). Replanning
first “determinizes” the probabilistic domain, either by tak-
ing one outcome of an action as the single deterministic out-
come, or by making each probabilistic outcome its own de-
terministic action, known as ‘all outcome determinization.’
Either method of determinization discards probability infor-
mation completely. While FF-Replan was the top performer
in IPPC-04, it can perform poorly in simple “probabilisti-

1. F ← sample num-samples possible futures to horizon
2. for each action a applicable in the current state s
3. for each possible resulting state s′

4. for each sampled future F ∈ F
5. plan in F from s′ using deterministic methods
6. average costs obtained in plans from s′

7. compute expected cost of a from values of s′

8. return action with smallest expected cost

Figure 1: Planning via determinization in hindsight.

cally interesting” problems (Little and Thiebaux 2007).

Determinization in Hindsight (DH)

Determinization in hindsight (DH) takes a more sophisti-
cated approach. Rather than naively determinizing proba-
bilistic outcomes, DH samples them according to their dis-
tribution. In this way, it incorporates probabilistic informa-
tion. It then solves the “sampled” determinized problem
with off-the-shelf deterministic planner, achieving scalabil-
ity. We now explain this technique in more detail.

When executing a probabilistic action, nature ‘rolls the
dice’ to determine the resulting state. In a determinization,
we literally roll the dice in advance, recording the output of
a pseudo-random generator for H steps, where H is a fixed
horizon. More formally, a possible future F is a mapping
A×S×{1, ..., H} → [0, 1] that forms a determinization by
assigning a fixed outcome to each action a in state s at time
t by partitioning the interval [0, 1] according to the outcome
distribution for action a and then selecting the outcome for
a at time t that F (a, s, t) indexes. DH forms a set of these
sampled futures where each sample represents a determinis-
tic planning problem that can be solved using a deterministic
planner. We can then evaluate a state using the collected set
of determinizations. Figure 1 shows the pseudo-code of the
basic DH algorithm.

The evaluation of a policy π (mapping from a state to
an action) at state s on a future (or determinization) F is

C(s, F, π) =
∑H

s∼F C(s, π(s)), which is simply accumu-
lating costs following the state transitions dictated by the fu-
ture and taking the action specified by π. The optimal value
of a state with respect to a limited horizon H is defined by

V ∗(s) = min
π

E
F
[C(s, F, π)], (1)

where π is a non-stationary policy for horizon H . Once we
can evaluate the values of all states as in Equation 1, we can
effectively execute an optimal policy with a one step looka-
head procedure. One step lookahead selects the action that
leads to the best expected value across the possible resulting
states. So the optimal policy πV ∗ for a state s according to
V ∗ is, πV ∗(s) = argmina[C(s, a)+

∑
s′ V ∗(s′)T (s′|s, a)].

The problem with this general approach is that it is compu-
tationally very expensive to calculate the value function as
defined in Equation 1, since we have to enumerate all the
possible policies and evaluate them over the distribution of
all the possible futures.

DH alleviates this burden by interchanging expectation
and minimization in Equation 1:

V Hind(s) = E
F
[min

π
C(s, F, π)] (2)

210

Now, the minimization in Equation 2 is actually a deter-
ministic problem, since it is with respect to the already de-
cided future F . V Hind(s) may not be the same as V ∗(s)
but it can give an approximation of it (Yoon et al. 2008;
Mercier and Hentenryck 2007). It may provide an over-
optimistic value estimate however, as it assumes that the out-
come of each action is known. Use of a satisficing determin-
istic planner also introduces approximation. To see the gain
in computational efficiency, consider the approximation of
Equation 2 with w sampled futures:

V ∼Hind(s) =

∑
1≤i≤w

[min
π

C(s, Fi, π)]

w
(3)

The efficiency of DH comes from considering w deter-
ministic problems in evaluating actions in the current state.
Given recent advances in deterministic planning techniques,
minπ C(s, F, π) can be computed relatively quickly in prac-

tice. Thus, V ∼Hind(s) provides great computational savings.

Improving Determinization in Hindsight
The original DH technique has several potential drawbacks:
1) it evaluates all actions that are applicable in the current
state, even those that do not contribute to achieving the
goal; 2) it forms many samples even when actions are deter-
ministic; and 3) it performs poorly in problems where goal
achievement depends on very unlikely outcomes. We will
address each of these issues in turn.

1. Probabilistically Helpful Actions (PHA)

The intuition behind PHA stems from the observation that
we might not need to consider all the applicable actions in
a given state because only a small subset of them might be
useful. Moreover, even if that subset is large, we may not
need to consider all of them to find a good one. To illus-
trate this point, consider a simple domain we call ‘fumbling
gripper.’ It is similar to the classic ‘gripper’ domain, as well
as the ‘slippery gripper’ domain of Kushmerick, Hanks, and
Weld (1995). There are two rooms, A and B, with a robot
with a gripper and n balls initially located in room A. The
robot needs to move a subset of the balls into room B. The
robot can pick up or put down a ball and move between the
two rooms. The only complication is that some balls are
slippery, and picking them up only succeeds half of the time.
If there are no slippery balls, this domain is deterministic,
and if all the balls are slippery, then it is highly probabilis-
tic. The percentage of slippery balls to be moved controls
how stochastic the problem is.

When the robot is in room A with k balls and the goal is to
have only ball-X in room B, the optimal plan will begin
with picking up ball-X. Although the actions of picking
up the other k− 1 balls are also applicable, they are not use-
ful. Conventional DH would consider all applicable actions,
evaluating the possible resulting states using the sampled
futures. But ideally, we would evaluate only those actions
that start an optimal plan. To find these useful actions, we
evaluate the current state, rather than the one step lookahead
states. The first actions in these plans are then considered
further using the standard DH algorithm. In addition, note
that if the goal is to have both ball-X and ball-Y in B,

G

a*(s):prob 1

B:prob 0.5
current
state S

Dead-end

Figure 2: A difficult problem for the PHA technique: a∗(s)
is optimal but any action in set B that reaches the goal in a
given determinization will appear better.

then the symmetry in the problem implies that we only need
to consider moving one ball first. PHA lets us rely on the
tie-breaking in the deterministic planner and only consider
the action it selects first.

More precisely, before we apply DH, we evaluate the cur-
rent state s to extract a set AH(s) of probabilistically helpful
actions (PHA). Then in DH, we only evaluate states resulting
from the application of actions in AH(s) to s. Specifically,
when evaluating the current state, we form w determiniza-
tions F = {F1, . . . , Fw}, with an extended horizon H + 1
starting from the current state (extended since H is mea-
sured from the resulting states after expanding the current
state). We solve these futures using a deterministic plan-
ner to obtain a plan set P(s) = {P1, . . . Pw}, where each

plan Pi ∈ P(s) is a sequence of actions, {ai
1, . . . , a

i
H+1}.

The set of the first actions AH(s) = {a1
1, . . . a

w
1 } of plans

in P(s) is identified as ‘probabilistically helpful actions’
(PHA) for state s and is used to reduce the number of fu-
ture states to consider in the subsequent step.

Properties of PHA: We are not guaranteed that AH(s) will
contain the optimal action for s. This is the result of deal-
ing with known futures. Consider the example in Figure 2.
In this example, in the current state s, there is one optimal
action a∗(s) that reaches the goal with probability 1 but re-
quires an additional step, and there are many bad actions,
labeled B, that reach the goal in one step with probability
0.5 but, if they miss, lead to a dead-end state. Clearly, a∗(s)
is the optimal action. But if there are many actions from
set B available in state s, then PHA will not include a∗(s).
To see this, first note that in any determinization, each ac-
tion in set B will deterministically reach either the goal or
the dead-end. If there are N actions in B, the probability
that all of them reach the dead-end equals (1

2)N . Only in

such an unlikely case will action a∗(s) appear in a deter-
ministic solution and become a member of PHA. Otherwise,
the planner will never consider it because it takes longer to
reach the goal. And as N increases, PHA becomes increas-
ingly vulnerable and will only contain actions from B. We
pay this price due to the interchange of expectation and min-
imization.

On the other hand, there is more to like about PHA than
just its efficiency. This comes from the closeness between
the V Hind(s) and V ∼Hind(s) equations that we discussed
above. If we let the allowed loss of DH using PHA be

211

ε, the Chernoff bound states that with probability 1 − δ′,

|V Hind(s) − V ∼Hind(s)| <

√
− log δ′

w
. By setting δ′ =

δ
H+1 and |V Hind(s) − V ∼Hind(s)| <

√
− log δ′

w
< ε

4 , we

can guarantee that if we sample w > 16
ε

2
log H+1

δ
times,

then with probability 1−δ, actions a1
P1

. . . a1
Pw

will not make

subsequent plans deviate from V Hind(s) by more than ε
2 .

Combining this bound with the bound described in Theo-
rem 2 of Yoon et al. (2008), which states that the loss of
DH can be bounded by ε

2 if the number of samples w is

> 16
ε2

log |AH |H
δ

, we can bound the total loss of PHA and

DH at ε, with w = 16
ε

2
log H+1

δ
+ 16

ε2
log |AH |H

δ
.

For a given state s, let the number of applicable actions be
n, the number of useful actions be m ≤ n, planning time per
sampled future be tp, sampling time per sample be tF , and
the number of sampled futures be w, then the time savings
is roughly (n− (m + 1)) × w × (tp + tF). When n� m,
the effect is dramatic and as we will show later, an empirical
evaluation confirms that it is frequently obtained in practice.

2. Finding Deterministic Action Sequences

We turn now to our second improvement to DH. In many
probabilistic domains, a significant portion of the plan can
be deterministic. That is, a sequence of actions that needs
to be taken may not have any probabilistic effects. There-
fore, identifying and memorizing those sequences can save
computation by skipping repeated action evaluations at each
intermediate state. For example, in our fumbling gripper ex-
ample domain, after picking up balls from room A (which
may involve slippery stochastic actions), it is deterministic
to carry them to room B, drop them, and return to room
A. Another example is the Boxworld domain of IPPC-04, a
variation of the popular Logistics domain, in which only the
drive action is probabilistic.

We can identify deterministic action sequences by com-
paring, over all sampled futures, the solution plans that start
with the action a that has been selected for execution. We
find the longest prefix that is common to all plans in that set,
record that prefix, and then continuously apply actions from
it in sequence without further planning until an action is not
applicable. (This could easily be generalized to reuse match-
ing plans, without requiring complete agreement among all
samples.) While this is similar to the detection and appli-
cation of sequences of applicable actions in deterministic
planning (c.f., Vidal (2004)), it is perhaps more principled
since we can bound the loss with enough samples using an
argument similar to that discussed in the previous section.

3. Find Low-Probability but Important Outcome

While surprisingly powerful, sampling-based evaluation
techniques are notoriously weak when unlikely outcomes
contribute disproportionately to an action’s value. This
property causes high variation in hindsight evaluation due
to the heterogeneity of the sampling results. When an un-
likely but game-changing outcome F is sampled using naive
sampling, the evaluation result can be significantly different
from the evaluation of other sample sets that do not con-
tain F . Techniques such as importance sampling and quasi-

Monte-Carlo evaluation have been introduced to combat this
variance (Glasserman 2003). Importance sampling goes be-
yond naive sampling to sample according to the probabil-
ity× cost distribution instead of the probability distribution.
This is easier said than done, particularly for planning ap-
plications, where it is not easy to identify such distributions
from the PDDL domain and problem definitions.

In some of the IPPC benchmark domains such as Zeno-
travel, we observed unlikely outcomes heavily affecting
goal achievability. In Zenotravel, actions such as ‘complete-
zooming’ have low success probability but the optimal pol-
icy involves executing this action repeatedly. For DH to cor-
rectly evaluate visited states in such problems, it needs to
include this very unlikely outcome in its sample set.

Rather than trying to analyze the domain structure to iden-
tify useful but unlikely outcomes specifically, we form a
special determinization in which each possible action out-
come is instantiated as a separate action. This method was
termed all-outcome determinization by Yoon, Fern, and Gi-
van (2007). Planning in this action space essentially gives
the deterministic planner complete control over all proba-
bilistic outcomes. If a path to a goal exists, however un-
likely, it is a possible solution to the deterministic problem
and we would expect the deterministic planner to find it. We
then mix in the solution of the all-outcome determinization
with our regular DH solutions to futures obtained from naive
sampling in our hindsight state evaluations. In practice, this
turns out to be highly effective in planning problems where
unlikely outcomes greatly affect goal achievability.

Note that when mixing in the all-outcome solution, we
also re-weight the solutions for the regular DH sampled fu-
tures. Let P (F) be the probability of future F happening,
which is the multiplication of the probabilities of outcomes
involved with F . When we add in the future F0 found
with the all-outcome determinization to the set of all futures,
we re-weight the solutions for each future F by adjusting:

W (F) = P (F)P
F,Fo

P (F) . This tempers the optimism inherent

in all-outcome determinization while still providing an in-
formative sample in difficult problems.

Putting It All Together

Figure 3 presents the pseudo-code for an improved deter-
minization in hindsight algorithm that includes the three im-
provements described in the previous sections: (i) proba-
bilistically helpful actions (PHA), (ii) deterministic action
sequence detection, and (iii) discovering low-probability but
important outcomes.

The algorithm starts by checking whether there is a macro
action aM in progress from deterministic action sequence de-
tection (line 1). If so, and if aM is still applicable, we apply
it (line 2). Since the sequence is identified as a common
action sequence among solutions of many futures, it is al-
most certain that aM is applicable. Otherwise, we perform
PHA from the current state (lines 3-5) and identify useful
actions for further evaluation using one step lookahead (line
6). Note that here we mix in the all-outcome solution and its
future to the sample future set. We then conduct normal DH
with actions identified in line 5.

We reuse the sampled futures from line 3 when possible.
If the solution for a sampled future starts with the action

212

1. if deterministic-sequence is not empty
2. remove its first action, and if it’s applicable, return it
3. F ← num-samples possible futures to horizon+1
4. for each future F ∈ F , find a plan pF

5. mix all-outcome solution pFo
and its future Fo into F

6. AH ← union of the first actions in pF

7. for each useful action a ∈ AH

8. for each future F
9. if pF starts with a then reuse pF

10. else use deterministic planner to find
pF starting with a

11. compute Q(s, a) using the re-weighted plans
12. find action a∗ with the lowest Q(s, a) value
13. check for a deterministic-sequence in the plans for a∗

14. return a∗ and its deterministic-sequence, if any

Figure 3: Improved determinization in hindsight.

being considered in line 7, we use in line 9 the solution pre-
viously found, otherwise we resort to deterministic planning
to find a new solution pF for the future F with the constraint
that pF should start with a. After the solutions for all w sam-
ples are found, we use them to update the Q-value Q(s, a)
in line 11. Q(s, a) is the re-weighted average evaluation of
plans following action a. The final action selection in line
12 is the same as in the original DH algorithm: we take the
action a minimizing Q(s, a). In the case of the IPPC, since
there is no intermediate cost or reward, we use the number
of goal achievements of the plans as the primary criterion,
breaking ties on plan length. In line 13, we also find the
longest common-prefix-plan among all the solution plans for
all w futures following a∗, to enable deterministic action se-
quence detection. Finally, we return the best action and its
deterministic macro action sequence, if any.

Empirical Evaluation

We implemented the DH improvements discussed above in
a planner called FF-Hindsight+, henceforth abbreviated as
FF-H+. Following the FF-Hindsight system of Yoon et
al. (2008), henceforth abbreviated as FF-H, we used FF
(Hoffmann and Nebel 2001) as the deterministic planner.
Both FF-H+ and FF-H generate one random number for
each time step when sampling futures; this number is used
across all states and actions for that particular time step
(see (Yoon et al. 2008) for details and a potential pitfall).
We conducted experimental evaluations on the IPPC-04,
IPPC-06 and IPPC-08 domains (Younes and Littman 2004;
Bonet and Givan 2006) as well as the ‘probabilistically inter-
esting’ domains introduced by Little and Thiebaux (2007).
For each problem, 30 rounds were conducted with a total
time bound of 30 CPU minutes for all rounds on that prob-
lem and there is no additional limit on the time per turn.
Experiments were run on a T9400 2.4 GHz Intel dual-core
Linux PC. We used a fixed number of 20 sampled futures
across all problems and a horizon of 200. Three planners FF-
H+, FF-H, and FF-Replan 1 were run on this setting. For the

1This verision is based on single-outcome determinization
(Yoon, Fern, and Givan 2007). At the time of our experiments,

Domain FF-H+ FF-H FF-Replan
bw-c-pc-nr-8 30 (2) 30 (5) 30 (1)
bw-c-pc-8 30 (2) 30 (5) 30 (1)
bw-nc-pc-5 30 (1) 30 (2) 30 (0)
bw-nc-pc-nr-8 30 (2) 30 (5) 30 (0)
bw-nc-pc-8 30 (2) 30 (5) 30 (0)
bw-nc-pc-11 30 (20) 8 (30) 30 (1)
bw-nc-pc-15 0 (-) 0 (-) 0 (-)
bw-nc-pc-18 0 (-) 0 (-) 0 (-)
bw-nc-pc-21 1 (30) 0 (-) 30 (19)
bx-c10-b10-pc-nr 30 (10) 10 (30) 30 (3)
bx-c10-b10-pc 30 (10) 10 (30) 30 (2)
bx-c15-b10-pc 30 (20) 20 (30) 30 (3)
bx-c5-b10-pc-nr 30 (2) 30 (5) 30 (1)
bx-c5-b10-pc 30 (2) 30 (5) 30 (1)
exploding-block 28 (4) 28 (7) 3 (0)
file-prob-pre 14 (30) 14 (30) 14 (30)
g-tire-problem- 18 (2) 18 (2) 7 (0)
r-tire-problem- 30 (2) 30 (2) 30 (0)
toh-prob-pre 17 (2) 17 (11) 0 (-)
ztravel-1-2 30 (5) 0 (-) 0 (-)
Total 468 365 414

Figure 4: The number of successful rounds on the IPPC-
04 benchmarks, with time used for the successful rounds in
minutes in parentheses.

0

10

20

30

40

50

60

70

80

90

100

Figure 5: Percentage of actions pruned with PHA technique

other competition winners such as FPG and RFF, given that
we were not able to obtain and run them ourselves, data are
collected from the official IPPC results. We outline the set-
tings used in those competitions in the respective sections.

Each comparison table in Figure 4, 6, and 8 lists the pri-
mary metric, the number of solved rounds, and in parenthe-
ses the total CPU time (in minutes) used for those successful
rounds.

IPPC-04 Domains

Figure 4 shows the experimental results on IPPC-04 do-
mains. FF-Replan was the winner of this competition. As
mentioned above, all three planners were run on the same
machine with specs mentioned earlier. Each ’domain’ in the
IPPC-04 represents a single problem. Names starting with
“bw” are blocksworld domains varying in colors and number

only FF-Replan was publicly available.

213

of blocks. The goal of this blocksworld domain is to build a
tower with specific colors, rather than a tower with specific
blocks. Problems starting with “bx” belong to boxworld, a
Logistics variant. For “bw” domains, FF-H+ clearly outper-
forms FF-H in terms of solving time when all 30 rounds are
successful. It also returns more successful rounds on several
instances. The reason is apparent when we look at Figure
5, which shows the percentage of applicable actions that are
ignored when using PHA. The Colored-BW column in the
figure shows that FF-H+ evaluates fewer than half of the ac-
tions that FF-H considers. Compared to FF-H, FF-H+ is
even better in the “bx” domain with more successful rounds
in shorter solving time. Figure 5 again points out the rea-
son: in Boxworld, more than 80 percent of actions were not
evaluated in FF-H+, leading to significant speedup. Never-
theless, both “bw” and “bx” are deadend-free domains that
do not require significant probabilistic reasoning and thus
FF-Replan outperforms both FF-H and FF-H+.

Exploding-block and toh-prob-pre are two domains in
IPPC-04 where probabilistic reasoning is critical. For both
of these domains, there are safer paths that take more actions
to achieve the goal, while shorter paths are unsafe, leading to
dead-end states. Although the winner FF-Replan managed
to solve a few rounds, this is totally due to luck. For in-
stance, in the exploding-block problem, it may happen that
the exploding block does not explode during naive plan exe-
cution, resulting in spurious success. FF-H and FF-H+ how-
ever managed to find safer action sequence. For example, in
the same problem, FF-H and FF-H+ found ways to neutral-
ize the exploding block. In terms of solving time, FF-H+ is
again several times faster than FF-H.

ztravel-1-2 is a variant of the Zeno-travel domain. Besides
normal actions, it also has actions starting with “complete”
(e.g, “start-zooming” and “complete-zooming”). These
“complete-” actions have outcomes with extremely small
probability but that outcome achieves the “zooming” ef-
fect. Successful plans repeat the “complete-” actions and
FF-Replan failed completely in this domain due to its inabil-
ity to select low-probability actions. FF-H also failed com-
pletely, since naive sampling cannot find the unlikely out-
come. FF-H+, by mixing in the all-outcome solution, could
find the solution, showing a clear benefit of this technique.

For the overall comparison across all domains, FF-H+ re-
turns the highest number of successful rounds (468) with
about 25% improvement over FF-H (365) and 12% improve-
ment over FF-Replan (414). In general, FF-Replan is faster
than both FF-H+ and FF-H. However, given the smaller
number of success rounds, it’s likely that FF-Replan hits the
dead-ends in the wrong paths more frequently.

IPPC-06 Domains

Figure 6 shows the experimental results on IPPC-06 do-
mains. For reference, we listed the results of the winner in
that competition, FPG, which we collected from the official
results. FPG also uses a deterministic planner as a subrou-
tine. We tried to obtain FPG and run it ourselves but were
unsuccessful. Therefore, unlike the previous results, we cau-
tion that the machine used for FF-H+ and FF-H is different
from the competition machine. The IPPC-08 report indi-
cates that the time allowed in IPPC-06 for each planner to

Domain FF-H+ FF-H FPG
Blocksworld2 335 (15) 256 (30) 283 (1)
Drive 221 (25) 98 (27) 252 (1)
Elevator 292 (27) 214 (30) 342 (1)
Ex-Blocksworld 265 (28) 205 (30) 193 (0)
Pitch-Catch 96 (30) 55 (30) 103 (0)
Random 357 (22) 301 (26) 292 (1)
Scheduling 195 (27) 154 (30) 243 (1)
Tire 364 (27) 343 (30) 337 (0)
Zenotravel 310 (27) 0 (-) 121 (0)
Total 2435 1626 2166

Figure 6: Total successful rounds on the IPPC-06 domains,
with time in minutes in parentheses.

0

10

20

30

40

50

60

70

80

C
o

lo
r
e

d
-B

W

B
o

x
w

o
r
ld

D
r
iv

e

P
it

c
h

C
a

tc
h

S
c
h

e
d

u
le

B
lo

c
k
s
w

o
r
ld

2

E
le

v
a

to
r

E
x
-B

lo
c
k
s
w

o
r
ld

R
a

n
d

o
m

T
ir

e

Z
e

n
o

T
r
a

v
e

l

2
-T

ir
e

W
o

r
ld

s

fi
le

-w
o

r
ld

g
-t

ir
e

-w
o

r
ld

E
x
p

lo
d

in
g

-B
W

r
-t

ir
e

-w
o

r
ld

T
O

H

Figure 7: The percentage of actions taken that were chosen
using deterministic action sequences.

run in each domain is 40 minutes (we use 30 minutes in
our runs). Note also that there are multiple problems (15)
for each domain so the maximum total number of success-
ful rounds for each domain is more than 30. The winner
FPG was not dominant over all the domains, for example,
FOALP performed better on Blocksworld variant. Thus, the
numbers are suggestive rather than definitive.

We can see a similar trend on domains that have variations
used in IPPC-04, which are Blocksworld2, Ex-Blocksworld,
and Zenotravel. Results in Zenotravel clearly show the ad-
vantage of mixing in all-outcome solution, as FF-H+ is suc-
cessful in 310 rounds while FF-H failed completely. De-
terministic action sequence detection also contributes to the
success of FF-H+ in Zenotravel, compared to FF-H. Figure
7 shows that FF-H+ took actions from deterministic action
sequence close to 70% of the time, saving that proportion
from the total computation time.

In Figure 6, Random is a randomly generated domain de-
signed to meet STRIPS constraints but with a guarantee that
there is a path to the goal in all generated problems. We find
that in this domain, there is a large number of useless actions
(90%). As can be seen in Figure 5, FF-H+ prunes most of
these and performs much better than FF-H (as shown in Fig-
ure 6). As we can see from Figure 7, FF-H+ also benefited
from using deterministic action sequences. FF-H+ used ac-

214

Domain FF-H+ FF-H RFF
2-TireWorlds 420 (10) 420 (29) 382 (10)
BoxWorld 222 (28) 95 (30) 238 (20)
Blocksworld2 270 (25) 185 (30) 364 (5)
Ex-Blocksworld 214 (23) 131 (30) 58 (1)
Scheduling 251 (30) 221 (30) 99 (1)
Search and Rescue* 450 (7) 450 (27) 0 (-)
SysAdmin-SLP* 0 (-) 0 (-) 117 (0)
Total 1827 1502 1258

Figure 8: Total successful rounds on the IPPC-08 domains,
with time in minutes in parentheses.

tions from them more than 40% of the time.
The Pitch-Catch, Drive and Scheduling domains are in-

spired by optimization problems. That is, these domains re-
quire sophisticated probabilistic reasoning to maximize the
goal reachability probability. FF-H+ and FF-H do not per-
form well. We believe that they do not have enough sampled
futures to differentiate good actions from bad. Automati-
cally adjusting the sample width of DH is an interesting re-
search question, and we believe that adaptive sampling using
Hoeffding races could be a useful technique to apply here.

The Elevator and Tire are domains where simple replan-
ning fails and thus selecting one outcome for an action does
not work in these domains. FF-H and FF-H+ both seem to
be relatively unaffected by this, rather scalability was the
issue for these domains. Overall, FF-H+ manages to solve
more problems than FF-H in less time, again showing a clear
improvement, as can be evidenced from Figure 5 and 7.

Compared to the FPG, the competition winner, FF-H+ is
better in 5/9 domains. Overall, Figure 6 shows that it again
returns the highest number of successful round (2435), a
12% improvement over FPG (2166) and 48% improvement
over FF-H (1626). In general, FPG is faster than both FF-H+
and FF-H. However, its smaller number of successful rounds
suggests that FPG either solves a problem quickly or quickly
hits a dead-end and fails.

IPPC-08 Domains

Figure 8 shows results on IPPC-08 domains. For reference,
we listed the result of the winner RFF, available from the
competition web site. The machine used for the competition
was quad core CPU at 2.40 GHz with 4GB of RAM running
Linux. While we used uniform 30 minutes cut-off time here,
the competition used 40 minutes and occasionally used 10
minutes for smaller problems. Given that the FF-H+, FF-H,
and RFF were run on different machines, we again caution
that the numbers are not directly comparable but can only be
taken as suggestive. However, it is safe to say that the specs
on the competition machine is better than ours and the time
given is also more generous (40’ vs. 30’). Also, note that
RFF is not dominant over all domains. For example, there
were domains where HMDPP was better.

We also want to note that for the SysAdmin-SLP domain,
FF-H+ was unable to solve any problem because the syn-
tax complexity caused FF to not be able to solve the deter-
minized version of those problems2. We are investigating a

2FF-H+ was also not able to solve the original domain formu-

0% 10% 20% 50% 100%
FF-H+ 0 1 1 3 6
FF-H 14 14 14 14 14

Figure 9: Time in minutes to solve 30 successful rounds for
the fumbling gripper domain as the percentage of slippery
balls varies.

pre-processing approach to compile the SysAdmin-SLP do-
main into a form solvable by FF.

We see the same trend as before for the domains carried
over from IPPC-04 and IPPC-06, which are are Boxworld,
Blocksworld2 and Ex-Blocksworld. For the newly intro-
duced domains, like 2-TireWorlds, Scheduling, and Search
and Rescue, FF-H+ either solves more problems than FF-
H or used less time. The IPPC-08 organizer emphasized
“probabilistically interesting” problems with dead-ends and
a small likelihood of simple paths, so these problems would
likely stymie FF-Replan. The results show that FF-H+
works well in this setting.

Overall, despite the syntactic problem with the SysAdmin-
SLP domain, FF-H+ still returns the highest number of suc-
cess rounds (1827), which is 21% better than FF-H, and 45%
more than RFF, the competition winner. RFF is generally
faster than FF-H+, and FF-H, although this is difficult to in-
terpret due to the different number of successful rounds.

Improvements from PHA

To illustrate the improvement in FF-H+ due to PHA, we
show the results of PHA analysis in Figure 5. The bars in
this figure show the average percentage of pruned actions
among all the available actions in a state. For some do-
mains like Random from IPPC-06, the ratio is very high and
is close to 90%. Due to space limitations, we use Colored-
BW to indicate all of the problems in IPPC-04’s blocksworld
and IPPC-06’s and IPPC-08’s Blocksworld2 domains.

Bent and Van Hentenryck (2004) show that the PHA tech-
nique, which they call “Consensus + Expectation”, leads
to performance improvements in vehicle routing problem
and on-line scheduling problems. The nature of schedul-
ing problems and probabilistic planning problems are quite
different, but our results show that a similar benefit can be
achieved.

Improvements from Deterministic Sequences

Figure 7 shows the effect of deterministic action sequence
detection with the bars show the percentage of actions
chosen that way. For most of the domains, the effect is
marginally positive except for the Zenotravel where the per-
centage is particularly high, around 70%. In fact, most plans
found in the Zenotravel domain repeat the “sampled” ac-
tions of a deterministic action sequence. For domains like
this, following these sequences provides a large computa-
tional savings.

To show the behavior of the deterministic action sequence
detection technique more concretely, we also tested FF-H+

lation for the Search and Rescue domain due to the nested syntax.
We wrote a preprocessor to flatten this. FF-H+ is then able to solve
all problems successfully

215

Planner climb river tire1 tire10 tire17 Total
FF-H+ 30 20 30 30 30 170
FF-H 30 20 30 6 0 116
FF-Replan 19 20 15 0 0 54
FPG 30 20 30 0 0 86

Figure 10: Number of successful rounds on probabilistically
interesting benchmarks.

on the fumbling gripper domain described earlier in this pa-
per. If there are no slippery balls, then the problem is a de-
terministic domain and the behavior of an intelligent plan-
ner should reflect this. Indeed, our deterministic action se-
quence detection algorithm can recognize those situations.
We tested FF-H+ on fumbling gripper problems with 10
balls with different number of slippery balls. The results
of our runs on this domain are displayed in Figure 9. When
none of the balls are slippery, FF-H+ acts like a determinis-
tic planner, following deterministic sections of the sampled
futures and taking very little planning time. As we increase
the number of slippery balls, the computation time of FF-H+
gradually increases.

Probabilistically Interesting Domains

Figure 10 shows the results for the “probabilistically inter-
esting” domains introduced by Little and Thiebaux (2007).
We can see that FF-H+ maintains the probabilistic reasoning
power of FF-H but scales much better to large problems. For
the Tire World domains, as the number of tire increases, FF-
H+ scales better than FF-H in terms of the amount of solving
time. When the number of tires is 10, FF-H completed only
6 rounds while FF-H+ completed all 30 of them. It turns out
that FF-H+ can handle the 17 (!) tires problem while none
of the other planners can achieve a single successful round.
This scalability is particularly encouraging compared to the
other planners’ steep decline in performance on the 10-tires
problem. These results, in concert with those in Figure 4,
demonstrate convincingly the advantage of FF-H+ over FF-
Replan in this type of problems.

Conclusion

Ironically, deterministic planners have played a significant
role in the International Probabilistic Planning Competition.
In this paper, we considered one principled technique, de-
terminization in hindsight, and introduced several improve-
ments that greatly increase its scalability. First, we broke
its dependence on the number of applicable actions through
a technique we called ‘Probabilistically Helpful Actions’
(PHA). Although we showed that the PHA technique can
in theory be misled, in practice it led to improved perfor-
mance. This technique led to a reduction in computation of
up to 90%. Second, we exploited pockets of determinism in
a domain by detecting deterministic action sequences. This
led to a reduction in computation of up to 67%. Finally, we
improve estimation accuracy in problems where it is difficult
to reach a goal by mixing in all-outcome determinization.
This was crucial to success in several benchmarks. Overall,
in every domain tested, we have seen improved performance

over FF-H (Yoon et al. 2008). In some domains, computa-
tion time can be orders of magnitude better.

Many of the methods we presented here can be used in a
wide variety of problems, especially the use of all-outcome
plans. In simulation based evaluation, for example, the con-
cern is the reduction of variance. Importance sampling or
Latin hypercube sampling have been developed. However,
these techniques require embedding prior human knowledge
in the sampling technique. Our all-outcome solutions tech-
nique can be viewed as an automated version of importance
sampling, and we believe AI planning techniques may well
be useful in other simulation problems that need unlikely but
important samples to be taken seriously.

Acknowledgements

We gratefully acknowledge support from ONR grants
N00014-09-1-0017and N00014-07-1-1049, NSF grants IIS-
0905672 and IIS-0812141, and the DARPA CSSG program.

References

Bent, R., and Van Hentenryck, P. 2004. The value of con-
sensus in online stochastic scheduling. In ICAPS.

Bonet, B., and Givan, R. 2006. International probablistic
planning competition. http://www.ldc.usb.ve/˜bonet/ipc5/.

Chong, E.; Givan, R.; and Chang, H. 2000. A frame-
work for simulation-based network control via hindsight op-
timization. In IEEE CDC Conference.

Glasserman, P. 2003. Monte Carlo Methods in Financial
Engineering. Springer.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:263–302.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An algo-
rithm for probabilistic planning 3. AIJ 76(1-2).

Little, I., and Thiebaux, S. 2007. Probabilistic planning vs
replanning. In Proceedings of the ICAPS Workshop on the
Planning Competitions.

Mausam; Bertoli, P.; and Weld, D. 2007. A hybridized
planner for stochastic domains. In IJCAI.

Mercier, L., and Hentenryck, P. V. 2007. Performance anal-
ysis of online anticipatory algorithms for large multistage
stochastic programs. In IJCAI.

Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In International Conference on Automated Plan-
ning and Scheduling.

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
AAAI.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In ICAPS.

Younes, H. L. S., and Littman, M. L. 2004. The first inter-
national probabilistic planning competition.

216

