
Learning User Plan Preferences Obfuscated by Feasibility Constraints

Nan Li, William Cushing, Subbarao Kambhampati∗, and Sungwook Yoon
School of Computing and Informatics

Arizona State University
Tempe, Arizona 85281 USA

{nan.li.3,wcushing,rao,sungwook.yoon}@asu.edu

Abstract

It has long been recognized that users can have complex pref-
erences on plans. Non-intrusive learning of such preferences
by observing the plans executed by the user is an attractive
idea. Unfortunately, the executed plans are often not a true
representation of user preferences, as they result from the in-
teraction between user preferences and feasibility constraints.
In the travel planning scenario, a user whose true preference
is to travel by a plane may well be frequently observed travel-
ing by car because of feasibility constraints (perhaps the user
is a poor graduate student). In this work, we describe a novel
method for learning true user preferences obfuscated by such
feasibility constraints. Our base learner induces probabilis-
tic hierarchical task networks (pHTNs) from sets of training
plans. Our approach is to rescale the input so that it repre-
sents the user’s preference distribution on plans rather than
the observed distribution on plans.

Introduction

It is well known that users may have complex preferences
on the plans they would like to execute. While taking pref-
erences into consideration during plan generation has been
an active area of research (Baier and McIlraith 2008), learn-
ing a user’s planning preferences is an emerging area of re-
search. Since interactive elicitation of user preferences can
be time-consuming and error-prone, the work in this area has
focused on passive learning by observing the plans executed
by the user. One challenge here is that executed plans are
not an accurate reflection of the user’s true preferences, but
rather preferences modulated by feasibility constraints. For
example, a (poor) graduate student that prefers to travel by
plane may instead be frequently observed traveling by car.
In other words, by observing the plans executed by the user
we can relatively easily learn what the user usually does,1

and so can predict their behavior as long as feasibility con-
straints remain the same. It is a much trickier matter to infer
what the user truly prefers to do, and it is this piece of knowl-
edge that would allow predicting what the user will do in a
novel situation.

∗Kambhampati’s research is supported in part by the ONR grant
N00014-09-1-0017 and the NSF grant IIS-0905672.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A useful piece of knowledge in the plan recognition sce-
nario (Geib and Steedman 2007).

The objective of this paper is to explore ways in which we
can learn true user preferences despite obfuscation from fea-
sibility constraints. In general, this problem is impossible to
solve completely, for many reasons. The user’s preferences
could change over time, they may very well be inconsistent
(i.e. contradictory), the user may not have realized all of the
options available to them (and so we observe them choosing
a less preferred plan), the user’s preferences could depend
on variables we cannot observe, our observations might be
very noisy, and so forth. Nonetheless we pursue the goal: an
automatic system, operating without elicitation, that could
guess user’s preferences approximately correctly much of
the time would be quite useful.

Towards this end, we describe a novel, but intuitive, ap-
proach for rescaling/reweighting observed plans in order to
undo the filtering caused by feasibility constraints. We build
upon our recent work in learning preferences on plans (Li,
Kambhampati, and Yoon 2009). That learner induces a
“grammar”, in the form of a probabilistic hierarchical task
network (pHTN), in order to reproduce its input distribu-
tion on plans (represented as a (weighted) set). In this work,
then, we build on that approach by altering the relative fre-
quencies of observed plans so that the distribution approxi-
mates the user’s preferred distribution on plans. The idea is
to automatically generate alternatives (e.g. by an automated
planner) to the user’s observed behavior, and assume that the
observed behavior is preferred to the alternatives. This gives
a large set of pairwise preferences, which we then transi-
tively close (roughly speaking). So, then, the system is ca-
pable of taking an informed guess at which of two plans,
previously never possible together, would be preferred in a
novel situation (where both are possible).

First we discuss our algorithm for rescaling training data.
Then, as we have not (yet) connected an automated plan-
ner, we design a random distribution on solutions, modeling
feasibility constraints, in order to evaluate the rescaling tech-
nique.

Learning Preferences

We assume that we can directly observe a user’s behavior,
for example by building upon the work in plan recognition,
and that we have access to the set of alternative solution
plans a user could have employed in that situation, for ex-
ample by building upon the work in automated planning.

370

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

Figure 1: Preferences of a potential user.

Table 1: An example (learned) pHTN.

Travel → 0.2, A2 B1 Travel → 0.8, A1 B2

B1 → 1.0, A1 A3 B2 → 1.0, A2 A3

A1 → 1.0, Buyticket A2 → 1.0, Getin
A3 → 1.0, Getout

So each training episode consists of an observed solution
along with a set of alternative solutions.2 We will use an
abstract domain modeling traveling for running examples
(“the Travel domain”). Figure 1 depicts the qualitative pref-
erences, as a hierarchical task network, of one possible user
in this domain — a user that loathes hitchhiking.

Input. The input of the learning system is a list of records,
R = r1, r2, . . . , rm. Each record, r, consists of a set of
(solution) plans, S(r) : {s1, s2, . . . , sn}, and the observed
plan, O(r) ∈ S(r).

Since each input record is only capable of expressing
preferences among feasible plans (the selected plan is pre-
ferredto the alternatives), user preferences among some
plans may have never been revealed by the input. For exam-
ple, consider a user that prefers traveling by car rather than
by hitchhiking, and prefers traveling by plane rather than by
train. Then there is no information about whether cars are
preferred to planes, or trains to hitchhiking, and so forth. So
there are three possible answers to “Is A preferred to B?”:
yes, no, and unknown.

We learn such partial orders on plans (partially known
preferences) by learning a set of total orders on subsets of
all plans.Suppose we have two knowledge sources H1 and
H2 such that plans A and B belong to the domain of H1

and plans C and D belong to the domain of H2. Then we
can answer a query on A and B, or on C and D, by con-
sulting H1 or H2 respectively, but a query on A and C is
unknown, because C is not in the domain of H1 and A is
not in the domain of H2. Note this abstract example models
the preceding concrete example. We learn partially known
preferences by posing several learning problems to the base
learner rather than a single learning problem.

Output of rescaling, Input of learning. The result
of rescaling is a list of weighted plan clusters, C =
c1, c2, . . . , ck. Each cluster, c, consists of a set of plans
and associated weights; we write p ∈ c for membership and

2Or if you prefer, each training episode consists of a planning
problem and an observed solution, from which a set of (alternative)
solutions could be inferred prior to (or during) rescaling.

wc(p) for the associated weight.

pHTN. The base learner (Li, Kambhampati, and Yoon
2009) exploits the connection between context-free gram-
mars (CFGs) and (simple) hierarchical task networks
(SHTNs (Nau et al. 1999)), borrowing a probabilistic gram-
mar induction technique (Lari and Young 1990) and apply-
ing it to planning in order to learn probabilistic (simple) hi-
erarchical task networks (pHTNs). We will use parsing and
task reduction terminology interchangeably. Table 1 demon-
strates a learned pHTN for the Travel domain.3

Given a pHTN H and a plan p we can efficiently compute
a) the most probable parse of p by H and b) the (a priori)
likelihood of a given parse tree. We will write lH(p) for the
likelihood of the most probable parse of p (and abbreviate
with l(p) when H is clear in context). We say p is preferred
to q (by H) if l(p) > l(q). Similarly we say p is (definitely)
not preferred to q if l(p) < l(q). Finally, if either p or q
fails to be parsable (by H) then we say that the preference
between p and q is unknown.

Output of learning. The result of learning is a list of pH-
TNs, H = H1, H2, . . . , Hk, each “grammar” approximating
the input weighted plan cluster of the same index.

In the following we give the details of the rescaling step
and refer the reader to our previous work for the details of
the learning step (Li, Kambhampati, and Yoon 2009).

Clustering. First we collapse all of the input records from
the same or similar situations into single weighted clusters,
with one count going towards each instance of an observed
plan participating in the collapse. For example, suppose we
observe 3 instances of Gobyplane chosen in preference to
Gobytrain and 1 instance of the reverse. Then we will end
up with a cluster with weights 3 and 1 for Gobyplane and
Gobytrain respectively. In other words wc(p) is the number
of times p was chosen by the user in the set of situations
collapsing to c (or ε if p was never chosen). This happens in
lines 2–20 of Algorithm 1.

Transitive Closure. Next we make indirect inferences be-
tween clusters; this happens by iteratively merging clusters
with non-empty intersections. Consider two clusters, c and
d, in the Travel domain. Say d contains Gobyplane and
Gobytrain with counts 3 and 1 respectively, and c contains
Gobytrain and Gobybike with counts 5 and 1 respectively.
From this we infer that Gobyplane would be executed 15
times more frequently than Gobybike in a situation where
all 3 plans (Gobyplane, Gobytrain, and Gobybike) are possi-
ble, since it is executed 3 times more frequently than Goby-
train which is in turn executed 5 times more frequently than
Gobybike. We represent this inference by scaling one of the
clusters so that the shared plan has the same weight, and
then take the union. In the example, supposing we merge
d into c, then we scale d so that c ∩ d = {Gobytrain}
has the same weight in both c and d, i.e. we scale d by

3The nonprimitives, except the top level, lack descriptive
names because the grammar is automatically learned from only
(weighted) primitive action sequences; there are so many because
it is easier to process grammars in Chomsky normal form. Note
that we optimize pHTNs for computer, not human, readability.

371

Algorithm 1: Rescaling

Input: Training records R.
Output: Clusters C.
initialize C to empty1

forall r ∈ R do2

if ∃c ∈ C such that S(r) ⊆ c or S(r) ⊇ c then3

forall p ∈ S(r) \ c do4

add p to c with wc(p) := ε5

end6

if wc(O(r)) ≥ 1 then7

increment wc(O(r))8

else9

wc(O(r)) := 110

end11

else12

initialize c to empty13

add c to C14

forall p ∈ S(r) do15

add p to c with wc(p) := ε16

end17

wc(O(r)) := 118

end19

end20

while ∃c, d ∈ C such that c ∩ d
= ∅ do21

sum ratios := 022

forall p ∈ c ∩ d do23

sum ratios += wc(p)/wd(p)24

end25

scale := sum ratios/|c ∩ d|26

forall p ∈ d \ c do27

add p to c with wc(p) := wd(p) ∗ scale28

end29

remove d from C30

end31

return C32

5 = wc(Gobytrain)/wd(Gobytrain). For pairs of clusters
with more than one shared plan we scale d\c by the average
of wc(·)/wd(·) for each plan in the intersection, and leave
the weights of c ∩ d as in c. Computing the scaling factor
happens in lines 21–26 and the entire merging process hap-
pens in lines 21–31 of Algorithm 1.

Learning. Finally we learn a grammar for each of the re-
maining clusters in C. This is done with the method in (Li,
Kambhampati, and Yoon 2009). Summarizing, there are
2 major steps. First a greedy analysis proposes a sufficient
variety of possible method reductions so that each of the in-
put action sequences can be parsed. Then an expectation-
maximization method is run to set the probabilities across
each potential reduction of a method, aiming at finding the
probabilistic task network that best fits the input distribution
(but it is a local search).

Ultimately we arrive at a list of pHTNs (H =
H1, . . . , Hk), each capturing the user’s preferences in one
cluster of similar situations. Plans that can be generated by
the same pHTN (with non-zero probability) are comparable
in that pHTN, based on the likelihood of the most proba-
ble parse for each, and are otherwise incomparable (by that
pHTN). If some pair of plans is comparable in several pH-
TNs (due to the generalization caused by learning a “gram-

1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

log (Number of Training Records / 5)

A
ve

ra
ge

 S
co

re

OA
EA

(a)

5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

Number of Nonprimitives

A
ve

ra
ge

 S
co

re

OA−NR
EA−NR
OA−R
EA−R

(b)

Figure 2: Experimental results for random H∗. “EA” is
learning with rescaling and “OA” is learning without rescal-
ing. (a) Learning rate. (b) Size dependence: “R” for recur-
sive H∗ and “NR” for non-recursive H∗.

mar”, as the input clusters were disjoint) then we take a sim-
ple majority vote (without tie-breaking).

Evaluation

We are primarily interested in evaluating the rescaling exten-
sion of the learning technique, i.e., the ability to learn prefer-
ences despite constraints. We design a simple experiment to
demonstrate that learning purely from observations is easily
confounded by constraints placed in the way of user pref-
erences, and that our rescaling technique is able to recover
preference knowledge despite obfuscation.

Setup

Performance. We take an oracle-based experimental strat-
egy, that is, we imagine a user with a particular ideal pHTN,
H∗, representing that user’s preferences, and then test the ef-
ficacy of the learner at recovering knowledge of preferences
based on observations of the imaginary user. After training
the learner produces H; to evaluate the effectiveness of H
we pick random plan pairs and ask both H∗ and H to pick
the preferred plan. There are three possibilities: H agrees
with H∗ (+1 point), H disagrees with H∗ (-1 point), and H
declines to choose (0 points)4.

The distribution on testing plans is not uniform and will be
described below. The number of plan pairs used for testing
is scaled by the size of H∗; 100t pairs are generated, where
t is the number of nonprimitives. The final performance for
one instance of the “game” is the average number of points
earned per testing pair. Pure guessing, then, would get (in
the long-term) 0 performance.

User. We carry out two kinds of experiments, distinguished
by the distribution on imaginary users. In the first kind we
randomly generate pHTNs. These experiments are further
divided by generating either non-recursive or recursive pH-
TNs. In the second kind we design a particular pHTN by
hand, modeling our own preferences in a few benchmark
domains.

Training Data. For both randomly generated and hand-
crafted users we use the same framework for generating

4This gives rescaling a potentially significant advantage, as
learning alone always chooses. We also tested scoring “no choice”
at -1 point; the results did not (significantly) differ.

372

training data. To generate random problems we instead gen-
erate random solution sets (as there is no domain theory or
planner in the system (yet)). That is, we model feasibility
constraints using a particular random distribution on solu-
tion sets. We begin by constructing a list of plans, P , from
100t samples of H∗, removing duplicates (so |P| ≤ 100t).
Due to duplicate removal, less preferred plans occur later
than more preferred plans (on average). We reverse that
order, and associate P with (a discrete approximation to)
a power-law distribution. Both training and test plans are
drawn from this distribution. Then, for each training record
r, we take a random number5 of samples from P as S(r).
We pick the observed plan, O(r), from S(r) based on H∗.

Note that the random solution sets model the “worst case”
of feasibility constraints, in the sense that it is the least pre-
ferred plans that are most often feasible — much of the time
the imaginary user is forced to pick the least bad of a set of
all bad options (relatively speaking).

Baseline. The baseline for our experiments will be our prior
work, that is, the learning component without rescaling. We
generate a single cluster with w(p) = |{i : p = O(ri)}|
(the weight of a plan is the number of times it is observed),
and run the original learning algorithm on that, producing a
single pHTN: H = H1.

All of the experiments were run on a 2.13GHz Windows
PC with 1.98GB of RAM. The cpu time spent was less than
4 milliseconds per record; i.e. overall learning time was al-
ways small. So the main point of interest is the quality of
the learned knowledge, that is, the performance of H in the
described “game”.

Random H∗

Rate of Learning. In order to test the learning rate, we first
measured performance for H∗ with a fixed number (5) of
nonprimitives, varying the number of training records, av-
eraging over 100 samples of H∗. The results are shown
in Figure 2(a). We can see that with a large number of
training records, rescaling before learning is able to cap-
ture nearly full user preferences, whereas learning alone per-
forms slightly worse than random chance. This is expected
since without rescaling the learning is attempting to repro-
duce its input distribution, which was the distribution on ob-
served plans — and “feasibility” is inversely related to pref-
erence by construction. That is, given the question “Is A
preferred to B?” the learning alone approach instead an-
swers the question “Is A executed more often than B?”.

Size Dependence. We also tested the performance of the
two approaches under varying number of nonprimitives (us-
ing 50t training records); the results are shown in Figure
2(b). For technical reasons, explored in (Li, Kambham-
pati, and Yoon 2009), the base learner is much more ef-
fective at recovering user preferences when these take the
form of recursive schemas, so there is less room for im-
provement. Nonetheless the rescaling approach outperforms
learning alone in both experiments.

5The number of samples taken is selected from |P| ·
|N(0, 1)|/2, subject to minimum 2 and maximum |P|.

Hand-crafted H∗

In the second set of experiments, we designed pHTNs mod-
eling our preferred solutions in the Logistics and Gold Miner
domains. At the level of abstraction used the experimental
setup described generates sets of “feasible” plans that are, in
fact, sets of feasible solutions to some problem.

Logistics Planning. The domain we used in the first ex-
periment is a variant of the Logistics domain. There are 4
primitive actions, load, fly, drive and unload in this domain,
and 11 nonprimitives in our pHTN (H∗) for this domain.
We presented 550 training records to both learning systems.
Learning alone only scored 0.342, whereas rescaling before
learning performed significantly better with a score of 0.847.

Gold Miner: The second domain we used is Gold Miner.
There are 5 primitive actions move, getLaserCannon, shoot,
getBomb and getGold. Our strategy for this domain is: 1)
get the laser cannon, 2) shoot the rock until reaching the
cell next to the gold, 3) get a bomb, 4) use the bomb to
get gold. Our encoding of this strategy in a pHTN uses 12
nonprimitives. We trained both approaches with 600 exam-
ples. Learning alone performed reasonably well with a score
0.605, still, rescaling before learning performed even better
with a score of 0.706.

The preference in Logistics for nonrecursive reductions
over recursive reductions of various nonprimitives is much
sharper than in Gold Miner, so the qualitative difference in
performance between the two domains could be understood
as the same qualitative difference in the experiments with
non-recursive and recursive random schemas (Figure 2(b)).

Conclusion

In this work we explored acquiring hierarchical user pref-
erences from user behavior obfuscated by feasibility con-
straints. We take the approach of adjusting the observed
frequencies of plans to fit the user’s (inferred) preferred dis-
tribution rather than the observed, executed, distribution on
plans. We evaluated this approach with random and hand-
crafted preferences against a “worst-case” model of feasi-
bility constraints, and showed that rescaling the observed
distribution before learning was significantly more effective
than learning only off of observed behavior (Li, Kambham-
pati, and Yoon 2009).

References

Baier, J. A., and McIlraith, S. A. 2008. Planning with
preferences. In AI Magazine.

Geib, C. W., and Steedman, M. 2007. On natural language
processing and plan recognition. In IJCAI.

Lari, K., and Young, S. J. 1990. The estimation of stochas-
tic context-free grammars using the inside-outside algo-
rithm. Computer Speech and Language.

Li, N.; Kambhampati, S.; and Yoon, S. 2009. Learn-
ing probabilistic hierarchical task networks to capture user
preferences. In IJCAI.

Nau, D. S.; Cao, Y.; Lotem, A.; and Hector Mu n.-A. 1999.
Shop: Simple hierarchical ordered planner. In IJCAI.

373

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

