
From Discrete Mission Schedule to Continuous Implicit Trajectory
using Optimal Time Warping

François Keith1,4, Nicolas Mansard2, Sylvain Miossec3, and Abderrahmane Kheddar1,4

1CNRS-UM2 LIRMM, Montpellier, France
2CNRS-LAAS, Toulouse, France

3PRISME-Univ. d’Orléans, Bourges, France
4CNRS-AIST JRL, UMI3218/CRT, Tsukuba, Japan

{keith, kheddar}@lirmm.fr, nmansard@laas.fr, sylvain.miossec@bourges.univ-orleans.fr

Abstract

This paper presents a generic solution to apply a mis-
sion described by a sequence of tasks on a robot while
accounting for its physical constraints, without comput-
ing explicitly a reference trajectory. A naive solution
to this problem would be to schedule the execution of
the tasks sequentially, avoiding concurrency. This solu-
tion does not exploit fully the robot capabilities such as
redundancy and have poor performance in terms of exe-
cution time or energy. Our contribution is to determine
the time-optimal realization of the mission taking into
account robotic constraints that may be as complex as
collision avoidance. Our approach achieves more than a
simple scheduling; its originality lies in maintaining the
task approach in the formulated optimization of the task
sequencing problem. This theory is exemplified through
a complete experiment on the real HRP-2 robot.

Introduction

A robot is designed to perform missions in various ap-
plication contexts. When the environment is well or par-
tially structured most missions can be hierarchically decom-
posed into a set of tasks (i.e. generic sensory-motor func-
tions) which has to be mapped into robot execution. Nu-
merous works have been proposed to compute such a se-
quence of tasks from a given mission and a set of causal
paradigms (Dechter 2003; Ghallab, Nau, and Traverso 2004;
Li and Williams 2008). However, they generally produce a
symbolic plan, where the only numerical precisions lie on
the scheduled time data. Moreover, constraints have to be
expressed under a symbolic expression. Its robotic applica-
tion into the real world requires the time sequence to be re-
fined, typically through an applicative path planner (LaValle
2006), that will compute the trajectories to be followed by
the robot (Lamare and Ghallab 1998). Yet, the meaning of
the symbolic plan is lost in the global trajectory. Such low-
level methods lack of robustness to environment changes or
uncertainties. Consequently, the remaining trajectory may
have to be recomputed several times while the mission is
being achieved. Moreover, it is difficult (and often specif-
ically hard coded) to enhance the trajectory with symbolic
data, that would help re-computing only part of the plan (Py

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Ingrand 2004) or distort locally the trajectory after small
environment changes (Quinlan and Khatib 1993).

Rather than using a trajectory planner between the tem-
poral reasoning and its real robotic execution, we propose to
use a sensory-motor control approach based on task compo-
nents. The task function (Samson, Le Borgne, and Espiau
1991) is an elegant approach to produce intuitively sensor-
based robot objectives. Based on the redundancy of the sys-
tem, the approach can be extended to consider a hierarchical
set of tasks (Siciliano and Slotine 1991). Hierarchy of tasks
are becoming popular to build complex behavior for very re-
dundant robot such as humanoids (Mansard and Chaumette
2007; Sentis and Khatib 2006).

A task (i.e. a task function) can be directly linked to
the symbols on which the task temporal network is rea-
soning. Mission decomposition is thus executable directly
using the sensory-motor mapping of the task function. How-
ever, exclusive task sequencing on the robot produces gene-
rally jerky suboptimal movements which may look to hu-
mans as monotonous automated motions. This paper fo-
cuses on finding a solution to produce automatically an op-
timal plane/schedule that makes use of the redundancy by
enabling task concurrency. It seems difficult to use tem-
poral networks to produce a scheduling with task overlap-
ping when the tasks concurrency is restricted by physi-
cal limitations of the robot (for example obstacles or bal-
ance of a biped robot), since the constraints are not in a
discreet form. On the other hand, semi-infinite optimiza-
tion (Miossec, Yokoi, and Kheddar 2006) is known to ge-
nerate low level trajectories, while accounting for such con-
straints, but with insufficient robustness to environment un-
certainties.

In this paper, we propose to rely on task for both the sym-
bolic reasoning and control of the robot. In between, we
propose to use semi-infinite optimization to refine the sym-
bolic schedule and account for system constraints. Given a
sequence of tasks to achieve a mission, our solution returns
for each task the optimal times at which it is activated and
inactivated and the optimal parameters for the task execu-
tion. The originality of our approach lies in keeping the task
component in the formulation of this problem, which can
roughly translate to optimizing tasks overlapping by mani-
pulating tasks, i.e. the controllers as variables of the opti-
mization problem.

366

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



Generic Task Sequencing

Task function formalism and Stack of Tasks

Defining the motion of the robot in terms of task simply
consists in choosing several control laws to be applied on
a subpart of the robot degrees of freedom (DOF). A task is
defined by a vector e (typically, the error between a signal s
and its desired value, e = s−s∗). The Jacobian of the task is
noted J = ∂e

∂q
, where q is the robot configuration vector. In

the following, we consider that the robot input control is the
joint velocity q̇: ė = Jq̇. Considering a reference behavior
ė
∗ to be executed in the task space, typically,

ė
∗ = −λe, (1)

the control law to be applied on the robot whole body is
given by the least-square solution:

q̇ = J+ė
∗ + Pz (2)

where J+ is the least-square inverse of J, P = I − J+J
is the null-space of J and z is any secondary criterion. P
ensures a decoupling of the task with respect to z, which
can be extended recursively to a set of n tasks, each new
task being fulfilled without disturbing the previous ones:

q̇i = q̇i−1 + (JiP
A
i−1)+(ėi − Jiq̇i−1), i = 1 . . . n (3)

where q̇0 = 0 and PA
i is the projector onto the null-space

of the augmented Jacobian JA
i = (J1, . . .Ji). The robot

joint velocity realizing all the tasks in the stack is q̇ = q̇n.
A complete implementation of this approach is proposed
in (Mansard and Chaumette 2007) under the name Stack of
Tasks (SoT). The structure enables to easily add or remove a
task, or to swap the priority order between two tasks, during
the control. Constraints (such as joints limit) can be locally
taken into account. The continuity of the control law is pre-
served even at the instant of change.

Gain handling

The simple attractor presented in (1) produces a nice expo-
nential decrease. However, it also produces a strong acce-
leration at the beginning of the task, while at the end of the
task, ‖e‖ decreases slowly (slow convergence). A very clas-
sical ’trick’ when regulating a task is to rather use an adap-
tive gain λ = λ(e(t)), for example:

λ(e) = (λF − λI) exp
(
−‖e‖β

)
+ λI (4)

with λI the gain at infinity, λF the gain at regulation (λI ≤
λF ) and β the slope at regulation.

Sequence of tasks

A task sequence is a finite set of tasks sorted by order of
realization, and eventually linked to each other. Any pair of
tasks can be either independent (i.e. they can be achieved
in parallel), or constrained (i.e. one may have to wait for
another one to be achieved, in order to make sense or to be
doable). The sequence can be formulated into a classical
temporal network scheduling, starting at t0 and ending at
tEnd. Both values are finite and the sequence does not loop.

Besides, we may consider for the sake of clarity but without
loss of generality that each task appears only once.

The position of a task in the sequence is defined by the
time interval during which it is maintained in the SoT. For
a given task i, this interval is noted [tIi , t

F
i ], defined with

respect to t0. The regulation time tRi is the time line after
which the task error is considered as ”regulated”, i.e. suffi-
ciently close to 0. It is defined by ‖ei(t

R
i )‖ = εi, with εi the

tolerance upon task realization.

A task sequence is characterized by a set of time-
constraints binding the schedules of two tasks ei and ej.

They can be defined as follow1: ei must begin or end once
ej has begun, has ended or has been regulated. We use the
following notation to describe the sets of pairs of tasks ei

and ej that undergo these dependencies (ei is the direct pre-
decessor of ej) :

SI,I = {(ei, ej) | tIi ≤ tIj} (5a)

SR,I = {(ei, ej) | tRi ≤ tIj} (5b)

SR,F = {(ei, ej) | tRi ≤ tFj } (5c)

SF,I = {(ei, ej) | tFi ≤ tIj} (5d)

SF,F = {(ei, ej) | tFi ≤ tFj } (5e)

Continuous optimization of sequence of tasks

Given a set of hypothesis described using (5), a generic solu-
tion is now proposed to automatically compute the optimal
task and schedule parameters to be executed by the SoT.

General problem formulation

An optimization problem is composed of a criterion to mi-
nimize, along with a set of variables and equality and in-
equality constraints to be satisfied. Our criterion is the total
duration of the mission. The variables are: (i) the times tIi
and tFj and (ii) the gains (λI , λF , β). The general optimiza-
tion problem is written as follows:

min
x

tEnd (6a)

subject to q̇ = SoTx(q, t) (6b)

seq(q) < 0 (6c)

φ(q) < 0 (6d)

∀i, tFi ≤ tEnd (6e)

with x = [tI1, t
F
1 , λI

1, λ
F
1 , β1, . . . , t

I
n, tFn , λI

n, λF
n , βn, tEnd]

the set of optimization variables of each task, tEnd the du-
ration of the mission, and seq(q) and φ(q) the sequencing
and robotic constraints.

Constraint definitions

Parameters x must satisfy both the sequencing and the
robotic time-constraints enumerated hereafter:

1contrary to Allen Logic, that only considers the start and end
date, here is also considered the regulation time t

R

367



Tasks constraints, noted seq(q) are defined as follow:

• Time coherence for each task i, that is:

∀i, 0 ≤ tIi < tFi ≤ tEnd (7)

• Termination condition for each task i, that is:

∀i, ‖s∗i − si(t
F
i )‖ < εi (8)

• Task sequence conditions desbribed in (5).

• Gain consistency for each task i, namely:

∀i, λI
i ≤ λF

i (9)

The constraints (5a), (5d), (5e), (7) and (9) are linear. On
the contrary, the constraint (8) is impossible to compute di-
rectly using x, and is determined from a simulation of the
execution. Care has to be taken while resolving the con-
dition described by (5b) and (5c). Indeed, discretizing tR

to the closest simulation step will produce discontinuities
which may disturb the optimization process. The constraint
(5b) and (5c) are thus equivalently rewritten:

∀(i, j) ∈ SR,I , ‖s
∗

i − si(t
I
j )‖ ≤ εi (10)

∀(i, j) ∈ SR,F , ‖s∗i − si(t
F
j )‖ ≤ εi (11)

Robot constraints : φ(q) Those constraints are mainly
due to hardware intrinsic limitations of the robot:

• Joint limits, given by

qmin ≤ q ≤ qmax (12)

qmin, qmax are the lower and upper joint limits.

• Velocity limits, given by

q̇min ≤ q̇ ≤ q̇max (13)

q̇min, q̇max are the minimal and maximal velocity.

• Collision between a given pair of objects i and j, given by

dij ≥ 0 (14)

dij is the distance between objects i and j. Object des-
ignate those found in the mission environments and each
link of the robotic system. Hence, both collision with the
environment and self-collision of the robot have to be.

It can be shown that (6) defines a continuous optimization
problem. However, q is in fact a vector of functions of time,
hence constraints φ(q) are semi-infinite, i.e. taking place for
all the values of the continuous variable t ∈ [t0, tEnd]. Cares
have thus to be taken when implementing them in classical
solver softwares for parameter optimization problems.

Implementation

Optimization

At each optimization step, the solver chooses a new set of
parameters x. It then computes the constraints. Constraints
(5a), (5e), (7) and (9) can be evaluated directly. As stated
previously, the other constraints can not be directly com-
puted (since they do not write in an analytical explicit for-
mulation). They are thus evaluated using a complete simu-
lation of their execution. The chosen value of the current
optimization variable vector x is transmitted by the solver
to a simulation engine. The simulation returns the evalua-
tion of the constraints and the optimization solver computes
a new step vector x, until convergence.

Figure 1: Sequence of tasks for taking the can in the fridge

Simulation

The simulation is basically a numerical integration of (6)
using an explicit Euler integration method with a fixed step
Δt = 0.005sec. The times tIi and tFi are continuous vari-
ables that may not be aligned with the integration grid, and
have to be explicitly added to ensure continuity with respect
to the optimization variables.

The simulation engine runs under the AMELIF framework
(Evrard et al. 2008), an interactive dynamic simulator for
virtual avatars which includes collision detection and task
handling according to the SoT formalism. The execution
for both simulation and real-robot control is performed by a
generic control framework based on (Mansard et al. 2009).

Experiment

Temporal network

The experiments have been realized using a pick-in-box sce-
nario: the robot has to open the fridge with one hand be-
fore grasping the object with the other hand. Similarly, it
has to wait for the grasping to be completed before clos-
ing the fridge. For the particular manipulation detailled be-
low, we can simply consider the collision detection to ensure
the causality, instead of explicitly defining these causal con-
straints. The optimal schedule should use the system redun-
dancy by overlapping the tasks on each arm.

The task sequence is composed of 10 tasks (see Fig.1):
e0 - open the right gripper ; e1 - move the right arm to the
fridge ; e2 - close the right gripper ; e3 - open the fridge ;
e4 - close the fridge ; e5 - open the left gripper ; e6 - move
the left gripper in the fridge area ; e7 - move the left gripper
to the can ; e8 - close the left gripper ; e9 - lift the can ; e10

- remove the can out of the fridge.

This mission can not be split into smaller independent se-
quences. The constraints considered for this problem are
thus sequencing and robotic constraints (joint position and
velocity limits), and non-colliding with the fridge.

Results of the optimization

The optimization ran on a 3GHz desktop PC running under
Windows OS, using MATLAB SQP solver. The sequence
found is described on Fig. 2. The overlaps between the tasks
of each arm appear clearly: the left arm starts moving before
the fridge is open. It then starts the reaching motion even if
the fridge is not completely open. The right arm starts to
close the fridge before the left arm has completely left the
fridge area. The whole task sequence lasts 47sec. Without
these two overlaps, the optimal timing will only be 71sec.

368



Figure 2: Results of the optimization of the sequence of task:
when the task is added in the SoT, its error is first regulated (this
corresponds to the dark part (red or dark blue) of the block). From
t
R

i , the error is nearly null and the task is kept in the SoT (light part
(yellow or cyan) of the block) until t

F

i .

Figure 3: HRP-2 grasping a can in the fridge.

The SoT formalism allows to directly apply the optimized
task sequence as a control law using the same task defini-
tion. The task sequence is executed by the robot HRP-2,
a full-size humanoid robot with 30 actuated DOF. For the
tasks requiring a haptic interaction (i.e. opening and clos-
ing the fridge) the force sensor of the robot is used to close
the loop and compensate for position uncertainties. The
robot manages to grasp the can without constraint violation,
in a smooth manner thanks to the optimized gain. Snap-
shots of the execution are given in Fig. 3. See http://
www.laas.fr/˜nmansard/keithfridge.avi for
the video of the complete execution.

The complexity of the optimization does not depend on
the number of possible solutions for a set of tasks, but on
the number of parameters. Our solver has a linear complex-
ity in the number of parameters O(P). For the demon-
strated tasks (66 parameters and 120 constraints), one simu-
lation takes around 1secs. The whole optimization process
required 7 hours, mainly due to a first simplistic optimiza-
tion scheme (in particular, gradients are estimated by finite
differences). Reducing this cost is one of our main concerns.

Conclusion

We devise a method which allows to automatically pass from
a symbolic plan to a complete motion generator that takes

into account all kind of robot constraints, such as joint lim-
its or collision. The result optimize both the behavior and
the overlapping scheduling of a sequence of tasks compos-
ing a robotic mission. The solution derives from an op-
timization formulation of the tasks scheduling keeping the
formalism built on the top of a task-function based control.
The solution is generic, and may be applied to each system
with time-modulable tasks allowing blending with continu-
ous semi-infinite constraints. For the time being, our method
still needs a predefined ordered sequence. As a future work
the autonomy will be improved by determining automati-
cally the ordered sequence and compute all the necessary
subtasks from definitions of actions/objects associations.

Acknowledgment

This work is partially supported by grants from the Im-
merSence EU CEC project, Contract No. 27141 www.

immersence.info (FET-Presence) under FP6.

References
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
chapter 12, Temporal Constraint Network.

Evrard, P.; Keith, F.; Chardonnet, J.-R.; and Kheddar, A. 2008.
Framework for haptic interaction with virtual avatars. In Robot
and Human Interactive Communication (RO-MAN’08).

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kauffmann Publishers.

Lamare, B., and Ghallab, M. 1998. Integrating a temporal planner
with a path planner for a mobile robot. In Proc. AIPS Workshop on
Integrating planning, scheduling and execution in dynamic and
uncertain environments, 144 –151.

LaValle, S. 2006. Planning Algorithms. Cambridge Univ. Press.

Li, H. X., and Williams, B. C. 2008. Generative planning for
hybrid systems based on flow tubes. In ICAPS, 206–213.

Mansard, N., and Chaumette, F. 2007. Task sequencing for
sensor-based control. IEEE Trans. on Robotics 23(1):60–72.

Mansard, N.; Stasse, O.; Evrard, P.; and Kheddar, A. 2009. A
versatile generalized inverted kinematics implementation for col-
laborative humanoid robots: The stack of tasks. In Submitted to
International Conference on Advanced Robotics (ICAR’09).

Miossec, S.; Yokoi, K.; and Kheddar, A. 2006. Development of
a software for motion optimization of robots– application to the
kick motion of the HRP-2 robot. In IEEE International Confer-
ence on Robotics and Biomimetics.

Py, F., and Ingrand, F. 2004. Dependable exec. control for auton.
robots. In IEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’04).

Quinlan, S., and Khatib, O. 1993. Elastic bands: Connecting
path planning and robot control. In IEEE Int. Conf. Robot. Autom.
(ICRA’93), volume 2, 802–807.

Samson, C.; Le Borgne, M.; and Espiau, B. 1991. Robot Control:
the Task Function Approach. Clarendon Press, Oxford, UK.

Sentis, L., and Khatib, O. 2006. A whole-body control framework
for humanoids operating in human environments. In IEEE Int.
Conf. Robot. Autom. (ICRA’06), 2641–2648.

Siciliano, B., and Slotine, J.-J. 1991. A general framework for
managing multiple tasks in highly redundant robotic systems. In
IEEE Int. Conf. on Advanced Robotics (ICAR’91).

369


	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences




