Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

Self-Taught Decision Theoretic Planning
with First Order Decision Diagrams

Saket Joshi
Dept. of Computer Science
Tufts University

Abstract

We present a new paradigm for planning by learning,
where the planner is given a model of the world and
a small set of states of interest, but no indication of
optimal actions in these states. The additional infor-
mation can help focus the planner on regions of the
state space that are of interest and lead to improved
performance. We demonstrate this idea by introducing
novel model-checking reduction operations for First Or-
der Decision Diagrams (FODD), a representation that
has been used to implement decision-theoretic planning
with Relational Markov Decision Processes (RMDP).
Intuitively, these reductions modify the construction of
the value function by removing any complex specifica-
tions that are irrelevant to the set of training examples,
thereby focusing on the region of interest. We show
that such training examples can be constructed on the
fly from a description of the planning problem thus we
can bootstrap to get a self-taught planning system. Ad-
ditionally, we provide a new heuristic to embed uni-
versal and conjunctive goals within the framework of
RMDP planners, expanding the scope and applicability
of such systems. We show that these ideas lead to sig-
nificant improvements in performance in terms of both
speed and coverage of the planner, yielding state of the
art planning performance on problems from the Interna-
tional Planning Competition.

Introduction

Planning under uncertainty is an important problem of Ar-
tificial Intelligence and has many relevant applications in
medicine, robotics, game-playing, scheduling and logistics
among others. Simple straight line plans from the start state
to the goal cannot guarantee achievement of the goal when
the underlying world is probabilistic. Therefore, it is not sur-
prising that there have been a number of approaches and sys-
tems that address this problem. Recently the advent of the
International Planning Competition (IPC) has encouraged
the development of efficient systems that plan in stochas-
tic domains. Although the most successful of these sys-
tems are based on forward heuristic search from the starting
state (Yoon, Fern, and Givan 2007; Teichteil-Koenigsbuch,

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kristian Kersting
Knowledge Discovery Department
Fraunhofer IAIS, Sankt Augustin, Germany

sjoshiOl@cs.tufts.edu kristian.kersting@iais.fraunhofer.de

89

Roni Khardon
Dept. of Computer Science
Tufts University
roni@cs.tufts.edu

Infantes, and Kuter 2008), an alternative approach of gen-
erating state and action utilities by reasoning backwards
from the goal state has recently received attention. Typi-
cally systems following this method (Kersting, Otterlo, and
De Raedt 2004; Holldobler, Karabaev, and Skvortsova 2006;
Sanner and Boutilier 2009; Joshi and Khardon 2008) are
based on Boutilier, Reiter, and Price’s (2001) Symbolic Dy-
namic Programming (SDP) algorithm and they solve a prob-
lem that is more general than the one at hand. These systems
represent the planning domain as a relational Markov deci-
sion process (RMDP) and solve it by backward reasoning
to generate a lifted value function over structures in the do-
main. Such a value function can then be applied to solve
any planning problem in the domain irrespective of the ac-
tual number of domain objects in the problem. Therefore,
although solving RMDPs is expensive, the cost of generat-
ing the value function can be amortized over a large number
of planning problems.

One characteristic of systems based on the SDP algorithm
is the need for logical simplification in the process of back-
ward reasoning. Naive backward reasoning introduces re-
dundancies in the structure of the value function and these
structural redundancies have to be removed in order to main-
tain a value function of reasonable size. To date all such
systems have used theorem proving to perform the simplifi-
cation or reduction of the intermediate representation. This
process is expensive and in addition requires extra knowl-
edge about the domain (e.g., saying that a box cannot be in
two cities at the same time) to be encoded. This makes for
slow and less general systems. In this paper we show that
both of these issues can be mitigated by changing the focus
to simplification based on model-checking.

Specifically, we introduce a new paradigm for planning
by learning: the planner is given a model of the world and
a small set of states of interest, but no indication of opti-
mal actions in any states. Similar to Price and Boutilier’s
(2003) implicit imitation for reinforcement learning, the ad-
ditional information in the states can help focus the planner
on regions of the state space that are of interest and lead
to improved performance. We give a concrete instantiation
of this idea in the context of the FODD-PLANNER (Joshi
and Khardon 2008), which is based on First Order Decision
Diagrams (FODD) (Wang, Joshi, and Khardon 2008). One
of the main contributions of this paper is to introduce two

new heuristic reductions that simplify FODDs, by remov-
ing edges and nodes, in the context of a given set of exam-
ples. These reductions can be seen as a practical equivalent
of the sound and complete but expensive model-checking
reduction introduced in our previous work (Joshi, Kersting,
and Khardon 2009). Our new reductions give a significant
speedup and makes the SDP approach practically applicable
to a wide range of problems.

Focused planning as outlined above requires a set of train-
ing examples. As a second contribution we show that such
training examples can be constructed on the fly from a
description of the planning problem. Thus we can boot-
strap our planner to get a self-taught planning system. We
propose several such approaches, based on backward ran-
dom walks from goal states enhanced with specific restric-
tions to ensure coverage of a rich set of states with a
small sample. There have been other approaches where
training examples have been used to generate models for
solving planning problems (Fern, Yoon, and Givan 2003;
Gretton and Thiebaux 2004). However, our approach differs
from these in that our training set does not need information
about optimal actions or values along with the examples.

The final contribution of the paper provides a new heuris-
tic to embed universal and conjunctive goals within the
framework of RMDP planners. Previous work on RMDP
planners (Sanner and Boutilier 2009; Joshi and Khardon
2008) simplifies the offline planning stage by planning for
each goal atom separately. The result is combined by adding
the values from each goal atom. However, this is limited and
does not apply well to many domains. To overcome this,
we propose a new weighting heuristic based on goal order-
ing. Our method uses static analysis to calculate a weighted
composition of individual goal values. As we show in the
experiments this leads to significant improvements in per-
formance in domains with interacting dependent sub-goals.

We provide an extensive evaluation of these ideas in the
context of the FODD-PLANNER system. The experiments
characterize performance in terms of different system ingre-
dients, compare the FODD-PLANNER (Joshi and Khardon
2008) to the self-taught model-checking variants, and eval-
uate the system on challenge problems from IPC. Results
show state of the art performance on these problems and
a significant improvement in efficiency over the original
FODD-PLANNER.

Preliminaries
Relational Markov Decision Processes

A Markov decision process (MDP) is a mathematical model
of the interaction between an agent and its environment (Put-
erman 1994). Formally a MDP is a 4-tuple <S, A, T, R>
defining a set of states S, set of actions A, a transition func-
tion T" defining the probability P(s’ | s, a) of getting to state
s’ from state s on taking action a, and an immediate reward
function R(s). The objective of solving a MDP is to gener-
ate a policy that maximizes the agent’s total, expected, dis-
counted, reward. Intuitively, the expected utility or value of
a state is equal to the reward obtained in the state plus the
discounted value of the state reached by the best action in

90

the state. This is captured by the Bellman equation as V(s)
= Mazxy[R(s) + vXs P(s" | s,a)V(s’)]. The Value Iter-
ation (VI) algorithm is a dynamic programming algorithm
that treats the Bellman equation as an update rule and iter-
atively updates the value of every state until convergence.
Once the optimal value function is known, a policy can be
generated by assigning to each state the action that maxi-
mizes expected value.

A relational MDP is a MDP where the state space is de-
scribed by a set of objects and relations among them. There-
fore a state is an interpretation in the terminology of logic
programming and a model or structure in first order logic.
The actions and transitions are typically described by some
schema parametrized by objects. An action schema and
a set of concrete objects induces a concrete action in the
domain. Similarly the transition function is described by
parametrized schema. The reward function (goal in planning
context) is described by a numerical function over states, of-
ten using logical formulas to describe partitions of the state
space with specific values. Stochastic planning in structured
domains is a prime example of RMDPs and fits precisely
in this description. In this case we can obtain an abstract
solution for all potential instances for the domain. This is
the type of solution provided by dynamic programming al-
gorithms for RMDPs.

For propositional problems Hoey et al. (1999) showed
that if R(s), P(s’ | s,a) and V (s) can be represented us-
ing algebraic decision diagrams (ADDs), then VI can be
performed entirely using the ADD representation thereby
avoiding the need to enumerate the state space. Later
Boutilier, Reiter, and Price (2001) developed the Symbolic
Dynamic Programming (SDP) algorithm in the context of
situation calculus. This algorithm provided a framework
for dynamic programming solutions to relational MDPs
that was later employed in several formalisms and sys-
tems (Kersting, Otterlo, and De Raedt 2004; Holldobler,
Karabaev, and Skvortsova 2006; Sanner and Boutilier 2009;
Wang, Joshi, and Khardon 2008). One of the important
ideas in SDP was to represent stochastic actions as deter-
ministic alternatives under nature’s control. This helps sep-
arate regression over deterministic action alternatives (step
1 below) from the probabilities of action effects (step 2).
This segregation is necessary in order to simplify computa-
tion when transition functions are represented as relational
schema. The relational VI algorithm is as follows:

1. Regression: Regress the n step-to-go value function V/,
over every deterministic variant A;(Z) of every action
A(Z) to produce Regr(V,,, A(Z)).

2. Add Action Variants: Generate the Q-function Q‘&Ef) =
R& [y® ®;(prob(A;(Z)) ® Regr(Vy, A;(Z)))] for each
action A(%).

3. Object Maximization: Maximize over the action param-

eters of Qéjf) to produce Q3+ for each action A(%), thus

obtaining the value achievable by the best ground instan-
tiation of A(Z).

4. Maximize over Actions: Generate the n + 1 step-to-go
value function V,, 11 = max4 Qén.

p(x) P() p(x)
P(Y) p(Y) a)
/N
a) 0 q() 10
1 0 1 0
(@) (b) ()

Figure 1: Examples of FODDs and edge and node removal
reductions. Left going edges represent the t rue branches
and right edges are the false branches

Wang, Joshi, and Khardon (2008) represent all the in-
termediate constructs in this algorithm (R,V,Q, Pr) by
FODDs and all operations over the functions represented by
them are performed by FODD operations. This leads to a
compact implementation of the SDP algorithm.

First Order Decision Diagrams (FODD)

This section gives an overview of FODDs (Wang, Joshi, and
Khardon 2008). We use standard terminology from first or-
der logic (Lloyd 1987). A First order decision diagram is a
labeled directed acyclic graph, where each non-leaf node has
exactly 2 outgoing edges with true and false labels.
The non-leaf nodes are labeled by atoms generated from a
predetermined signature of predicates, constants and an enu-
merable set of variables. Leaf nodes have non-negative nu-
meric values. The signature also defines a total order on
atoms, and the FODD is ordered with every parent smaller
than the child according to that order. Examples of FODDs
are given in Figure 1.

Thus, a FODD is similar to a formula in first order logic.
Its meaning is similarly defined relative to interpretations of
the symbols. An interpretation defines a domain of objects,
identifies each constant with an object, and specifies a truth
value of each predicate over these objects. In the context of
relational MDPs, an interpretation represents a state of the
world with the objects and relations among them. Given a
FODD and an interpretation, a valuation assigns each vari-
able in the FODD to an object in the interpretation. Follow-
ing Groote and Tveretina (2003), the semantics of FODDs
are defined as follows. If B is a FODD and [is an inter-
pretation, a valuation (that assigns a domain element of
I to each variable in B fixes the truth value of every node
atom in B under /. The FODD B can then be traversed
in order to reach a leaf. The value of the leaf is denoted
Mapp(I,(). Mapp(I) is then defined as max¢ Mapgp(I),
i.e. an aggregation of M app (I, () over all valuations ¢. For
example, consider the FODD in Figure 1(a) and the inter-
pretation I with objects a, b and where the only true atoms
are p(a),q(a). The valuations {x/a,y/a}, {x/a,y/b},
{z/b,y/a}, and {x/b,y/b}, will produce the values 1, 1,
1, and O respectively. By the max aggregation semantics,
Mapg(I) = max{1,1,1,0} = 1. Thus, this FODD is

91

equivalent to the formula 3z, Jy, p(x) Vp(y) V ¢(x). In gen-
eral, max aggregation yields existential quantification when
leaves are binary. When using numerical values we can sim-
ilarly capture value functions for relational MDPs.

A descending path ordering (DPO) for FODD B is an or-
dered list of all paths from the root to a leaf in B, sorted
in descending order by the value of the leaf reached by the
path. The relative order of paths reaching the same leaf is
unimportant as long as it is fixed (Joshi and Khardon 2008)

Akin to ADDs, FODDs can be combined under arith-
metic operations, and reduced in order to remove redundan-
cies. Groote and Tveretina (2003) introduced four reduction
operators and these were later augmented with eight more
(Wang, Joshi, and Khardon 2008; Joshi and Khardon 2008;
Joshi, Kersting, and Khardon 2009). Reductions may be
classified into 2 categories - those that focus on the removal
of edges and those that focus on the removal of nodes. Fig-
ure 1 shows an example of edge and node removal reduc-
tions. The path —p(x), p(y) — 1 in Figure 1(a) is redundant
because if there is a valuation traversing it, there is always
another valuation traversing the path p(z) — 1 and achiev-
ing the same value. An applicable edge removal reduction
notices this fact and replaces the 1 leaf with a 0 leaf produc-
ing the FODD in Figure 1(b). The edge removal reduction
does not, however, remove the redundant node p(y) because
it lies on another path that is not redundant. An applica-
ble node removal reduction notices that the removal of the
node p(y) does not affect the map of any interpretation and
removes it to produce the FODD in Figure 1(c).

Model-Checking Reductions

Recently we introduced the R12 algorithm for reducing
FODDs by model-checking (Joshi, Kersting, and Khardon
2009). The main idea is to follow the semantics when per-
forming the reduction. If we can evaluate the FODD on all
possible interpretations then portions of the diagram that are
not instrumental in determining the final value on any of
these can safely be removed. The R12 reduction embeds this
idea without enumerating all possible interpretations. They
show that by careful accounting one can store just enough
information to yield a sound and complete reduction that re-
places as many edges as possible with a zero leaf. Unfortu-
nately, while finite, the complexity of this reduction is too
high. For a FODD with n variables, it requires enumeration
of n™ valuations to hypothetical interpretations. In the fol-
lowing we present two simple heuristic variants of this idea
that allow us to remove edges as well as nodes in FODDs.

In this paper we assume a given set of “focus states” that
together capture all important variation in the state space and
only evaluate the diagram on these states. Note that we do
not assume all states of interest are given. Just that if an
important condition exists for the domain then it is realized
in at least one of the given states. This is a much weaker
condition. The result is an efficient variant of R12 and an
extension of R12 for node removal. Our reductions reduce
at least at least as much as the original R12. In general we
lose soundness, i.e. we over-prune, but using the intuitive
argument above, one can formalize conditions under which
the reduction is also sound.

Edge Removal by Model-Checking

For edge removal we want to determine when an edge point-
ing to a sub-diagram can be replaced with a zero leaf. Re-
call that Mapg(I) = maxcMapg(I). Therefore the values
provided by the non maximizing ¢’s can be reduced without
changing the final results. We define an edge to be instru-
mental if it participates in a path that gives the final value
on some interpretation. As explained above this is approxi-
mated by being instrumental on the given examples. In the
following, conjunction p subsumes example e if there is a
substitution # such that pf C e. Edge removal can be easily
implemented as follows.

Procedure 1 RI2-edge

Input: FODD B, Sample E
Output: Reduced FODD B’
1. Generate a DPO P for B.

2. 1={}

3. For each example e in E,
Fori=1to|P|,
if p; subsumes e, then I = IU edges(p;); break
4. For each edge €' in B such that €’ ¢ I, set target(e') = 0

Clearly every path identified as instrumental and added to
I is instrumental. Therefore we prune all unnecessary edges.
On the other hand if the example set is poor, we may over-
prune the FODD. Notice that, as long as the given examples
satisfy domain constraints, we will automatically prune any
paths violating such constraints (i.e. illegal abstract states)
without the need to employ complex background knowl-
edge. Therefore unlike theorem proving reductions, we do
not have to maintain background knowledge and handle the
complications it entails. This is an important property of
model-checking reductions.

Node Removal by Model-Checking

While edge removal is important it does not handle a com-
mon type of redundancy that arises often due to the struc-
ture of the SDP algorithm where we add or multiply func-
tions with similar structure that are standardized apart (steps
2 and 4 of the SDP algorithm). Often we have an irrelevant
node above an important portion of the diagram. We can-
not remove the edge from that node because it will cut off
the important sub-diagram. Instead what we need is a re-
duction that can skip the irrelevant node (e.g., Figure 1(b) to
(c)). We use this idea for nodes where one child is zero and
the other is a diagram. The question is whether connecting
the node’s parents directly to the non-zero child will change
Mapg(I) = mazxcMapg(I). The only way this can hap-
pen is if a valuation (that previously went to the zero child is
now directed to a non-zero leaf which is greater than the pre-
vious maximum. As above, this condition is easy to check
directly on the given set of examples.

Procedure 2 RI2-node
Input: FODD B, Sample E, Set of Candidate nodes C
Output: Reduced FODD B’

1. Generate a DPO P for B.
2. For each node n € C do the following:

92

(a) Remove node n from B by connecting the parents of n
directly to the non-zero child of n to produce B_,,.

(b) Generate a DPO P_,, for B_,,.
(c) Set keep.node = 0.
(d) For each example e in E, do the following:
i. Fori=1to|P)|
if p; subsumes e, then set value(e) = leaf{p;); break
ii. Fori=1to|P_,|
if p; subsumes e, then set newvalue(e) = leaf(p;);
break
iii. If newvalue(e) > value(e), set keep.node = 1; break
(e) If keep.node == 0, set B=B_,

Any node with keep.node = 1 must be kept because
otherwise the value corresponding to some example will
change. Hence we prune as much as is allowed by the ex-
ample set. Again, if the example set is not rich enough,
we may over-prune the FODD. R12-node is more sensi-
tive than R12-edge. For instance, using the example set
{{p(1). (1)}, {=p(1),q(1)}}, R12-edge removes all edge
redundancies in Figure 1(a) to yield Figure 1(b). With the
same example set, however, R12-node will remove the non-
redundant node ¢(z). This is because the value of neither
example changes by the removal of ¢(z). For ¢(z) to sur-
vive R12-node the example set must have an example like
{=p(1), 7q(1)} demonstrating that the node is important.

Bootstrapping: Example Generation

The key to effective employment of R12-edge and R12-node
is to provide these operators with a rich set of interesting
examples. In the case of planning problems, the examples of
interest are states visited during execution of the solution to a
planning problem. Such states can be generated in a variety
of ways. One potential method starts from a random state
and runs episodes of simulated random walks through the
state space. Another potential method employs a planner to
solve a few sample planning problems and collect the states
on the solution paths into the set of examples.

The methods we use in this paper start from a set of
typical goal states and regress over ground actions to gen-
erate states from which the goal state is reachable. Re-
gression from a ground state s over action a is possible
only when a can achieve s from some state s’. Using
STRIPS notation, this is easily verified by checking if s
is subsumed by PRECONDITIONS(a) + ADD-LIST(a) —
DELETE-LIST(a). Such an s’ is then generated by simply
adding DELETE-LIST(a) to s and removing ADD-LIST(a)
from s. This method of example generation is particularly
suitable for SDP based systems like FODD-PLANNER be-
cause the same states are assigned new values by VI. In the
following, we develop two variants of this approach both of
which take a seed state s and regress from it.

Instance Regression (IR): We iteratively generate all
possible states up to a certain specified depth using a BFS
procedure. Regression over states at depth d produce states
at depth d + 1 in the d*" iteration. The depth parameter can
be set to the same value as the number of iterations of VI
run by FODD-PLANNER because states from deeper levels

are not relevant to the value function. However, this method
could generate a large example set eliminating the advan-
tage of model-checking reductions. To mitigate this effect
we introduce the following pruning techniques.

(1) Limit IR to use only those actions that bring about cer-
tain literals in the state. These literals are the preconditions
of the previous action that generated this state through re-
gression. In particular, if state s was regressed over action a’
to produce state s in the i*” iteration, then the preconditions
of @’ (which must be true in s’) are maintained as special
literals in the description of s’. When regressing over s’ in
iteration 7 + 1, only those actions that bring about these spe-
cial literals are considered. Thus we try to generate states
that are further away from the goal.

(2) Identify and mark sub-goals so that they are not
achieved more than once. For example, suppose s,, C s are
the special literals in s and as above we regress from s using
a’. Mark literals in 5,01 ADD-LIST(a’). Now, in the i + 1"
iteration, when regressing from s’, only those actions that
generate states not containing the marked literals are con-
sidered. Considering the sequence of actions generated as a
plan, this heuristic avoids re-achieving the same goal literal
by the plan. Although incomplete, this heuristic is effective
in limiting the number of states generated.

(3) Regress states over a composition of k actions instead
of a single action. The parameter k is user defined. For ex-
ample suppose action a is a composition of actions a’ and
a’. Now, if s’ regressed over a’ generates state s”/, then s
regressed over a generates s”’. We add states s, s’ and s”
to the set of examples. Regression continues from state s”.
This technique avoids imposing the special and marked lit-
eral restrictions on every action and imposes them directly
on compositions of actions, thereby allowing more freedom
to search the state space in cases where the previous tech-
niques are too restrictive.

Backward Random Walk (BRW): Instead of generating
all states by iterative regression, as in IR, we run episodes
of random walks backwards from the goal (sampling ac-
tions uniformly) without any of the above restrictions. The
episode length and the number of episodes are user speci-
fied. This provides a varied set of states including states that
are off the solution path for typical planning problems.

In practice we need a mix of examples generated by IR
and BRW. To see why, let V' be a value function that solves
planning problem p optimally and .S be a set of all possible
states along any optimal solution path of p. Then V' reduced
by R12-edge against S is guaranteed to solve p optimally
but V reduced by R12-node against S is not. As illustrated
above, R12-node requires examples that gain value on re-
moval of important nodes. Hence states off the solution path
of p might be required for V' to survive R12-node. The tech-
niques with IR, however, are designed to generate only states
along solution paths. Therefore in the example set we in-
clude all the states generated by IR and add states generates
by BRW to yield a mixed set.

Conjunctive Goals and Goal Ordering

To enable efficient policy generation RMDP planners run VI
with simple rewards (single literal goals). Then at plan ex-

93

ecution time, action values for individual sub-goal literals
in the conjunctive goal are combined. Sanner and Boutilier
(2009) suggested the additive goal decomposition (AGD)
heuristic of replacing a conjunctive goal with a sum of value
functions for individual sub-goals and demonstrated that this
works well on some problems. However, this heuristic is
limited and does not apply well to many domains.

As an example consider a simple blocksworld scenario
where 3 blocks a, b and ¢ are on the table and the goal is
to stack a on top of b on top of c. Clearly the block b has
to be put on block ¢ before a is put on b. However, the
AGD heuristic adds up the values for each individual goal
resulting in the effect that the action that puts a on b and the
one that puts b on ¢ get equal value. This results in the wrong
action being chosen half of the time. For problems with a
larger domain this can cause failure of plan execution.

To address this issue, we propose a new heuristic based
on weighted goal ordering (WGO). The idea is to first get a
partial ordering between goal literals. We use the following
heuristic. For every pair of goal literals g; and g2 we check
if =go is a precondition for some action to bring about g;. If
so, g1 must be achieved before g in the partial order. The in-
tuition here is that preconditions expose some obvious order-
ing constraints on the goals. Identifying all such constraints
amounts to solving a deterministic planning problem. In-
stead the heuristic identifies constraints that we can discover
easily. Respecting this partial order we impose a total order
on the goals in an arbitrary way. Finally the value of an ac-
tion is calculated by adding the values of the individual goals
literals as before, except that this time we weight the values
of the individual sub-goals in proportion to their position in
the total order. The value of the goal literal at position 7 is
weighted by w'~!. The weight parameter w (0 < w < 1) is
user defined. As expected, small weights are better for do-
mains with interacting sub-goals and large weights are better
for domains where sub-goals are independent. In our exam-
ple, an action that puts a on b will get a lower value than the
action that puts b on c in the start state. These ideas help seri-
alize any obvious ordered set of goals and gives a weak pref-
erence ordering on other sub-goals. This leads to significant
improvements in performance in domains with interacting
dependent sub-goals as we show in the next section.

Experiments on Planning Domains

In this section we present the results of our experiments on
tireworld and blocksworld from IPC 2006, and boxworld
from IPC 2008. Our intention here is to investigate:

(Q1) what are the contributions of the different parame-
ters (number of training examples, number of iterations of
VI, types of reductions, goal ordering heuristic) of the self-
taught model-checking system, and (Q2) whether our self-
taught model-checking system can effectively speed up de-
cision theoretic planning while matching performance with
the theorem proving system and other state of the art systems
in stochastic planning.

To this aim, we generated a value function for each do-
main by running the FODD-PLANNER in three different
configurations based on the method used to reduce FODDs:
FODD-PL (theorem proving reductions only (Joshi and

(a) Tireworld: Planning Time vs.
Iterations
6000

[N

(b) Blocksworld: Coverage vs. #
Interacting Goals

(c) Tireworld: Coverage vs.
Problem Instance

5000

/ ~—4—FODD-PL

4000

b4
o

—+FODD-PL
(7 iter)

~*—ST-FODD-ER

N\

Decomposition

Heuristic ~#+~ST-FODDER

(215 ex)

Coverage
o
>

| 1 s e

4—'<:\—'<r [v\(~8-FOALP
= Additive Goal [(Y e E— [N X

\\ 7 /— 2

(7 iter)
—ST-FODD-

Coverage
o
>

=i~ Weighted Goal

3000 //
2000

CPU Time (seconds)
o
=

S
)

N

ERNR (7 iter)

~o—ST-FODD-
ERNR (215 x)
1000 -
0

o

Ordering 04

Heuristic ﬂ \ J
.2 —=¥=ST-| -
0 b4 y ST-FODD-ER

(10 iter)

12 3 4 5 6 7 8 910 2 3

Iterations

Interacting Goals

ST-FODD-

6 12345678 9101112131415 ERNR (10 iter)

Problem Instance ID

(d) Blocksworld: Coverage vs. (e) Boxworld: Coverage vs. (f) Boxworld: Average # Actions to
Problem Instance Problem Instance Goal vs. Problem Instance
~—FODD-PL
12 @iter) 12 ——FODD-PL ?:gg ——FODD-PL
| . (iter) K] (5 iter)
uuuuuuuuuuu L sn o on o === = == =
1 - H-H I+ —#=FOALP 1 N ‘ —m-RFF 8 1600 —rld -&-RFF
2 1400
o 08) o 08 N » @ I
g ‘—‘(SST_-!FC;DD-ER g \\ /I \ / —+ST-FODD- 5 120] ~#-ST-FODD-ER
§ 06 iter g 06 ER (5 iter) g 1000 (5iter)
S 04 \ l \ I —-STFODD- S \\‘I S<ST.FODD- 80 /H\ II < ST.FODD-
ERNR (8 iter) - \ I ERNR (5 iter) © 600 ERNR (5 iter)
02 —~ST-FODD-ER 02 —ST-FODD- s 4/—\47 —#ST-FODD-ER
. (10 ter) | ER (@len e = e =y
“““ e 0 e Ara% ~e-ST.FODD- o + Bl - ~o-ST-FODD-
123456789101112131415 ~~STFODD- 1234567891112 ERNR(@iter) 1234567891112 ERNR(@Siter)
Problem Instance ID ERNR (10 iter) Problem Instance ID Problem Instance ID

Figure 2: Summary of Experimental Results.

Khardon 2008)), ST-FODD-ER (R12 edge removal reduc-
tion and a theorem proving node removal reduction R11
(Joshi and Khardon 2008)), and ST-FODD-ERNR (R12
edge and node removal reductions only). To measure perfor-
mance we follow IPC standards: The methods are compared
in terms of coverage, i.e., percentage of problems solved
over 30 rounds, average plan length, and cpu time. We gen-
erated examples by mixing states generated by the IR and
BRW methods as explained above. In keeping with the IPC
norms, we limited the offline planning time. We did not
limit the plan execution time but set a limit of 200 on the
plan length counting plans that violated the limit as failed.
Further details are given below.

Timeout Mechanism

Before investigating (Q1) and (Q2) we must address one
further practical aspect of the system. Since we switched
from theorem proving to model-checking, the cost of sub-
sumption tests heavily affects system run time. Subsumption
problems show a phase transition phenomenon (Maloberti
and Sebag 2004) and, while most problems are easy, cer-
tain types of problems have a very high cost. In preliminary
experiments on tireworld, we found that while over 99% of
subsumption tests ran within 50 milliseconds, a very small
number took over 30 minutes each. To avoid these costly
tests we use a timeout mechanism within the subsumption
routine. Subsumption simply fails if it runs beyond a spec-
ified time limit. Statistics taken over different domains and
iterations showed that a time limit of 1 second avoids most

94

of the computational burden and that one cannot get further
significant speedup by lowering this threshold. We omit de-
tails of these experiments due to space constraints. Impor-
tantly, the following experiments show that timeout achieves
both speedup and good performance of the planning system.

(Q1) System Characteristics

We start by characterizing scaling and performance. The
model-checking reductions use training examples, and
therefore, similar to standard machine learning more exam-
ples should give better performance. This can be demon-
strated by increasing training set size and measuring perfor-
mance. Our experiments show, for example, that the per-
formance of ST-FODD-ER (for the tireworld domain, 7 it-
erations) converges at about 200 examples. They also show
that the run time increases roughly linearly with training set
size. Details of these results are omitted due to space con-
straints. Figure 2(a) illustrates scaling by showing the de-
pendence of runtime on the number of iterations of VI for
the 3 methods where ST-FODD-ER and ST-FODD-ERNR
use a fixed training set of 215 examples. We observe sig-
nificant speedup where ST-FODD-ERNR is more efficient
than ST-FODD-ER, which is more efficient than FODD-PL.
The speedup allows us to run more iterations in reasonable
run times; for example running 10 iterations of FODD-PL
requires more than 2 days (not shown in graph) whereas ST-
FODD-ER requires about 1.5 hours and ST-FODD-ERNR
requires less than 0.5 hour.

We next illustrate the performance of the goal ordering

M PL ER ERNR ER ERNR
I 8 8 8 10 10
C | 12465.95 | 222.33 | 78.69 | 865.57 | 357.68

Table 1: Blocksworld: Planning time taken in CPU seconds
(C) by methods (M) FODD-PL (PL), ST-FODD-ER (ER)
and ST-FODD-ERNR (ERNR) for iterations (I)

heuristic. To explore this space, we generated a sequence
of blocksworld problems with an increasing number of in-
teracting goals. Figure 2(b) illustrates this behavior with a
plot of the percentage of planning problems solved by ST-
FODD-ER against the number of interacting goal literals for
a family of problems all with 5 blocks where for WGO we
set w = 0.8. Both AGD and WGO heuristics do well on
problems with up to 3 interacting goals. However, beyond
3, the performance of AGD degrades while WGO is still suc-
cessful. The performance curves are similar for FODD-PL
and ST-FODD-ERNR across iterations (details omitted).

(Q2) Tireworld

This domain is from IPC 2006. All problems have single lit-
eral goals. Hence goal combining heuristics are not needed.

We generated training examples by running IR with the d
parameter set to 10 and the £ parameter set to 1 and running
BRW for 10 episodes of length 20. The seed state for both
methods was designed so as to have a map of 10 locations
connected linearly. The vehicle is in the first location. While
our methods are not very sensitive to the choice of seed state,
using a constrained scenario helps in limiting the number
of examples generated. Step 2 of the VI algorithm above
requires adding of deterministic action alternative FODDs at
each iteration. These FODDs must be standardized apart to
guarantee correctness; following Joshi and Khardon (2008)
we relax this requirement and do not standardize apart after
the third iteration.

Runtime and speedup for this domain were discussed
above. For all the settings in Figure 2(a) offline planning
and execution together completed in less than the IPC limit
of 4 hours. As shown in Figure 2(c) ST-FODD-ER and ST-
FODD-ERNR achieve the same level of coverage as FODD-
PL and comparable to FOALP (Sanner and Boutilier 2009),
one of the top ranking systems from IPC 2006. Results
for plan length (figure omitted) show comparable results to
FODD-PL which is slightly better than other systems.

(Q2) Blocksworld

In IPC 2006 this domain was described by 7 probabilistic
actions. For the purpose of VI we determinized the domain
by replacing every probabilistic action by its most probable
deterministic alternative. The resultant domain consists of
4 deterministic actions, pick-up-block-from-table, pick-up-
block-from-block, put-block-on-table, put-block-on-block.
IPC posted 15 problems with varying degrees of difficulty.
The goal consists of multiple interacting goal literals. We
generated training examples using both IR and BRW. For IR
the d parameter was set to 15 and k was set to 2. For BRW
we ran 10 episodes of length 20. The seed example was

95

M PL ER | ERNR ER ERNR
I 5 5 5 8 8
C | 3332.33 | 302.8 | 117.7 | 3352.93 | 618.85

Table 2: Boxworld: Planning time taken in CPU seconds
(C) by methods (M) FODD-PL (PL), ST-FODD-ER (ER)
and ST-FODD-ERNR (ERNR) for iterations (I)

hand constructed to be a state satisfying the (single literal)
goal and, in addition, a tower including all other blocks.

Table 1 shows that ST-FODD-ER and ST-FODD-ERNR
achieve respectively 56 and 158 fold speedup in terms of
offline planning time over FODD-PL at 8 iterations. Exe-
cution times varied by problem. The harder problems took
half an hour per round. The easier problems (1 to 10) took
less than 75 seconds per round. The longer execution times
are a result of having to solve a large number of subsump-
tion tests for action selection. Once again we observed ST-
FODD-ER and ST-FODD-ERNR achieve the same level of
performance as FODD-PL and FOALP in terms of coverage
(Figure 2(d)) and plan length (figure omitted).

(Q2) Harder Problems

Increasing the number of iterations of VI with ST-FODD-ER
and ST-FODD-ERNR does not improve performance on the
IPC problems. To exhibit such a phenomenon we generated
harder problems for the tireworld and blocksworld domains.
Interestingly, for tireworld we used the IPC problem genera-
tor but could not find hard problems that could demonstrate
the difference. This shows that the generator produced rel-
atively easy problems. It is easy to describe such examples
where the goal is farther away and where at every state we
have several irrelevant but applicable actions. In this case a
shallow value function essentially chooses actions randomly.
We constructed such examples (details omitted) where 10
iterations of ST-FODD-ER achieves 100% coverage as op-
posed to 3% with 7 iterations of FODD-PL. This shows a
significant advantage of the new methods.

For blocksworld, again the ability to run more iterations
pays off when solving harder problems. It is easy to generate
problems showing this difference. Such problems require
long sequence of actions to the goal and a large number of
possible but irrelevant actions at every step so that policies
based on a shallow value functions are forced to take random
actions and fail. We generated such a problem where 8 iter-
ations of FODD-PL achieves only 50% coverage in contrast
with full coverage with 15 iterations of ST-FODD-ERNR.
Details are omitted due to space constraints.

(Q2) Boxworld

This domain is from IPC 2008. For the purpose of VI we
determinized this domain making the only probabilistic ac-
tion drive deterministic. IPC posted 15 problems with vary-
ing levels of difficulty for this domain. Competition results
show that RFF (Teichteil-Koenigsbuch, Infantes, and Kuter
2008) was the only system that solved any of the 15 prob-
lems. RFF could not solve problems 13 to 15. Hence we
omit results for those.

Training examples were generated using both IR and
BRW. For IR we set the d parameter to 8 and k parameter
to 1. For BRW we ran 10 episodes of length 20. The seed
example was designed to have a map of 10 cities connected
linearly. Each location connects to 2 neighbors by a two way
road except the locations at the extremes which connect to
only one location; 2 boxes, 2 trucks and a plane were placed
in the 4'" city. Unlike blocksworld, the goals in this domain
do not interact and the WGO heuristic returns no relative
order between goal literals. Therefore we set w to 1.0 in-
dicating that there is no order in achieving the goals. This
setting reduces the WGO heuristic to the AGD heuristic.

Table 2 shows that ST-FODD-ER and ST-FODD-ERNR
respectively achieve 11 and 28 fold speed up over FODD-PL
at 5 iterations. Execution times varied from 100 seconds per
round on the easier problems to 1.5 hours per round on hard
problems. These long execution times might explain why
other planning systems failed at the IPC where a strict time
bound on execution was used. Figure 2(e) and (f) show per-
formance in terms of coverage and plan length. We observe
that additional iterations are crucial in this domain. With 8
iterations ST-FODD-ER and ST-FODD-ERNR achieve full
or near full coverage on all problems except 10, 11 and 12.
In comparison RFF achieves full coverage on all problems.
On the other hand our system achieves significantly better
plan lengths than RFF even on problems where full cover-
age was achieved. Results for average reward (figure omit-
ted) show comparable values for the two systems.

Conclusion

In this paper, we presented a new paradigm for decision the-
oretic planning by learning. This paradigm allows an agent
to speed up Symbolic Dynamic Programming significantly
by using a set of reference states (but without any explicit in-
formation about optimal actions or values for these states).
Self-taught or provided by a mentor, the information gleaned
from these states is used to remove any complex specifica-
tions within the value function that are irrelevant to the given
states, thereby focusing on the region of interest.

We demonstrate this idea in the context of the RMDP sys-
tem FODD-PLANNER that uses FODDs to represent the
value function compactly. By extending and employing
model-checking reductions for FODDs (Joshi, Kersting, and
Khardon 2009), we vastly improve efficiency of planning.
We introduce novel methods for auto-generation of states of
interest and heuristics for combining goals during plan exe-
cution. Experiments on domains and problems from the IPC
suggest that this technique not only greatly improves the ef-
ficiency of the planning system, but also allows it to solve
harder planning problems.

Although all experiments and demonstrations have been
in the context of FODDs and the FODD-PLANNER system,
we believe that self-taught planning can also be applied to
other SDP based solvers of RMDPs. This is an interest-
ing direction for future work. Further research is required
to improve the runtime of the execution module. This is
partly a question of optimizing code and partly inherent in
using a complex policy. Ideas used in the context of produc-
tion rule systems may be useful here. Another promising

96

idea is to acquire the training examples from multiple teach-
ers each specializing in a separate (but possibly overlapping)
part of the state space, similar to (Price and Boutilier 2003).
In contrast with behavioral cloning e.g. (Morales and Sam-
mut 2004) where the performance typically degrades if the
learner gets contradicting examples from multiple teachers,
our approach handles this case in a natural way.

Acknowledgments

Kristian Kersting was supported by the Fraunhofer AT-
TRACT fellowship STREAM. Saket Joshi and Roni
Khardon were partly supported by NSF grant IIS 0936687.

References

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order mdps. In Proceedings of 1JCAI, 690—
700.

Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate policy itera-
tion with a policy language bias. In Proceedings of NIPS.

Gretton, C., and Thiebaux, S. 2004. Exploiting first-order regres-
sion in inductive policy selection. In Proceedings of UAIL

Groote, J., and Tveretina, O. 2003. Binary decision diagrams for
first order predicate logic. Journal of Logic and Algebraic Pro-
gramming 57:1-22.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd:
Stochastic planning using decision diagrams. In Proceedings of
UAI, 279-288.

Holldobler, S.; Karabaev, E.; and Skvortsova, O. 2006. FluCaP: a
heuristic search planner for first-order MDPs. JAIR 27:419-439.
Joshi, S., and Khardon, R. 2008. Stochastic planning with first
order decision diagrams. In Proceedings of ICAPS.

Joshi, S.; Kersting, K.; and Khardon, R. 2009. Generalized first
order decision diagrams for first order markov decision processes.
In Proceedings of IJCAL

Kersting, K.; Otterlo, M. V.; and De Raedt, L. 2004. Bellman goes
relational. In Proceedings of ICML.

Lloyd, J. 1987. Foundations of Logic Programming. Springer
Verlag. Second Edition.

Maloberti, J., and Sebag, M. 2004. Fast theta-subsumption with
constraint satisfaction algorithms. Machine Learning 55:137-174.
Morales, E., and Sammut, C. 2004. Learning to fly by combining
reinforcement learning with behavioral cloning. In Proceedings of
the ICML.

Price, B., and Boutilier, C. 2003. Accelerating reinforcement learn-
ing through implicit imitation. JAIR 19:569-629.

Puterman, M. L. 1994. Markov decision processes: Discrete
stochastic dynamic programming. Wiley.

Sanner, S., and Boutilier, C. 2009. Practical solution techniques
for first order mdps. AlJ 173:748-788.

Teichteil-Koenigsbuch, F.; Infantes, G.; and Kuter, U. 2008. Rff:
A robust ff-based mdp planning algorithm for generating policies
with low probability of failure. In Sixth IPC at ICAPS.

Wang, C.; Joshi, S.; and Khardon, R. 2008. First order decision
diagrams for relational mdps. JAIR 31:431-472.

Yoon, S.; Fern, A.; and Givan, R. 2007. Ff-replan: A baseline for
probabilistic planning. In Proceedings of ICAPS, 352—.

