
Choosing Path Replanning Strategies for Unmanned Aircraft Systems

Mariusz Wzorek and Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science

Linköping University, SE-58183 Linköping, Sweden
{marwz, jonkv, patdo}@ida.liu.se

Abstract

Unmanned aircraft systems use a variety of techniques to plan
collision-free flight paths given a map of obstacles and no-
fly zones. However, maps are not perfect and obstacles may
change over time or be detected during flight, which may in-
validate paths that the aircraft is already following. Thus,
dynamic in-flight replanning is required.
Numerous strategies can be used for replanning, where the
time requirements and the plan quality associated with each
strategy depend on the environment around the original flight
path. In this paper, we investigate the use of machine learn-
ing techniques, in particular support vector machines, to
choose the best possible replanning strategy depending on the
amount of time available. The system has been implemented,
integrated and tested in hardware-in-the-loop simulation with
a Yamaha RMAX helicopter platform.

1. Introduction

Unmanned aircraft systems (UAS) are used for a wide vari-
ety of applications in areas such as reconnaissance, surveil-
lance, power line inspection and support for emergency ser-
vices in natural catastrophes. Many new applications will
also arise as countries develop new regulatory policies al-
lowing UAS usage in unsegregated areas. Consequently,
unmanned aircraft are currently the subject of intensive re-
search in numerous fields.

The desired level of autonomy for unmanned aircraft may
vary depending on the type of mission being flown, where
certain missions need to be controlled in some detail by a
ground operator while others should preferably be fully au-
tonomous. But for some aspects of a mission, automation
is almost always desirable. One such aspect is motion plan-
ning and navigation, given a set of waypoints to visit or fly
through and a map of static and dynamic obstacles.

A number of methods for generating motion plans have
been proposed in the literature, including probabilistic
roadmaps (PRM, Kavraki et al. 1996) and rapidly explor-
ing random trees (RRT, Kuffner and LaValle 2000). Unfor-
tunately, maps are not perfect, and new obstacles may be
detected during flight. If such obstacles appear along the
planned flight path, the proper course of action depends on
the amount of time available for collision avoidance.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

If very little time is available, we must rely on reactive
sense-and-avoid procedures, even though this may turn the
aircraft in a direction that is far from optimal considering the
known obstacles and the current destination.

However, given typical detection ranges and airspeeds,
there may be up to a few seconds to decide exactly what
to do. There can then be sufficient time to invoke a mo-
tion planner once again to repair the plan before reaching
the point where the aircraft has to divert from its original
trajectory. The new trajectory will then take both new and
old obstacles into account, potentially saving considerable
amounts of flight time. This is especially true for fixed-wing
aircraft, where the minimum turn radius is often large and
where slowing down and hovering is not an option.

In replanning, we can choose which parts of the original
path are replaced and which parts are retained. For example,
we can replan from the next waypoint all the way to the goal
or only the part of the plan that is actually intersected by the
newly detected obstacle. This choice will have a significant
effect on not only the quality of the repaired plan, but also
the time required for replanning (Wzorek et al. 2006).

Many motion planning methods are also parameterized
in various ways. For example, PRM planners generate a
roadmap graph in a pre-processing phase and search this
graph whenever a plan is required. Increasing the number
of nodes in the graph will increase plan quality, but again,
this will also affect the time required for plan generation.

A replanning strategy represents a specific choice of
which parts of a path are replanned and which parameters
are given to the motion planning algorithm. Our objective
is to always choose the strategy that will yield the highest
quality possible within the available time. But while there
may be a general trend for one strategy to be better or faster
than another, the exact time requirements for most strategies
will vary considerably depending on factors such as the lo-
cal environment around the original path and the remaining
distance to the destination. Thus, we essentially have two
options: Always choose a simple strategy for which we can
find a low upper bound on the time requirements, or gener-
ate better and more informed predictions by learning how
the local environment affects timing and quality.

In this paper, we choose the second option: We investi-
gate the use of machine learning (specifically, support vec-
tor machines) to choose the repair strategy and the planning

193

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

Figure 1: The Yamaha RMAX helicopter with integrated
laser range finder mounted on a rotation mechanism.

parameters that yield the highest expected plan quality given
the time available for replanning. A set of prediction models
is built offline for each map. The models are used in flight to
predict the time requirements for each repair strategy as well
as the resulting plan quality, allowing the system to choose
the best strategy given the time available. Reactive obstacle
avoidance is still applied if the motion planner should fail to
deliver a result in time.

2. Helicopter Platform

Diverse research with unmanned aircraft systems is con-
ducted in the UASTech Lab1, where one of our main plat-
forms (Doherty et al. 2004) is a Yamaha RMAX helicopter
(Figure 1). The helicopter has a total length of 3.6 m (in-
cluding the main rotor) and is powered by a 21 hp engine
with a maximum takeoff weight of 95 kg. The RMAX has a
built-in attitude sensor and an attitude control system.

Due to vibrations as well as limitations in power and cool-
ing, unmanned aircraft require very robust computational
hardware with low power requirements. Our hardware plat-
form contains three embedded PC104 computers connected
by serial lines for hard real-time networking as well as Eth-
ernet for CORBA applications, remote login and file trans-
fer. The primary flight control system runs on a 700 MHz
Pentium III, and includes a wireless Ethernet bridge, a GPS
receiver, and several additional sensors. The image pro-
cessing system runs on another 700 MHz PIII, and includes
color CCD and thermal cameras mounted on a pan/tilt unit,
a video transmitter and a MiniDV recorder. The deliber-
ative/reactive system runs on a 1.4 GHz Pentium-M and ex-
ecutes all high-level autonomous functionality.

A hybrid deliberative/reactive software architecture has
also been developed for our UAS platforms. Conceptually,
this is a concentrically layered system with deliberative, re-
active and control components. It can be divided into two
parts with respect to timing requirements: (a) hard real-time,
dealing mostly with hardware and control laws, and (b) non-
real-time, which includes most deliberative services. All

1http://www.ida.liu.se/∼patdo/auttek/

three computers have both hard and non real-time compo-
nents. More details about the software architecture in the
context of navigation can be found in Wzorek et al. (2006).

3. Motion Planning Algorithms

Motion planning for helicopters typically takes place in a
high-dimensional configuration space involving spatial co-
ordinates as well as other properties such as the yaw an-
gle (the direction in which the aircraft is pointing). Though
finding optimal paths between two configurations in such
spaces is intractable in general, sample-based approaches
often provide good solutions in practice by sacrificing opti-
mality and deterministic completeness. Our framework cur-
rently includes two such algorithms, probabilistic roadmaps
(PRM) (Kavraki et al. 1996) and rapidly exploring random
trees (RRT) (Kuffner and LaValle 2000), and can easily be
extended.

The PRM algorithm pre-processes a 3D world model
to generate a discrete roadmap graph. Configurations in
free space are randomly created, and a local planner tests
whether pairs of configurations can be connected by flight
paths, taking aircraft-specific kinematic and dynamic con-
straints into account. In the online phase, the planner con-
nects the given initial and goal configurations (“locations”)
to configurations in the roadmap. Graph search algorithms
such as A∗ can then be used to find suitable paths.

The UASTech implementation of this algorithm has been
extended to handle constraint addition at runtime (Petters-
son 2006). Currently supported dynamic constraints include
forbidden regions (no-fly zones) and bounds on maximum
and minimum altitude and the rate of ascent or descent.

The RRT algorithm constructs a roadmap online rather
than offline. Two trees are generated by exploring the con-
figuration space randomly from the start and end configura-
tions. At specific intervals, an attempt is made to connect
the trees. Compared to PRM, the success rate for RRT is no-
ticeably lower and the plan quality tends to be lower, with a
higher probability of anomalous detours (Pettersson 2006).
However, since RRT planners do not require extensive pre-
processing, they can be used in situations where PRM plan-
ners are inapplicable.

A path generated by our planners consists of a set of seg-
mented cubic polynomial curves. Each curve is defined by
start and end points, start and end directions, intended ve-
locity, and intended end velocity. At the control level, the
path is executed using a Dynamic Path Following (DPF)
controller (Conte, Duranti, and Merz 2004), a reference con-
troller following cubic splines.

Though paths should be collision-free, new no-fly zones
can be added by a ground operator during execution, and
unknown buildings can be detected by proximity sensors. In
case such new obstacles intersect any segment in the current
path, a UAS has a certain time window when the current
path can be updated to smoothly avoid new obstacles. Even
for a fixed choice of planner (PRM, RRT, or another alter-
native) and parameters, one can still choose between mul-
tiple strategies when determining which parts of the path
should be modified. The following are three examples, also

194

Strategy 1

Strategy 2

Strategy 3

Helicopter position

Waypoint

Final path

Invalid path
New obstacle

Figure 2: Example replanning strategies.

illustrated in Figure 2 for a short path consisting of 7 seg-
ments. Note that each strategy progressively re-uses more of
the plan that was originally generated, thus cutting down on
planning times but potentially producing less optimal plans.

Strategy 1 – Full replanning. The path is replanned from
the next waypoint to the final end point. Since this gives the
planner maximum freedom, it provides the best opportuni-
ties for generating a smooth path with a short flight time.
However, as the trajectory to be created may be long, more
time may be required for planning.

Strategy 2 – Partial replanning. Replanning starts with
the waypoint immediately preceding the new obstacle, leav-
ing all previous segments intact. This gives the planner the
maximum amount of time to generate a new plan. Since
the aircraft waits longer before diverging from the original
path, the final plan may be longer and may contain sharper
turn angles where the aircraft has to slow down. Due to the
partly random nature of each planner, it is also possible for
strategy 2 to yield a shorter plan, contrary to expectations.

Strategy 3 – Plan repair. Replanning is done only for col-
liding segments. This strategy tends to be the fastest, as
only a small part of the original path has to be altered, and
is suitable when the aircraft is already close to the obstacle
and very little time is available for replanning. However, it
also tends to lead to the lowest plan quality and may involve
sharp turns that force the aircraft to slow down.

4. Strategy Selection using Machine Learning

The obstacle avoidance problem in the unmanned aircraft
domain is most commonly handled using a reactive control
component. Such solutions unfortunately suffer from prob-
lems with local minima. For example, model predictive con-
trol (MPC, Shim, Chung, and Sastry 2006) solves the control
problem for a certain time horizon, but it does not preserve
global plan optimality.

Motion planners, on the other hand, have a global view
of the problem and can generate plans that take all known
(old and new) obstacles into account. Our objective is there-
fore to use motion planners to the maximum extent possible.

Figure 3: Reconstructed elevation map for a flight test area
based on real flight data from the laser range finder.

Each time a new obstacle or no-fly zone obstructing the cur-
rent flight path is detected, a strategy selector should deter-
mine which replanning strategy can be expected to yield the
best plan within the available time.

The amount of time we have available depends on sev-
eral factors. The most obvious ones may be the range at
which the new obstacle was detected and our current veloc-
ity. Given these factors, we can calculate the time remaining
before we reach the obstacle. However, we cannot spend all
of this time calculating a new path, or we will finish just in
time for a collision. We must reserve enough time to change
to a new trajectory. This is subsumed by the time required to
perform an emergency brake in case replanning takes longer
than we estimated. As soon as we detect a target at a given
distance, we therefore subtract the required braking distance
for our current velocity as well as a safety margin of 6 me-
ters, the minimum safe distance between the helicopter and
an obstacle. Dividing this with our current velocity gives us
the time window in which we can replan.

We use the popular Sick LMS-291 laser range finder,
mounted on a rotation mechanism developed in-house, for
obstacle detection (Figure 1). This allows one to obtain half-
sphere 3D point clouds even when a vehicle is stationary.
An example scene reconstruction from real flight test data is
shown in Figure 3.

The laser has a maximum detection range of 80 meters.
Based on experiments, the optimal detection range is 40 me-
ters. In other words, objects at a range between 40 and 80
meters may not always be detected, but if they are, the range
measurement is quite precise (± 1 meter). Thus, we will
know the distance to an obstacle as soon as it is detected.

The time required to fly any given part of a path can be
calculated using a mathematical model of the dynamic path
following controller together with the intended velocity for
each segment of the path. We can also calculate the distance
required for an emergency break at each possible velocity,
shown as a black solid line in Figure 4. The figure also de-
picts the resulting time windows available for decision mak-
ing for the Yamaha RMAX helicopter system as a function
of the current velocity. As we are mainly interested in fly-

195

Figure 4: The minimal braking distance and time windows
for the Yamaha RMAX as a function of the cruise velocity.

ing at speeds between 10 and 15 m/s, these time windows are
quite narrow. For example, assume we fly at only 10 m/s and
detect an obstacle at a range of 80 meters. Then, the braking
distance is 31.5 meters, and we have 80 − 31.5 − 6 = 42.5
meters available for replanning, which corresponds to 4.25
seconds. If the obstacle is detected at 40 meters, we have
only 0.25 seconds available.

For most strategies, calculating the expected time require-
ments for replanning is considerably less straightforward
than the time window estimation above. Timing depends on
numerous features of the current plan, the obstructed seg-
ment and the relevant areas of the map. Without taking such
information into account, we would have to fall back on a
simple approach such as strategy 3. As this strategy only
makes local repairs, it is generally faster and its time require-
ments vary less. But in many cases we do have enough time
to use better strategies – if we have the ability to predict that
this is the case for the current environment and path.

We therefore use machine learning techniques to generate
a suitable set of predictors for each particular flight environ-
ment and aircraft type, where each motion planner is viewed
as a black-box function. We assume a stationary distribu-
tion, where the relevant properties of the map do not change
over time. If signficant changes are detected, for example
because large numbers of new obstacles have been detected,
the prediction model can be recomputed for use in future
missions.

In the following subsections, we will describe the algo-
rithms we have used, the features that were selected and the
results of empirical experimentation.

input space� feature space�

��

separating
hyperplane�
���(x)+b=0�

Figure 5: Mapping and separating hyperplane.

4.1 Support Vector Machines

Several machine learning techniques were tested and com-
pared, including support vector machines (SVM) (Vapnik
1998; 1999), least median squared linear regression, gaus-
sian processes for regression, isotonic regression, and nor-
malized Gaussian radial basis function networks.

With their high generalization performance and ability
to model non-linear relationships, support vector machines
have been shown to outperform other alternatives in many
applications. They are applicable to many real-world prob-
lems such as document classification and pattern recognition
(Vapnik 1999), face detection and recognition (Li 2004) and
vehicle detection (Sun 2005). As it turns out, SVMs also
yielded the smallest prediction errors for our domain.

The idea underlying (non-linear) support vector machines
is that n-dimensional input training data can be mapped by a
non-linear functionΦ into a high-dimensional feature space,
where the resulting vectors are linearly separable (Figure 5).
One then constructs a separating hyperplane with maximum
margin in the feature space. Consider a classification prob-
lem where xi ∈ Rn for i = 1, ..., l is a training set of size l
and yi = ±1 are class labels. Given a suitable Φ, the SVM
method finds an optimal approximation f (x) = ω · Φ(x) + b
such that f (x) > 0 for positive examples and f (x) < 0 for
negative examples, where ω ∈ Rn is a vector perpendicular
to the separating hyperplane and b ∈ R is an offset scalar.
This is referred to as Support Vector Classification (SVC).

The SVM approach can also be used for solving regres-
sion problems (Support Vector Regression, SVR), where
each xi in the training set is associated with a target value
yi ∈ R. The SVR tries to find a function f (x) that can
be used for accurate approximation of future values. The
generic SVR function can be written as

f (x) = ω · Φ(x) + b

and can be solved by maximizing W(α∗, α) =

−1
2

l∑
i, j=1

(αi − α∗i)(α j − α∗j)Φ(xi) · Φ(x j)

−ε
l∑

i=1

(αi + α
∗
i) +

l∑
i=1

yi(αi − α∗i)

where αi and α∗i are Lagrange multipliers, subject to

l∑
i=1

(αi − α∗i) = 0 and αi, α
∗
i ∈ [0,C]

196

which provides the solution

f (x) =
l∑

i=1

(αi − α∗i)(Φ(x) · Φ(xi)) + b

As expressed above, dot products are calculated in a high-
dimensional or possibly infinite-dimensional space. This
can often be avoided by replacingΦ(xi)·Φ(x j) with a suitable
kernel function K(xi, x j) satisfying the conditions of Mer-
cer’s theorem. We have used the Pearson VII Universal Ker-
nel (PUK) (Üstün, Melssen, and Buydens 2006):

K(xi, x j) =
1[

1 +
(
2
√‖ xi − x j ‖2

√
21/ω − 1 /σ

)2]ω

The PUK provides equal or stronger mapping power com-
pared to several standard kernels, and can be used as a
generic alternative to the common linear, polynomial and
Radial Basis Function (RBF) kernels. We use iterative Se-
quential Minimal Optimization (SMO) (Smola 2004; She-
vade 2000) to solve the regression problem, which has min-
imal computational requirements (Witten and Frank 2005).

4.2 Prediction features

Many parameters influencing planning time and plan quality
were considered as potential inputs to the SVR algorithm.
After empirical testing, a set of features were selected which
produced good results. The following input features were
used for building the prediction models (all normalized to
the range of [-1,1]):

• Information about the initial plan: number of segments,
path length, estimated flight time, time required for ini-
tial plan generation, and the target velocity. Information
about static obstacles, such as buildings, trees and static
no-fly zones, is implicit in these measures.

• Information about dynamically added obstacles (includ-
ing no-fly zones): total area and number of all new ob-
stacles in region 0 , region 1, region 2, region 3, and the
entire map (see Figure 6).

• Information about the obstructed segment: number of
segments from the current point to the obstructed seg-
ment, and Euclidean distance between the start and the
end of the obstructed segment.

Correlation-based feature selection (Hall 2000) was used to
assess the relevance of these features relative to the six re-
planning strategies and the two quantities to be predicted
(time requirements and plan quality). The results differed
considerably across the twelve cases and may also be de-
pendent on the map being used. As support vector machines
are quite robust against the inclusion of irrelevant features,
we decided to use the full set of features for all prediction
models.

We currently use 2D area information for dynamically
added obstacles, but may augment this with 3D obstacle vol-
umes in the future. The parameters d1, d2 and d3 in Figure 6
were chosen empirically and for our test models were equal

region 0

region 1

region 2

region 3

No-fly zone area:

d1

d2

d3

Figure 6: No-fly zone area calculation.

to 20, 40 and 60 meters, respectively. The choice of param-
eters can be automated by building a set of models using
the training set for different values of di and comparing the
resulting prediction accuracy on the test set.

4.3 Experimental Results

The method has been evaluated on two environments of dif-
ferent complexity. The first environment is a 3D model of
a real flight test venue, an urban area of approximately 1
km2. It consists of 205 buildings and other structures (e.g.
trees) constructed by around 20000 polygons. The model
has a simplified flat ground elevation representation. The
second environment extends the first by adding ground el-
evation data, increasing the number of polygons in the 3D
model to 120000. Maps were generated using manned air-
craft with a laser sensor, with an accuracy of 10 cm. Experi-
ments take place in hardware-in-the-loop simulation with all
the necessary services running as in a real flight.

We began the learning process using the PRM planner
with a 5-dimensional configuration space (3-dimensional
position plus 2-dimensional direction of flight). A set of
1500 training samples was used for each of the two envi-
ronments. Each sample was generated in the simulation
environment as follows. First, a random number of no-fly
zones in the range from 1 to 15 were added to the environ-
ment. Then, an initial path was generated by the planner,
with start and goal positions chosen randomly within the en-
vironment. A single no-fly zone was used to randomly ob-
struct one of the initial path segments, corresponding to an
obstacle newly detected by the laser range finder. Finally,
six plan repair strategies were applied and the resulting tim-
ing and path quality values were logged. Strategies 1a, 2a
and 3a were configured as shown in Figure 2 using a sparse
2000-node roadmap. Strategies 1b, 2b and 3b are similar,
but use a denser 7000-node roadmap.

All the experiments presented in this section were per-
formed with a fixed target velocity of 10 m/s and distances
between start and goal configurations greater than 700 m.
This setup allows us to present the results in a clear way and
compare optimal and worst case scenarios over all 500 test
cases that were generated for the evaluation. The perfor-
mance of the machine-learned models is similar in the cases
where these assumptions are not present.

SVR parameter tuning was performed using exhaustive
grid search over the kernel parameters σ and ω. Other pa-

197

Environ-
ment

St
ra

te
gy

Nodes
Model Evaluation Results

Replanning time Flight time
prediction [%] prediction [%]

1

1a 2000 −0.06 ± 4.17 −0.85 ± 4.35
2a 2000 −1.49 ± 7.85 0.06 ± 2.82
3a 2000 −1.25 ± 21.38 0.38 ± 2.17
1b 7000 −0.23 ± 1.72 0.49 ± 4.46
2b 7000 −0.86 ± 7.51 −0.17 ± 2.70
3b 7000 −0.14 ± 8.69 0.35 ± 1.80

2

1a 2000 −0.38 ± 6.13 0.84 ± 4.40
2a 2000 −1.05 ± 13.60 0.35 ± 3.00
3a 2000 −0.73 ± 23.94 0.31 ± 3.31
1b 7000 −0.20 ± 4.48 0.56 ± 3.95
2b 7000 −2.55 ± 11.23 0.09 ± 2.42
3b 7000 0.30 ± 10.08 0.23 ± 2.16

Table 1: Relative mean error of prediction and standard de-
viation for the PRM planner.

rameters (i.e. the C and ε constants for support vector re-
gression) were chosen manually.
Prediction quality. 500 samples were used for the eval-
uation. For each sample, we calculated the relative error of
prediction for both plan quality and replanning time, defined
as (yi − ŷi)/yi, where ŷi is the prediction and yi is the mea-
sured value. Table 1 presents the mean of the relative errors
(the Relative Mean Error of Prediction, RMEP) and their
standard deviation for each environment and strategy.

As seen in the table, the quality of a repaired path (ex-
pressed as the required flight time for the path) can be pre-
dicted with high accuracy for each of the six strategies and
in each of the environments. More importantly the standard
deviation of the error is also quite small, ranging from 1.80%
to 4.46%, demonstrating that the prediction rarely deviates
greatly from the true value. The deviation is greater for
strategies 1a/b, where a larger part of the path is replanned.

We can also see that it is somewhat more difficult to pre-
dict the time required for replanning. However, using a
greater number of nodes decreases variability considerably.
Part of the remaining variation is due to unavoidable factors
such as processor load and Java garbage collection.

For each environment, we have analyzed what these pre-
diction properties mean in terms of enabling us to satisfy
our main objective: choosing the highest quality replanning
strategy that is possible given the available time.

To make this choice for a particular path and environment,
we first predict the expected replanning time and the ex-
pected resulting plan quality for each of the six strategies.
We then use the highest-quality strategy among those whose
predicted replanning time is sufficiently low. This leads to
the question of what “sufficiently low” means. The simplest
criterion would be that the predicted replanning time does
not exceed our current time window. However, the predicted
time is an expected value, not an upper bound. Using this
criterion, there may be a significant risk that the time win-
dow is exceeded. An alternative would be to add one or two
standard deviations to the predicted time, and choose among
those strategies where this estimate does not exceed the time

0 200 400 600 800 1000 1200 1400 1600 1800 2000

95

100

105

110

115

120

Decision Time Window [ms]

F
lig

ht
 ti

m
e

[s
]

mean flight time, direct
mean flight time, 1−sigma
mean flight time, 2−sigma
mean flight time, default strategy 3a
mean flight time, default strategy 3b
mean best flight time

Figure 7: Plan quality (flight time) as a function of the avail-
able decision time window for environment 1.

window. The results of using these three decision criteria are
presented in several graphs.
Plan quality. Figure 7 is generated from testing in environ-
ment 1, and presents the mean flight time (over 500 samples)
as a function of the available decision time window.

With a time window of only 50 ms, strategy 3a is chosen
for all samples and all three time-dependent decision cri-
teria (direct, 1-sigma and 2-sigma). This leads to a mean
flight time of around 118 seconds. When the time window
increases, higher quality strategies are predicted to succeed
for some of the samples, and the mean flight time steadily
decreases. As expected, flight times decrease more quickly
for the direct criterion, where no safety margins in terms of
plan generation time are added.

As stated before, the best option available without predic-
tive abilities is to use a strategy that is very fast regardless of
the environment or the properties of the original path. Strate-
gies 1a/b and 2a/b regenerate a large part of the path, and
therefore require more time than strategies 3a/b. They also
vary more depending on the environment. Thus, strategies
3a/b are more suitable as baselines with which our results
are compared. As these baselines do not take time windows
into account, we see them as straight lines at approximately
118 and 116 seconds of flight time, respectively.

For comparison, we also show the mean flight time that
would result from always using the best possible strategy:
Slightly less than 95 seconds for the average sample. Real-
izing this in practice would require a very long time window,
with sufficient time to run all strategies and choose the best
result. As seen in the figure, the three decision criteria based
on machine learning tend to reach a quality level quite close
to this optimum given a sufficiently large time window.
Success rates. Figure 8 shows the success rates for each de-
cision criterion. Here we see the flip side of the improved
flight times for the direct criterion: With time windows up
to around 700 ms, this criterion fails to deliver plans on time
in up to 5% of the cases. Whether this is acceptable de-

198

0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Decision Time Window [ms]

S
uc

ce
ss

 r
at

e
[%

]

mean success rate, direct
mean success rate, 1−sigma
mean success rate, 2−sigma
mean success rate, default strategy 3a
mean success rate, default strategy 3b

Figure 8: Success rate of execution of the chosen strategy in
the available decision time window for environment 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

85

90

95

100

105

110

Decision Time Window [ms]

F
lig

ht
 ti

m
e

[s
]

mean flight time, direct
mean flight time, 1−sigma
mean flight time, 2−sigma
mean flight time, default strategy 3a
mean flight time, default strategy 3b
mean best flight time

Figure 9: Plan quality (flight time) as a function of the avail-
able decision time window for environment 2.

pends on the application at hand and the penalty associated
with having to slow down or stop. The 1- and 2-sigma cri-
teria are considerably better in this respect, and can hardly
be discerned from each other in the graph. Always using
strategy 3a yields the highest success rate (but the lowest
quality). Strategy 3b often requires several hundred ms and
thus yields a very low success rate for shorter time windows.
Second environment. Figures 9 and 10 show the corre-
sponding results for environment 2. Due to the slightly
larger prediction errors in this environment, the mean suc-
cess rate for the direct criterion is somewhat worse. How-
ever, the 1-sigma and 2-sigma criteria still yield consider-
ably better plans than either of the fixed strategies (3a/b) for
time windows of around 400 ms and up.

Predictions for RRT. A similar predictive model has been
built for the RRT planner. As could be expected, prediction

0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Decision Time Window [ms]

S
uc

ce
ss

 r
at

e
[%

]

mean success rate, direct
mean success rate, 1−sigma
mean success rate, 2−sigma
mean success rate, default strategy 3a
mean success rate, default strategy 3b

Figure 10: Success rate of execution of the chosen strategy
in the available decision time window for environment 2.

is generally not as accurate for this planner, with a higher
relative mean error of prediction. This is mostly due to the
more random nature of the RRT algorithm: Instead of using
a single sampled roadmap for all queries, the RRT randomly
explores the environment from the start and goal position
for each single planning query. Time requirements and plan
quality still depend on the selected features, such as the area
of the newly detected obstacle or obstacles, but also have a
significant random component, making the construction of a
prediction model with high accuracy considerably harder.

5. Related work

In the framework proposed by Morales et al. (2004), a set
of planners can cooperate to generate a roadmap covering a
given environment. Machine learning is used to divide the
environment into regions that are homogeneous with respect
to certain features, such as whether obstacles are dense or
sparse, after which a suitable planner is chosen for each re-
gion. Region-specific roadmaps are then created and even-
tually merged. This approach shows promising results, but
is explicitly limited to roadmap-based planning and does not
handle the choice of replanning strategy.

A similar approach is presented in Rodriguez et al. (2006),
where the strategies used by the RESAMPL motion planner
are guided by the entropy of each region.

Burns (2005) proposes a model-based motion planning
technique, where an approximate model of the configuration
space is built using locally weighted regression in order to
increase planner performance and make predictions about
unexplored regions. Although the technique can be used
for problems involving motion planning in dynamic environ-
ments it does not explicitly consider time constraints. Ma-
chine learning is used to provide faster solutions, but there is
no attempt at providing the best possible solution for a given
time window, which is required for our problem.

Hrabar (2006) presents a UAS system using a stereo-
vision sensor for obstacle avoidance. A∗ search is used

199

within the PRM planner to calculate the initial path. When
an obstacle is detected, D∗ search is used (Stentz 1995). In
this approach there is no consideration for how much time
replanning may require. It is assumed that the aircraft can
stop and hover, potentially excluding the use of this tech-
nique for platforms such as fixed-wing aircraft. The pre-
sented experiments use a flight velocity of 0.5 m/s.

A number of motion replanning algorithms have been pro-
posed in the literature, including DRRT (Ferguson, Kalra,
and Stentz 2006) and ADRRT (Ferguson and Stentz 2007).
These algorithms incrementally generate improved solu-
tions, thereby spending part of their time on generating solu-
tions that will not be used. In contrast, our framework uses
machine learning to determine suitable bounds for replan-
ning in advance, spending almost all available time generat-
ing the final solution.

6. Conclusions

When an unmanned aircraft detects an obstacle ahead, there
is generally little time available for replanning. Reactive be-
haviors for collision avoidance suffer from problems with
local minima. Additionally, they solve the problem locally
without a global overview of the environment, which may
lead to highly suboptimal paths. Instead, we can identify
a number of replanning strategies that vary in time require-
ments as well as in the resulting plan quality. Much can then
be gained by choosing the highest quality strategy that does
not exceed the given time window. We have applied ma-
chine learning techniques to this problem, with promising
results in empirical testing: In each test environment, flight
times could be improved up to 25% compared to the use of a
fixed replanning strategy, resulting in times close to the best
achievable with the available planning algorithms.

Acknowledgments. This work is partially supported by grants
from the Swedish Research Council VR, the Swedish Foundation
for Strategic Research (SSF) Strategic Research Center MOVIII,
the Swedish Research Council (VR) Linnaeus Center CADICS,
the Center for Industrial Information Technology CENIIT, the
ELLIIT network for Information and Communication Technology,
and LinkLab.

References

Burns, B., and Brock, O. 2005. Sampling-based motion
planning using predictive models. In Proc. IEEE Interna-
tional Conference on Robotics and Automation.
Conte, G.; Duranti, S.; and Merz, T. 2004. Dynamic 3D
path following for an autonomous helicopter. In Proc. IFAC
Symp. on Intelligent Autonomous Vehicles.
Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Nyblom, P.;
Persson, T.; and Wingman, B. 2004. A distributed architec-
ture for autonomous unmanned aerial vehicle experimenta-
tion. In Proc. DARS.
Ferguson, D., and Stentz, A. T. 2007. Anytime, dynamic
planning in high-dimensional search spaces. In Proc. ICRA.
Ferguson, D.; Kalra, N.; and Stentz, A. T. 2006. Replanning
with RRTs. In Proc. ICRA.

Hall, M. 2000. Correlation-based feature selection for dis-
crete and numeric class machine learning. In Proc. ICML.
Hrabar, S. 2006. Vision-Based 3D Navigation for an Au-
tonomous Helicopter. Ph.D. Dissertation, University of S.
California.
Kavraki, L. E.; S̆vestka, P.; Latombe, J.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566–580.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Proc.
ICRA.
Li, Y. 2004. Support vector machine based multi-view
face detection and recognition. Image and Vision Computing
22(5):413–427.
Morales, M.; Tapia, L.; Pearce, R.; Rodriguez, S.; and Am-
ato, N. M. 2004. A machine learning approach for feature-
sensitive motion planning. In Proc. Int. Workshop on the
Algorithmic Foundations of Robotics.
Pettersson, P.-O. 2006. Using Randomized Algorithms for
Helicopter Path Planning. Licentiate thesis, Linköping Uni-
versity.
Rodriguez, S.; Thomas, S.; Pearce, R.; and Amato, N. M.
2006. RESAMPL: A region-sensitive adaptive motion plan-
ner. In Proc. Int. Workshop on the Algorithmic Foundations
of Robotics.
Shevade, S. K. 2000. Improvements to the SMO algorithm
for SVM regression. IEEE Transactions on Neural Networks
11(5):1188–1193.
Shim, D.; Chung, H.; and Sastry, S. 2006. Conflict-free
navigation in unknown urban environments. Robotics & Au-
tomation Magazine, IEEE; 13(3):27–33.
Smola, A. 2004. A tutorial on support vector regression.
Statistics and Computing 14(3):199.
Stentz, A. 1995. Optimal and efficient path planning for
unknown and dynamic environments. International Journal
of Robotics and Automation 10(3):89–100.
Sun, Z. 2005. On-road vehicle detection using evolutionary
Gabor filter optimization. IEEE Transactions on Intelligent
Transportation Systems 6(2):125–137.
Üstün, B.; Melssen, W.; and Buydens, L. 2006. Facilitat-
ing the application of support vector regression by using a
universal Pearson VII function based kernel. Chemometrics
and Intelligent Laboratory Systems 81:29–40.
Vapnik, V. 1998. Statistical Learning Theory. Wiley-
Interscience.
Vapnik, V. 1999. The Nature of Statistical Learning Theory.
Springer.
Witten, I., and Frank, E. 2005. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann,
second edition.
Wzorek, M.; Conte, G.; Rudol, P.; Merz, T.; Duranti, S.;
and Doherty, P. 2006. From motion planning to control - a
navigation framework for an autonomous unmanned aerial
vehicle. Proc. 21st Bristol UAV Systems Conference.

200

