
Using Distance Estimates in Heuristic Search

Jordan T. Thayer and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

jtd7, ruml at cs.unh.edu

Abstract

This paper explores the use of an oft-ignored information
source in heuristic search: a search-distance-to-go estimate.
Operators frequently have different costs and cost-to-go is not
the same as search-distance-to-go. We evaluate two previous
proposals: dynamically weighted A∗ and A∗

ε
. We present a

revision to dynamically weighted A∗ that improves its per-
formance substantially in domains where the search does not
progress uniformly towards solutions, and particularly in cer-
tain temporal planning problems. We show how to incorpo-
rate distance estimates into weighted A∗ and improve its per-
formance in several domains. Both approaches lead to dra-
matic performance increases in popular benchmark domains.

Introduction

Heuristic search is used to solve a wide variety of problems.
When sufficient resources are available, optimal solutions
can be found using A* search with an admissible heuristic
(Hart, Nilsson, and Raphael 1968). In practical settings one
is often willing to accept suboptimal solutions in order to
reduce the computation required. In this paper, we consider
the setting in which one wants the fastest possible search
where the solution is to be within a bounded factor of the
optimal solution.

The purpose of bounded suboptimal search is not really
to find a solution whose cost is within a given bound of the
optimal, but rather, given a desired quality bound, to pro-
duce an acceptable solution as quickly as possible. These
solutions should be of high quality but not at the expense of
speed. To do this, bounded suboptimal algorithms make a
controlled transition between performing like A* when the
bound is tight and greedy search when the bound is lax.

Sometimes all actions have the same cost and becoming
greedy with respect to the cost of a solution is equivalent
to becoming greedy with respect to the length of a solution.
Searches that consider both the estimated cost-to-go, given
by a heuristic evaluation function h, as well as the search-
distance-to-go, given by a distance estimation function d,
can perform better in domains where h and d differ. In these
domains a search that is greedy with respect to solution cost
may take longer than a search that focuses on finding the

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Grid Life Four-way 35% Obstacles

T
ot

al
 N

od
es

 G
en

er
at

ed

90,000

60,000

30,000

0

Problem Size
800600400200

A*
Greedy on h
Greedy on d

Figure 1: Greedy search on d outperforms search on h.

nearest solution. Figure 1 demonstrates the extreme case,
where no bound is placed on the quality of the returned so-
lution in a grid pathfinding problem. We see that not only do
we find solutions faster when greedily searching on d than
when we do on h, but that the performance gap between
these two approaches increases with problem size. Domains
where solution cost and length differ are common, including
popular benchmarks such as temporal planning and many
variations of pathfinding.

And yet many algorithms fail to take advantage of the in-
formation provided by d. Although there were several pro-
posals in the 70s and 80s, A∗

ε (Pearl and Kim 1982) and dy-
namically weighted A* (Pohl 1973) among them, exploita-
tion of distance estimates has fallen out of favor. This is
caused in part by the poor performance of these algorithms.
We explain their poor performance and show how to cor-
rect it. Additionally, we provide a technique for incorpo-
rating distance-to-go information in weighted A* and show
that searches which incorporate d perform well on impor-
tant problems, allowing us to both solve problems optimally
faster than A* and avoid poor performance at high weights
in temporal planning.

A∗

ε

A∗

ε expands nodes that are as close to a solution as possible
while still guaranteeing w-admissibility. It maintains two
ordered lists, the first is identical to that used by A*, where

382

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



nodes are ordered according to the cost function fA∗(n) =
g(n)+h(n), where g is the cost of travelling to a node from
the root of the search. At the front of the open list is the
node with minimum fA∗ , fmin. In order to select nodes that
are close to a goal, A∗

ε maintains a list of nodes sorted on d,
called the focal list. The node at the front of focal is the node
with minimum d, dmin. To find a solution, it is expanded,
and its children are placed into open until dmin is a solution.

To ensure that the solution returned by A∗

ε is w-
admissible, A∗

ε only places those nodes that have fA∗ val-
ues that are within a factor w of fmin onto the focal list.
This means that fA∗(dmin) ≤ w · fA∗(fmin), given by the
construction of the focal list. If we are using an admissi-
ble heuristic h, we know that fA∗(fmin) ≤ fA∗(opt) where
opt is a solution with optimal cost. Putting these together,
we can infer that fA∗(dmin) ≤ w · fA∗(opt). This property
holds for every dmin. Eventually it will be a solution if one
exists, and its quality will be bounded.

The performance of A∗

ε is mediocre. It works well for
loose bounds, where the algorithm searches greedily on d,
but fails to find solutions otherwise as shown by the first
panel of Figure 2. When using an admissible h function, the
f values of nodes cannot decrease, and typically increase,
as one descends from the root. Along a path to a goal, d
tends to decrease. Thus, nodes with low d will often have
relatively high fA∗ values and dmin is often the node with
the highest fA∗ in focal. Children of dmin are not likely
to be included in focal. This creates a phenomenon where
most nodes on focal are expanded in sequence with none
of their children making it on to focal until the node with
minimum f and highest d is expanded and focal is refilled.
During each of these cycles, little progress is made toward
the goal. One way to avoid needing to flush the focal list
in order to expand fmin is to just explicitly expand it every
so often, here every tenth extension. Panel 1 of Figure 2
shows that this scheduled algorithm performs much better,
confirming that it is indeed fmin stagnation leading to the
poor performance of A∗

ε .

Dynamically Weighted A*

Dynamically weighted A* searches nodes in a best-first or-
der as determined by a node evaluation function fdwA∗. It
applies a weighting factor w to the heuristic evaluation func-
tion h to encourage the search to behave greedily, decreasing
the size of this factor as the search progresses. More con-
cretely, Dn is the depth of a node, Dgoal is the depth of so-

lutions, and fdwA∗ = g(n)+w ·max(0, ((1− Dn

Dgoal
))·h(n).

This reduces the weight applied to the cost-to-go estimate
as the search progresses, rewarding progress. The depth
of goals isn’t always known a priori, and in these situa-
tions, Dgoal can be approximated by the search-distance-to-
go heuristic d at the root. The max term accounts for prob-
lems where nodes can be deeper than the projected depth of
a goal.

Dynamically weighted A∗ performs poorly in domains
where the search proceeds unevenly towards goals, as it does
in grid pathfinding. The third panel of Figure 3 shows the
poor performance of the algorithm. The line labeled dwA*

is dynamically weighted A*, and revised dwA* is our im-
proved version of the algorithm that makes no assumption
on the relationship between the depth of a node and its dis-
tance to a goal. Decreasing the weight by which the heuristic
evaluation function is multiplied as depth increases encour-
ages progress in any direction. This is fine in when each step
away from the goal, regardless of the action, takes the search
equally closer to a goal but is bad in general.

Improving Dynamically Weighted A*

We now show how d can be used to remove this dangerous
assumption. Let ε = w − 1 where w is the desired subop-
timality bound. Changing the node evaluation function of

dynamically weighted A* to f ′

dwA∗ = g(n) + (1 + d(n)
d(root) ·

ε) · h(n) captures the idea that not all nodes are progress-
ing towards a goal evenly. Instead of being rewarded for
distance away from the root, nodes are rewarded for their
proximity to a goal. The third panel of Figure 3 shows that
this approach can dramatically improve the performance of
dynamically weighted A*. In particular, notice that for a
suboptimality bound of 1, that is when finding optimal solu-
tions, revised dynamically weighted A* can outperform A*
by a factor of 2 due to the differences in tie breaking.

Revised dynamically weighted A* must take special care
of nodes that appear to be further away from a goal node
than the root does, lest it loose its bounded suboptimality

guarantee. When d(n) > d(root), then
d(n)

d(root) > 1 and

(1 + d(n)
d(root) · ε) > w, and this threatens bounded subop-

timality. By restricting the values f ′

dwA∗ can assume, sub-
optimality guarantees can be preserved. In the results pre-
sented in this paper, we use the node evaluation function
f(n) = min(f ′

dwA∗(n), w · fA∗(n)).

Breaking Ties Using Distance Estimates
Weighted A* is an elegant solution to bounded suboptimal
search where the traditional node evaluation function of A*,
fA∗ = g(n) + h(n) is changed to increase the cost to go by
a factor w, as in fwA∗ = g(n) + w · h(n). This emphasis
on the heuristic evaluation function causes weighted A∗ to
behave more like a greedy search on h. While this is an
effective strategy where heuristics are accurate and h and d
are identical, Figure 1 shows that better performance can be
obtained by focusing solely on d when bounds are loose.

One easy and effective way to incorporate this informa-
tion into the search is simply to use d to break ties. There
are several conceivable tie breaking rules, and it may not im-
mediately be obvious that breaking ties on d is the best pos-
sible approach. We examined breaking ties randomly and
breaking ties in favor of high g. Panel 2 of Figure 2 shows
the results in grid pathfinding. Tie breaking on d is clearly
the best technique. The differences in tie-breaking behavior
only manifest for tight bounds, where 1 ≤ w ≤ 2. Beyond
this weight there are relatively few ties that remain to be
broken. Tie breaking will only have a large impact if there
are many ties among nodes with a cost equal to that of the
returned solution. There are a surprisingly large number of
ties in grid worlds.

383



Grid Unit Four-way 35% Obstacles

T
ot

al
 N

od
es

 G
en

er
at

ed
 (R

el
at

iv
e 

to
 A

*)

4

2

0

Suboptimality Bound
54321

A* eps
A* eps, sched

Grid Unit Eight-way 45% Obstacles

T
ot

al
 N

od
es

 G
en

er
at

ed
 (R

el
at

iv
et

 to
 A

*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound
1.81.51.2

random tie-breaking
g tie-breaking
d tie-breaking

Grid Unit Four-way 35% Obstacles

So
lu

ti
on

 C
os

t (
N

or
m

al
iz

ed
 to

 O
pt

im
al

)

3

2

1

Suboptimality Bound
321

wA* dd
revised dwA*, dd

revised dwA*
wA*

Figure 2: Performance of searches using d.

Extended Evaluation

We have conducted a comprehensive empirical analysis of
how techniques for including d perform in a variety of
benchmark domains. Here we reproduce the most excit-
ing results. All algorithms were implemented in Objective
Caml, compiled to 64-bit native code executables, and run
on a collection of Intel Linux systems. We sampled all the
algorithms at the following suboptimality bounds: 1, 1.005,
1.001, 1.01, 1.05, 1.1, 1.15, 1.2, 1.3, 1.5, 1.75, 2, 2.5 and 3.

Grid Pathfinding

Following Thayer and Ruml (2008) we tested on many grid
pathfinding problems. We show 95% confidence intervals
averaged over 100 instances for game boards and 20 in-
stances otherwise. We considered two variants of algorithms
in this domain, one in which duplicate nodes are ignored,
and one in which they aren’t. Panel three of Figure 2 shows
the impact on solution quality of ignoring duplicate states,
nearly none. Weighted A* may drop duplicates while main-
taining its bounded suboptimality guarantee, but dynami-
cally weighted A* may not. In practice, even without the
guarantee, dynamically weighted A* never returns a solu-
tion outside of the desired bound.

Uniform Distribution We consider simple path planning
problems on a 2000 by 1200 grid. We allow for eight-way

movement where diagonal moves cost
√

2 times as much
as cardinal directions. Simple analytical lower bounds are
available for the cost h and search-distance d to the cheap-
est goal. In the results reported here, we use an admissible
d function, although this is not a requirement for bounded
suboptimality. Our results are shown in Figure 3. A∗

ε and re-
vised dynamically weighted A* without duplicate dropping
are omitted as they fail to solve a majority of the instances.

Lines We consider problems using lines for obstacles.
These lines were of lengths ranging between 5% and 25%
of the board’s diagonal, and 75 such lines are scattered on
the board. Results are presented in the center panel of Fig-
ure 3. Duplicate dropping is still needed to perform reason-
ably on problems of this size, so A∗

ε and revised dynamically
weighted A* are omitted.

Game Boards Following Bulitko et al. (2007), we tested on

Zenotravel

T
ot

al
 N

od
es

 G
en

er
at

ed

0.9

0.6

0.3

0.0

Suboptimality Bound
1.81.51.2

wA* d tie-breaking
wA*

A* eps
revised dwA*

Figure 4: Using d avoids catastrophe in temporal planning.

several pathfinding problems from a popular real-time strat-
egy game, again allowing for eight-way movement. Start
and goal locations were selected at random. Instances were
then further grouped by the length of their optimal solution.
Figure 3 shows results for the most challenging instances
we ran against which have an optimal solution length some-
where between 160 and 180 steps. The size of these prob-
lems limits the impact of duplicate dropping.

The results clearly show that incorporating search dis-
tance to go information dramatically improves the perfor-
mance of algorithms, allowing us to find optimal solu-
tions three times faster than less informed algorithms. Tie-
breaking on d is often enough to see this performance in-
crease, although revised dynamically weighted A* also finds
solutions faster than A*.

Temporal Planning

Planning is a domain in which optimal solutions can be
extremely expensive to obtain (Helmert and Röger 2007).
We tested our algorithms on 31 temporal planning prob-
lems from five benchmark domains taken from the 1998 and
2002 International Planning Competitions where the objec-
tive function is to minimize the plan duration (makespan).

To find the plan, we used the temporal regression planning
framework in which the planner searches backwards from

384



Grid Unit Eight-way 45% Obstacles

T
ot

al
 N

or
m

al
iz

ed
 C

pu
 T

im
e

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound
1.81.51.2

wA* dd
revised dwA*, dd

wA* d tie-breaking, dd

Grid Unit Eight-way 75 Lines

T
ot

al
 N

or
m

al
iz

ed
 C

pu
 T

im
e

2

1

0

Suboptimality Bound
1.81.51.2

wA* dd
revised dwA*, dd

wA* d tie-breaking, dd

Blastedlands

T
ot

al
 N

or
m

al
iz

ed
 C

pu
 T

im
e

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound
321

dwA*
wA*

wA* dd
revised dwA*, dd

wA* d tie-breaking
wA*, d tie-breaking, dd

A* eps
revised dwA*

Figure 3: More information helps when solving pathfinding problems.

the goal state (Bonet and Geffner 2001). To guide the search,
we compute h(n) using the admissible H2 heuristic of the
TP4 planner (Haslum and Geffner 2001). In order to com-
pute a search-distance-to-go function d, we also computed
the expected number of steps to reach the shortest makespan
solution. This value was estimated by first extracting a re-
laxed plan (Hoffmann and Nebel 2001) that approximates
the closest shortest solution in terms of makespan. Results
are presented in terms of nodes generated for clarity.

We found that the patterns of algorithm performance over
the 31 benchmark instances fell into roughly three cate-
gories. In some problems including d information has no
discernible impact on search. Other times, algorithms be-
have erratically showing no definite trend across weights.
Not infrequently we see the behavior shown in Figure 4,
where reliance, not just tie breaking, on d avoids the ten-
dency of searches to perform worse as weights increase in
this domain.

Conclusions
We have examined two previous approaches and two novel
ways of incorporating distance estimates into heuristic
search. A∗

ε occasionally has good results, but is unpre-
dictable. Dynamically weighted A* is inappropriate for
problems where distance from the root and nearness to a
solution are only loosely related, which is to say most do-
mains. These two short comings have lead many to mistak-
enly assume that examining distance to go estimates will be
fruitless. We have clearly shown that this information is use-
ful for improving the performance of heuristic search. Often
simply breaking ties on d gives a dramatic performance in-
crease, both for optimal solutions and bounded suboptimal
solutions. Weighted A∗ with tie-breaking on d is only effec-
tive when there are a number of ties to be broken. This is ob-
viously the case in grid-world pathfinding, given the domain
and the performance of the algorithm in it. Whenever there
are many different real valued edge costs, tie-breaking on d
isn’t going to help because there will not be very many ties.
Fortunately, in these domains tie breaking cannot damage
the algorithms performance either, as there are few chances
for tie-breaking to make a mistake. Stronger reliance on d,
as in revised dynamically weighted A* and A∗

ε can prevent

catastrophic failures in temporal planning. This shows that
d is both immediately useful and worthy of further study.

Acknowledgments

We gratefully acknowledge support from NSF grant IIS-
0812141 and from the DARPA CSSG program. Many
thanks to Minh B. Do for the temporal planner used in these
experiments. Thanks to Jeff Kreis for his work in visualizing
the errors and performance of A∗

ε .

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.

Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. JAIR 30:51–100.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cyber-
netics SSC-4(2):100–107.

Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proceedings of ECP-01.

Helmert, M., and Röger, G. 2007. How good is almost
perfect? In Proceedings of the ICAPS-2007 Workshop on
Heuristics for Domain-independent Planning: Progress,
Ideas, Limitations, Challenges.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4):391–399.

Pohl, I. 1973. The avoidance of (relative) catastro-
phe, heuristic competence, genuine dynamic weighting and
computation issues in heuristic problem solving. In Pro-
ceedings of IJCAI-73, 12–17.

Thayer, J. T., and Ruml, W. 2008. Faster than weighted A*:
An optimistic approach to bounded suboptimal search. In
Proceedings of ICAPS-2008.

385


	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences




