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Abstract 
We describe a timeline-based scheduling algorithm 
developed for mission operations of the EO-1 earth 
observing satellite.  We first describe the range of 
operational constraints for operations focusing on maneuver 
and thermal constraints that cannot be modeled in typical 
planner/schedulers.  We then describe a greedy heuristic 
scheduling algorithm and compare its performance to both 
the prior scheduling algorithm - documenting an over 50% 
increase in scenes scheduled with estimated value of 
millions of dollars US.  We also compare to a relaxed 
optimal scheduler showing that the greedy scheduler 
produces schedules with scene count within 15% of an 
upper bound on optimal schedules. 

 Introduction  

Spacecraft operations have been a major area of 
application for automated planning and scheduling.  
Numerous space missions have used automated planning & 
scheduling on the ground to enable significant operational 
efficiencies including the Hubble Space Telescope 
[Johnston et al. 1993], space shuttle refurbishment [Deale 
et al. 1994], shuttle payload operations [Chien et al. 1999], 
The Modified Antarctic Mapping Mission [Smith et al. 
2002], Mars Exploration Rovers [Bresina et al. 2005], 
Earth Observing One (EO-1) [Chien et al. 2005a] Mars 
Express [Cesta et al. 2005], and Orbital Express 
[Chouinard et al. 2008].  Automated planning has even 
flown as a technology demonstration on the Deep Space 
One (DS1) Mission [Muscettola et al. 1998] and as the 
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Note that some of the specific operational constants (e.g. 
instrument temperatures, warmup times) in this paper have 
been altered for export control purposes.  Numbers relating 
to impact (e.g. # of scenes scheduled) have not been altered 
and any operational constants changed do not affect the 
technical points of the paper. 
 

primary operations system on 3CS [Chien et al. 2001] and 
EO-1 [Chien et al. 2005b].   
 Spacecraft operations have a number of interesting 
attributes from a planning & scheduling applications 
perspective. 
 

1.   Spacecraft operations require modeling of a number 
of challenging operations constraints including: 
instrument and subsystem timing and 
synchronization, thermal, power, data volume, 
visibility, and spacecraft pointing.  

2.   Because spacecraft are so expensive  ($100M+ US is 
not unusual), a planning model must be highly 
reliable to not produce operations plans that might 
endanger a valuable asset.   

3.   Because of the complex nature of science operations 
priority and optimization are often involved either 
implicitly or explicitly. 

4.   For onboard schedulers, two additional factors are 
relevant. 
a. Because communications to spacecraft are 

limited in frequency and duration, from an AI 
planning perspective a spacecraft has a flight 
and ground version of the planning problem.  
The flight version typically involves 
embedded replanning in modest context 
whereas ground planning may tackle large 
problems involving hundreds or thousands of 
activities. 

b.  Limited onboard computing often requires 
algorithms that are not computationally or 
memory intensive.  

 
In the remainder of this paper we first describe the EO-1 
weekly operations scheduling problem.  We then 
describe the wide range of operations constraints that are 
naturally modeled in typical planning & scheduling 
modeling languages.  We then describe a number of 
more difficult to model constraints including thermal, 
pointing, and prioritization.  We then describe a timeline 
based scheduling algorithm used for mid range (weekly) 
ground-based scheduling of the EO-1 mission.  We then 
present an analysis of impact on operations.  Finally we 
present related work and conclusions.  

B
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Background 

The Earth Observing-1 (EO-1) satellite is the first 
mission in NASA's New Millennium Program Earth 
Observing series [EO-1].  EO-1 was launched November 
21, 2000 and has been in operation since.   
 Following a one-year primary mission, EO-1 entered 
extended mission in January of 2002 having surpassed all 
original technology validation goals.   By 2004 continuous 
improvements in EO-1 conventional operations enabled 
acquisition of approximately 100 scenes per week, a 
remarkable improvement over the pre-launch success 
criteria of 7 scenes per week (a scene is a typical science 
imaging activity consisting of a 50km long image using the 
two principal instruments – ALI and Hyperion).   
 In 2004, onboard and ground-based automated mission 
planning software was deployed operationally to automate 
mission planning and sequencing elements of the EO-1 
mission [Chien et al. 2005a, 2005b].  This software, called 
R4, was directed at automating existing operations policies 
rather than improving the number of science scenes 
acquired by the mission.  This approach was taken because 
it offered the lowest risk, least costly path to automation.  
This automation was tremendously successful - enabling 
an over $1M per year operations costs reduction and 
allowing more rapid response to science events and 
anomalies such as ground station failures.  This automation 
was able to continue this pace of ~ 100 scenes per week.  
The 2004 automation has operated flawlessly and has 
acquired over 25,000 scenes in over 5 years of operations. 
 More recently (2008-2009), the ground and flight 
mission planning software for EO-1 was upgraded (to R5) 
again with a focus on: 1. increasing operational flexibility 
to change scenes immediately before acquisition and 2. 
acquiring more science scenes.   
 Major constraints limiting the number of scenes include: 
 Visibility – even though the spacecraft might be unused 
it might not be able to see a desired science target. 
 Pointing/maneuver – the spacecraft takes time to move 
from pointing at one target to the next and must allow time 
for the spacecraft to stabilize after pointing to enable 
precise imaging. 
 Thermal – the instruments have minimum and maximum 
temperatures at various locations that must be met to 
acquire valid science imagery.  The minimums mean that 
warmup activities are required.  The maximums mean that 
too many consecutive images will overheat the instrument. 
 Data volume – the spacecraft can only store a limited 
number of scenes onboard. 
 Downlink – the spacecraft can only downlink at pre-
scheduled times and overflights of fixed ground stations 
 Mode – various spacecraft subsystems have operational 
modes that must all be carefully selected and achieved for 
valid operations. 
 The goal of the scheduler is:  
1. maximize weighted scene count where higher priority 
scenes are given more weight; and  
2. maximize total scene count;  

while respecting all of the above constraints.  We present a 
generate and test approach to weekly scheduling for EO-1 
operations that: 

1.   incorporates pointing, maneuver, and visibility 
constraints into generation of scene combinations 
caused “tuples” 

2.   searches greedily in the space of combinations of 
tuples 

3.    using timelines to check the remaining constraints 
(e.g. thermal, data volume, …) 

We analyze the computational complexity of this 
scheduling algorithm and compare its performance to 
optimal upper bound schedules in both weighted priority 
and scene count.  

 Spacecraft Operations Modeling 

In this section we describe the range of spacecraft 
operations constraints present in the Earth Observing One 
Model.  We begin by describing constraints that are easily 
modeled in automated planning/scheduling systems and 
then discuss problematic constraints.   
 In our discussion, we assume the context of a timeline 
based modeling framework, in which state and resource 
values are represented by a fully ordered sequence of 
values.  Furthermore, in our framework, value transitions 
are grounded in time (e.g. not flexible).  For our specific 
class of scheduling problems this is a reasonable restriction 
because the overflight times or scene targets and data 
up/downlink times are fixed (therefore fixing most events 
of interest). 

Naturally modeled spacecraft operations 
constraints 
The updated EO-1 operations domain has a wide range of 
constraints that can be naturally represented in common 
planning & scheduling system modeling constructs.   
 Activity overlap – instances of activities cannot overlap 
such as those that require an atomic resource.  For 
example, two image sequence parent activities cannot 
overlap.  This is represented by a simple atomic resource (a 
unit capacity resource) that an image sequence parent 
activity claims.  If a second image activity overlaps it also 
claims this resource, exceeding the capacity. 
 Integer capacity – depletable 
– this is an integer capacity 
resource reserved by one 
activity making a portion of the 
resource unavailable until it is 
freed by another activity.  For 
example, EO-1 has a mass 
storage device primarily for 
science data.  The storage 
device, called the WARP, has 
two capacity constraints.  First, 
there is a limitation on the total 
number of files on the WARP 
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at any given time.  The file count is represented as a 
depletable resource the maximum capacity.  When files are 
created they are counted against the file count resource.  
When files are deleted after downlink activities the 
resources are freed.  Second, the total size of all of the files 
(summed) cannot exceed a different bound.  This resource 
is consumed as data is written to a file on the recorder and 
released when files are deleted (after being downlinked).  
Usage of these resources can depend on activity parameters 
– for example the amount of data generated by an imaging 
sequence is dependent on how long the instrument is 
imaging as dictated by a function (a base amount plus a 
fixed rate times the image activity duration).   This 

resource usage is shown in Figure 1.  In contrast, non-
depletable resources are used only for the duration of the 
activitiy (e.g. power). 
 Discrete states – there are numerous discrete state 
constraints.  These both represent transition constraints and 
state constraints.  For example, the solid state recorder has 
several states (record, playback, idle, standby,…).  
Furthermore, there may only be a specific subset of legal 
transitions with activities to change the state.  The only 
means for the WARP state to change from one state to 
another is via execution of an action with a state changer, 
As another example, the ALI instrument (one of the two 
principal science instruments onboard EO-1) has a cover 
which has specific activities to change its state, and 
imaging activities require specific states (dark calibrations 
require closed state, science images require open state).   
Figure 2 shows some aspects of constraints on the ALI 
cover state. 
 Decomposition – often a high level activity consists of 
several lower level activities.  These are represented as 
Hierarchical Task Network planning decompositions.   
For example, and imaging sequence high level activity 
consists of a large number of lower level activities 
including ALI and Hyperion (the other principal science 
instrument) prep activities and post activities.   Figure 3 
shows the first level of decomposition for a Hyperion 
Lamp Calibration activity set.   
 Temporal constraint – constraints on the relative timing 
or ordering of two related activities.  For example, in an 

image sequence, the instrument parameters must be set 4.5 
seconds before the image start time and the Hyperion 
instrument covers must be opened 28.5 seconds before the 
image start time.  Most of these temporal constraints are 
enforced in the decompositions outlined above.   
 Some of these temporal relationships utilize 
dependencies upon timeline values or activity parameters.  
For example, the Hyperion and ALI warm-up times are 
dependent on the expected temperatures entering into the 
imaging activity.  If the instruments are already warm from 
prior image sequences the warmup time can be shortened 
allowing images to be acquired closer together and 
preventing the instrument from overheating (this is 

discussed in the section on thermal modeling below).   

More challenging operations constraints 
In this section we describe modeling and non-modeling of 
several operations constraints – thermal and maneuver. 
Modeling Instrument Thermal Constraints 
 The Hyperion instrument has two imaging subsystems: a 
visible and near infrared module (VNIR) and a short wave 
infrared module (SWIR).  These distinct subsystems are 
physically separated and therefore have somewhat 
decoupled behavior.  Both of these modules are used 
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during imaging, and both gradually 
increase in temperature while they 
are powered.  When unpowered, the 
instrument (and subsystems) 
gradually shed heat to the rest of the 
spacecraft and to space, thusly 
cooling (see Figure 5).  Each of 
these subsystems has a minimum 
and maximum operating 
temperature requirement for (1) 
instrument health and (2) precise 
imaging.  The Hyperion instrument 
also has a setup time so that the 
instrument must be powered on by 
this amount prior to imaging to 
allow the instrument to enter the 
correct mode to accept imaging 
control parameters prior to imaging.  
The Hyperion instrument operations 
challenge is to control the power 
state of the instrument such that both 
the SWIR and VNIR are operating 
within acceptable temperature 
ranges and the instrument is able to 
accept imaging parameters for all 
desired images.  This is complicated 
because  

1. the SWIR and VNIR have 
different minimum and 
maximum temperatures,  

2. SWIR and VNIR heat and cool at different rates, 
have different ambient temperatures (e.g. if left 
off it will return to this temperature) and  

3. there is only one power control (e.g. we cannot 
warm up VNIR without warming up SWIR). 

The VNIR module has a heating element that maintains 
its temperature at or above 311 to prevent the instrument 
from damage in the cold of space.  The VNIR has an 
imaging temperature requirement of 313.  A brief warm-up 
period in advance of an image is modeled to allow the 
instrument to reach this temperature, if needed. During 
sparse operations, the instrument then cools back to its set 
point over a period of approximately an hour. However, 
extended instrument duty cycles (e.g. during a rapid 
sequence of adjacent scenes) can cause this temperature to 
build up without a chance to cool down.  EO-1 flight rules 
include a maximum VNIR operating temperature of 415 as 
well as a maximum health temperature of 515.   
 Similarly, the SWIR module has a maximum operating 
temperature of 415 and a maximum health temperature of 
515, but no operating temperature minimum. If the SWIR 
module is allowed to cool lengthily it will eventually an 
equilibrium temperature of -19.  Notably, at these lower 
temperatures, the SWIR module is much less effective at 
dissipating heat (and more susceptible to absorbing heat), 
as expected from classical Newtonian cooling models. This 
means that temperature builds more rapidly in the SWIR 
once the instrument is cycled on, and that it takes much 

longer for it to return to ambient -- on the order of 12 
hours. 
 We constructed three different Hyperion instrument 
temperature models: 

1.    A scene uses a non-depletable temperature resource 
for the duration of the scene plus a cool down 
period.  This model requires computation and RAM 
O(# of overlapping scenes).  Unfortunately this 
model becomes very inaccurate with large numbers 
of tightly consecutive scenes. 

2.    Use a non-depletable model but make the duration 
of the resource usage dependent on the time since 
the previous scene.  This model requires CPU and 
RAM O(# overlapping scenes).  This model was 
more accurate, it was still too inaccurate because of 
the long history of SWIR (literally days). 

3.   Use a stepwise simulation model where the 
temperature is increased or decreased at each step 
based on the instrument on/off state.  This model is 
most accurate but requires CPU and RAM O(length 
of timeline).  

 Efficiency of the temperature model is important 
because we only have a 5 MIPS onboard computing budget 
for all of the autonomy software.  While the principal use 
of the model is for ground scheduling, the same model runs 
onboard to validate and detect problems in execution as 
well as to enable onboard replanning of scenes.   
  Figure 6 shows the SWIR temperature as observed in 
flight, modeled in simulation, and modeled by the planning 
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system.  Figure 7, shows the corresponding information for 
the VNIR subsystem.  The graphs show that the SWIR and 
VNIR temperatures appear to increase and decrease in 
approximately linear segments, with continuous curves 
between the areas of linear heating and cooling.  The 
planning model only roughly approximates the actual and 
simulated temperatures but for planning purposes it only 
need answer the question “will this set of scenes exceed the 
temperature limit” and “how long must the instrument 
warmup so that this scene will be at least at the minimum 
of the operating range.” 
 The above model development was performed using 
historical operations data.  While we had virtually 
unlimited examples of imaging (thousands of scenes) from 
prior operations, this data only included single and dual 
scenes per orbit (because R4 and prior operations only 
allowed two scenes to be imaged before returning to nadir 
point and instruments off).  In order to get data to further 
refine the model we performed a flight experiment in 
which we controlled the power state of the instrument 
simulating three sequences of four scenes each (as allowed 
by R5).   
 
Pointing and wheel Biasing 
Another challenging operations constraint for EO-1 is 
pointing (see Figure 8).  The EO-1 spacecraft can change 
its pointing using three reaction wheels for turning quickly 
(seconds) and a magnetic torquer bar for turning slowly 
(tens of minutes) [Wikipedia].  Reaction wheels spin in one 
direction, causing the spacecraft to spin in the opposite 
direction due to Newton’s third law.  However, the 
reaction wheels have a maximum speed (engineering) and 
an ideal speed (scene quality).  The torquer bar can be used 
to reduce the wheel speeds while maintaining a pointing.  
Because the spacecraft is in orbit around the Earth, if it 
continually points directly downward towards the Earth, it 
will need to make one 360 degree rotation per orbit.  
Additionally, the spacecraft must roll (turn across track) in 
order to point at imaging scenes that are not directly 
underneath the spacecraft).  These combined maneuvers, 
including the return to nadir point after a sequence of 
scenes presents a considerable maneuver planning problem 
(Figure 8).  In summary, the pointing problem is: 

1.   to point the spacecraft so it can acquire a sequence 
of scenes 

2.   while not exceeding the reaction wheel speed 
limits at any time and 

3.   ensuring the wheels are at desired speeds during 
scene 

  Operationally, if the mission planner wishes to 
acquire scene A then scene B, maneuver planning software 
takes the requests and computes parameters that the 
spacecraft attitude control system ingests at execution time 
to achieve the desired pointings (from nadir to A to B to 
nadir).  Computing these maneuvers is a challenging flight 
dynamics problem – the maneuver planning software in 
fact uses a heuristic method to attempt to design 
maneuvers that respect rate constraints, timing constraints, 
and instrument pointing constraints.  This flight dynamics 
planner is implemented in Matlab and takes approximately 
20 seconds to solve a typical request of several consecutive 
pointings on a high performance linux workstation.  From 
a mission planning perspective these constraints are treated 
as black box solutions that possess challenging non-
monotonic properties.  For example, the maneuver 
planning software may return that starting from nadir 
pointing, taking scene B followed by scene C is not 
possible.  But the same software might return that starting 
from nadir, taking A followed by B followed by C is 
possible.  Clearly this means that moving from nadir to B 
to C is possible but that the solution through A was not 
found by the maneuver planning software when planning 
for only B and C.  The lack of structure of these returned 
constraints make the EO-1 mission planning problem 
computationally harder. 
     Originally in operations, the spacecraft was “nadir 
pointed” (i.e. pointed directly at the ground) and “zero 
biased” (i.e. reaction wheels not spinning) in between 
every scene.  While this is the most straightforward 
operationally (each scene is independent from a 
momentum history standpoint) it is not very efficient 
because considerable spacecraft time is wasted slewing the 
spaceraft to nadir and slowing the spin of the reaction 
wheels.  One of our upgrades enables EO-1 to go directly 
from one image to the next without zero biasing or nadir 
pointing for up to four consecutive images. 
 Because the timeline planning system cannot directly 
represent the pointing and momentum state of the 
spacecraft, we implemented these constraints in the goal 
generation process (see below) as “external constraints”.  

Basically, when all of the individual scene requests 
are received, we construct sets of combinations of 
the scenes (called “tuples”) that represent scenes 
without intervening nadir pointing and zero biasing.  
The mission planner then operates on these tuples, 
considering combinations of tuples for a weekly 
schedule. 
 The mission planner only indirectly models 
spacecraft location and therefore image overflights.  
The mission planner accepts as inputs goals to 
image targets but it does not directly consider 
alternate opportunities to image the same target.  
Because the EO-1 general planning horizon is only 
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at the one week granularity, it does not offer a 
direct method of considering among alternate 
overflights for specific targets.  The mission 
team does often consider alternate overflights but 
does so outside of the automated mission 
planning process.  

EO-1 operations also have a number of 
trending and tracking calibration and instrument 
maintenance activities.  These include ALI 
calibrations (data collected with covers closed 
and internal lamp on or off) as well as outgassing 
of the instruments.  Other engineering activities 
include orbit determination calculations, burns to 
maintain orbit, and fuel calculation.  An ideal planning 
system would track these events and schedule them when 
needed based on periodicity, schedule conflict, and 
imaging parameters.   

Scheduling Algorithm  

On the ground a weekly schedule of EO-1 operations is 
maintained.  This schedule is generated in several versions 
5 days prior to its start (e.g. the schedule is first generated 
Wednesday for the week starting the following Monday 
and then refined several times).  This schedule must 
consider hundreds of individual scenes that can comprise 
thousands of potential tuples that must be heuristically 
pruned in order to produce a manageable problem.    
  The EO-1 mission has a simple model of priority that 
does not fully capture the science and operations 
constraints of the mission.  Within this model priority 
ranges from 0-999 with 999 being the highest priority.  
Users have the authorization to submit scenes at a range of 
priorities.  The semantics of the priorities are that a higher 
priority scene will be selected over any number of lower 
priority scenes that may conflict.  The priorities are 
incorporated in the core of the scene selection and 
scheduling algorithm as indicated below. 
 A better system for representing priority would allow for 
the scheduling system to be aware of contention (which 
other scenes are also competing for the overflight), 
periodicity of the contention (i.e. is this going to happen 
for every overflight or is it only for some known subset of 
overflights), urgency (is there a temporal urgency to 
acquire this scene now – e.g. is it a short lived event such 
as a ground-truthing, flood, or volcanic event), and age 
(many targets are designed to be periodically observed and 
this target may have just been observed). 

Weekly scheduling consists of: submission of requests 
from a set of customer groups, scheduling engineering 
activities, and scheduling science activities.  The weekly 
scheduling algorithm is shown below as Algorithm 1.   
 The weekly scheduling algorithm can be understood as 
follows.  First the tuples (combinations of adjacent scenes) 
are generated from the individual requests.  Next the 
downlink contacts are processed.  All of the approved 
downlink contacts will be S-band engineering downlinks 
since S-band activities do not interfere with the other 

spacecraft operations.  X-band high rate science downlink 
however does preclude simultaneous science image 
acquisition.  By default we take all downlink opportunities 
and schedule them as X-band activities but later in the 
scheduling algorithm we consider removing them for high 
priority scenes. 
 Next we sort the generated tuples by decreasing 
minimum priority scene in the tuple (so that we consider 
all tuples that have only high priority scenes first, then all 
that have only high and slightly lower, and so on…). 
 As we consider a new candidate tuple, we try to insert it 
into the schedule (e.g. “ScheduleTuple” below).  
ScheduleTuple considers whether the new tuple should be 
added by: 

1. adding the new tuple to the schedule 
2. deleting any subsumed tuples (e.g. if adding a tuple 

with scenes A B and C, deleting the tuple A B) 
3. delete any X-band in conflict (overlapping) with 

the new tuple 
4. if any timeline constraints are violated FAIL, else 

succeed 
 The net effect of this scheduling algorithm is that it 
starts out with tuples (note that single scenes are 
degenerate tuples) with only high priority scenes.  It then 
adds lower priority scenes where they fit in between high 
priority scenes (not too common) or by growing the tuples 
with high priority scenes by adding lower priority scenes to 
the tuples.   Figure 9 shows this process in which A1, and 
F1 are inserted and grown until A1B2C3 and F1G2 are 
present.  When F1G2 tries to grow it cannot fit due to 
downlink constraints and the scheduling process stops.  In 
each case a single higher priority scene is preferred over 
lower priority scenes.  X-bands can be bumped but only if 
they are not needed for storage of higher priority scene 
(which would have been already scheduled).  Because the 
scenes are secondarily sorted by number of lowest priority 
scene the algorithm generally prefers more scenes of a 
given priority.  However it cannot guarantee optimality at 
this level due to the possibility of a tie-break at a higher 
level priority precluding choice of a high priority scene 
that would be compatible with a larger number of lower 
priority scenes. 
 This algorithm requires timeline placements O(# tuples).  
Timeline placement cost is dominated by the thermal 
model O(time duration of schedule.   The number of tuples 
is exponential in the individual scene density, but only 
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linear in the schedule length (with scene count density held 
constant – i.e. scene count increasing linearly with 
schedule length).  In our operational experience several 
hundred individual scenes are requested and several 
thousand tuples are considered.  
 
scheduleWeekly 
  generate tuples from individual requests 
  schedule the given S-bands 
  schedule one X-band for every S-band 
  sort unsatisfied tuples by greater min priority 
  for each unsatisfied tuple 
    scheduleTuple(tuple) 
  repair resulting schedule 
 
scheduleTuple(tuple) 
  find satisfied subsets of the given tuple 
  if tuple has unsatisfied scenes  
        (not part of a subset) 
    remove subsets from satisfied tuples 
    unschedule subsets 
    unschedule X-bands that overlap with a new 
scene 
    schedule tuple 
    if no conflicts 
      add tuple to satisfied tuples 
      return true 
    else // undo 
      unschedule tuple 
      schedule subsets 
      add subsets to satisfied tuples 
      schedule overlapping xbands 
  return false 
 
 
schedule(goal) 
  expand goal activity and model states/resources 
 
unschedule(goal) 
  unexpand goal activity & unmodel 
states/resources 

 
Algorithm 1 

Evaluating EO-1 scheduling effectiveness  

Originally the motivation for the R5 software upgrade was 
to increase flexibility to change the schedule.  In R4 once 
X-bands were selected they could not be later pre-empted 
by high priority scenes.  Additionally, scenes priorities 
resulted in several unnatural constraints in their 
implementations: (1) dual collects had to consist of two 
scenes of the same priority (so that the priority of the dual 
scene was semantically unambiguous) and (2) 
replacements of a single or dual scene had to be with the 
same number of scenes (e.g. a single replacing a single or a 
dual replacing a dual).   However R5 can schedule more 
scenes due to better thermal management and reduced 
nadir pointing and zero biasing. 
 To assess scheduling improvement we ran the R4 and 
R5 on four weekly schedules from Spring 2009.  To 
simplify analysis we scheduled these weeks without any 
engineering activities (which require human input).  Ideally 
we would compare R5 schedules against optimal weekly 

schedules.  Unfortunately non-monotonic constraints 
(slewing and maneuver in creating tuples) and 
computationally expensive modeling (thermal) and weekly 
problem size prohibit generating optimal solutions.  The 
problem cannot even be localized to small NP-hard 
problems between X-bands because X-band selection is 
part of the search space and tuples can span X-bands.  
Therefore we developed a series of optimal schedulers that 
ignore certain hard (e.g. maneuver, slew, temperature) 
constraints and produce optimal schedules for these 
relaxed problems – thereby providing upper bounds on 
optimal schedules for the real problem.  The results of 
these schedule runs are shown below in Table 1.  O1A & 
O1B below used the fixed X-band selections from the R5 
algorithm.  O2 uses an alternative approach for X-bands.  
Table 1 shows the number of X-bands and scenes 
scheduled as well as a priority score of the schedule 
indicating a weighted score where a scene of each priority 
level is worth 10x the value of a scene of the next lower 
priority.  
Algorithm X-

bands 
Scenes 
scheduled 

Priority 
Score 

R4 32 130 1233 
R5 51 217 1243 
O1: Optimal no 
thermal, no maneuver, 
R5 X-bands 

51 243 1286 

O1A: O1 removing 
onboard storage  

51 419 1286 

O1B: O1 ignoring 
scene overlap 

51 252 1422 

O2: O1 but choose all 
X-bands not in conflict 
with high priority 

48 229 1246 

The data shows several interesting points. 
1. The most significant constraint limiting scenes is 
onboard storage (seen by the jump in scenes removing this 
constraint from O1 to O1A).  However, the gained scenes 
are not important ones as the priority score is unchanged 
(e.g. there are no gained scenes in the top several priority 
levels).  It is also worth noting that O1, O1A, and O1B all 
ignore instrument thermal constraints, which would 
certainly prevent taking of 400 scenes in a week. 
2. The biggest constraint preventing acquiring higher 
priority scenes is scene overlap as indicated by the jump in 
schedule score from O1 to O1B.  Note that maneuver (also 
unmodeled by O1, O1A, and O1B) would certainly 
preclude taking many of these high priority combinations 
even if scene overlap could be relaxed. 
3. The R5 scheduler significantly outperforms R4 in scene 
count increasing average scene count from 130 to 
217(+67%) – primarily by enabling two or three scenes to 
be taken many orbits.  Weekly averages for R4 are 70 
singles and 30 duals whereas R5 averages 18 singles 45 
duals and 37 triples.  Note that the R4 algorithm was also 
constrained to take duals of only the same priority and also 
have a designated primary scene as the first scene.  
However most of the additional scenes that R5 acquires are 
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not high priority – this is because the operations team self 
selects by not choosing multiple high priority scenes that it 
believes will conflict – further study will enable us to 
acquire less biased input requests. 
4. R5 also performs well compared to the tightest upper 
bound on optimal schedules (O1).  R5 is within 11% of the 
optimal upper bound by scene count and within 3.4% by 
priority score.  Given that O1 is an upper bound and 
maneuver and thermal are significant additional constraints 
it is likely that R5 is closer to a true optimal schedule. 
 Empirically the R5 scheduler has performed well.  
Taking two months of “typical” operations, for September 
2009, R5 scheduled from 146 – 187 scenes/week, whereas 
January 2009 R4  operations ranged from 91-115 scenes 
per week.  The operational numbers tend to be lower than 
the test runs above due to inclusion of engineering 
activities. 
  What is the value of the additional scenes?  A 
conservative estimate based on the 2004 mission cost 
valued the EO-1 mission at ~$3.6M/year so one measure 
(scene count) would estimate the value of the additional 
50% scenes at $1.8M/year1 for a total value over the 
remainder of the mission of millions of dollars US. 

Discussion, Related Work, and Conclusions 

AI planning specializes in generating novel sequences to 
achieve combinations of goals.   Because of the importance 
of safety in space operations, novelty in sequencing is 
discouraged.  Consequently, most planning in space 
operations is performed by hierarchical task network 
methods (as opposed to more search intensive first 
principles methods), which have the advantage of 
repeatability to facilitate testing. 
 The maneuver constraint also is one or a larger set of 
spatial reasoning constraints that recur in scheduling 
problems.  An area for future work would be for a 
scheduler to reason about the distances between the 
consecutive pointings in the momentum management space 
and explore these more efficiently (instead of the current 
method of exhaustively searching all combinations). 
 Thermal constraints were also hard to model.  
Representing these sorts of complex quantitative 
constraints along with scheduling/repair methods are 
another area for future research. 
 This paper has described several modeling which arose 
in developing an automated planning system for EO-1 
spacecraft operations – with a focus on thermal and 
pointing constraints.  We then described our heuristic 
approach to EO-1 schedule generation that isolates the 
pointing constraint in candidate generation and thermal 

                                                 
1 One might argue that the worth of additional scenes is 
lower per scene because the highest priority scenes would 
be taken first.  However one might also argue that more 
scenes enables studies at a finer temporal resolution 
thereby enabling studies not allowed with fewer scenes. 

constraints in a test portion of schedule.  We document that 
our scheduling algorithm significantly increases the 
mission science scenes; and show its performance 
approaches that of an upper bound on optimal scheduling 
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