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Abstract

PDDL2.1 supports modelling of complex temporal planning
domains in which solutions must exploit concurrency. Few
existing temporal planners can solve problems that require
concurrency and those that do typically pay a performance
price to deploy reasoning machinery that is not always re-
quired. In this paper we show how to improve the perfor-
mance of forward-search planners that attempt to solve the
full temporal planning problem, both by narrowing the use of
the concurrency machinery to situations that demand it and
also by improving the power of inference to prune redundant
branches of the search space for common patterns of inter-
action in temporal domains that do require concurrency. Re-
sults illustrate the effectiveness of our ideas in improving the
efficiency of a temporal planner that can solve problems with
required concurrency, both in domains that exploit this ability
and in those that do not.

1. Introduction

It has been observed (Cushing et al. 2007; Coles et al. 2008)
that the most interesting temporal planning domains require
actions to be performed concurrently to achieve a goal. The
temporal domains used in the competitions are simple in the
sense that no concurrency is required and sequenced solu-
tions are adequate. When required concurrency is present,
finding a solution requires interleaving of the starts and ends
of actions, often in an intricate way.

PDDL2.1 (Fox and Long 2003) introduced an extension
of the classical STRIPS action model to include durative ac-
tions. In contrast to the durative action model in TGP (Smith
and Weld 1999), PDDL2.1 actions can have effects at both
the start and end of their execution, along with conditions
that must hold at the start, end, or during the execution of the
action. Domains requiring concurrency can be expressed by,
for example, defining durative actions that make resources
available at their starts and remove them at their ends. If
another action relies on the availability of a resource that is
provided in this way then its execution must run in parallel
with that of the action providing the resource.

When there is no required concurrency the simplest ap-
proach to temporal planning is to treat durative actions as
units with delete effects at the beginning of their execution
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and add effects at the end. However, this compressing strat-
egy fails in domains with required concurrency (Cushing
et al. 2007). A more capable approach is to split dura-
tive actions into start and end actions and to perform search
over invariant-respecting sequences of these actions, check-
ing temporal constraints (using a Simple Temporal Network
(STN) solver, for example) to confirm temporal consistency
of the choices considered. This is how the CRIKEY plan-
ners (Coles et al. 2008) overcome the limitations of the com-
pressing approach.

Whilst planning with start and end actions is a solution
to required concurrency it increases the cost of planning in
cases where concurrency is not required. In many domains
there is a mixture of behaviour that must be parallelised and
behaviour that can be sequenced. If the re-representation of
the domain in terms of start and end actions is performed
regardless of whether it is necessary, there can be signifi-
cant costs in terms of performance. Even if the scheduler is
efficient, the plan search space is exponentially larger than
in the compressed case, as each durative action in the plan
requires the construction of two action end points. Perfor-
mance can be greatly improved by recognising actions that
can be compressed, allowing a hybrid representation com-
prising some start-end separation and some compression.

In this paper, we present techniques that significantly im-
prove the efficiency of temporal planning in domains with
and without required concurrency. Firstly, we show how an
automatic analysis can be used to identify a large class of
common durative action structures that do not require con-
currency and can therefore be handled more efficiently. We
call these compression-safe actions. Secondly, we introduce
methods for handling a range of interactions that arise in do-
mains with required concurrency, supporting improved effi-
ciency in planning in such domains. We present two classes
of techniques in this case: one based upon the detection of
‘one-shot’ actions, and one based on interactions between
invariants and end delete effects. Empirical data are pre-
sented demonstrating the power of our inference techniques
in domains with and without required concurrency.

2. Background

A ground action A in PDDL2.1 (that is, an action schema
whose parameters have been specified) is defined by a tuple
〈pre�, eff

�
, pre↔, pre�, eff

�
, mindur, maxdur〉 where:
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• pre�, eff
�

denote the conditions that must hold at the start
of the action, and the effects which occur immediately
after A is applied. eff

�
comprises propositional delete ef-

fects and add effects and numeric effects, denoted eff−
�

and eff+
�

, and effn
�

respectively.

• pre�, eff
�

denote the conditions that must hold at the end
of the action, and the effects which then occur.

• pre↔ denote the invariant (over all) conditions that
must hold throughout the action.

• mindur, maxdur are functions which, given the values
of the numeric variables when the action is started, return
lower- and upper-bounds on the duration of the action.

Note that we are not treating conditional effects, disjunctive
or negative preconditions (which can be compiled out) or
complex duration constraints (such as disjunctive constraints
or conditions that refer to the state at the end of execution).

A simple action compression strategy for planning with
these actions is to construct, from each durative action A, a
notionally atemporal action A

′

whose preconditions and ef-
fects correspond to the weakest preconditions and strongest
effects of A. In the propositional case, these are:

pre(A′) = pre� ∪ ((pre↔ ∪ pre�) \ eff+
�
)

eff+(A′) = eff+
�
\ eff−

�
∪ eff+

�

eff−(A′) = eff−
�
\ eff+

�
∪ eff−

�
\ eff+

�

A non-temporal planner can plan with these compressed
actions and a scheduler can be used to label the actions with
timestamps and durations post hoc. In scheduling, the ef-
fects are assumed to appear at the end of the action (after its
appropriate duration) and its preconditions are assumed to
be required before it begins and over its entire duration. This
is the semantics of durative actions assumed in TGP (Smith
and Weld 1999), but it is also a transformation used in plan-
ners such as LPG (Gerevini, Saetti, and Serina 2006) and
MIPS (Edelkamp 2003). If an action A has effects at both
the start and end, then A′ is not an accurate reflection of its
behaviour. At best, it is inefficient: initial add effects appear
later than necessary and initial preconditions must be sus-
tained longer than necessary. At worst, it is incomplete: if a
fact p is added at the start and deleted at the end of A it will
not appear in the effects of A′ and, if p is required to find a
solution, then no solution will exist in the compiled domain.

An alternative to action compression, introduced in
LPGP (Long and Fox 2003), is to split actions A into two
components: a start action A� and an end action A� with
preconditions and effects 〈pre�, eff

�
〉 and 〈pre�, eff

�
〉 re-

spectively. Invariants can also be represented by an action
A↔. Unlike the action compression case, it is not sufficient
to use an unmodified planner with these actions and address
the temporal aspects of the problem afterwards. Three addi-
tional constraints must be considered during planning:

1. if A� has been applied, A� must be applied at some point
in the future;

2. between A� and A�, the invariant of A must hold;

3. the timestamps of A� and A� must satisfy mindur(A)
and maxdur(A).

The CRIKEY planners (Coles et al. 2008) use this split-
action representation and perform forward-chaining search

in a manner similar to that of FF (Hoffmann and Nebel
2001), with three modifications to address the constraints
listed above. First, to restrict action applicability, each state
maintains a start event queue: a list of actions that have
started but not yet finished. Action ends are applicable only
if there is a corresponding entry in the queue and no action
can be applied whose effects invalidate an invariant of one
of the actions in the queue (except the end of the only action
with that invariant). Second, to handle the temporal prob-
lem constraints, a Simple Temporal Network (STN) is con-
structed and used at each state to check the temporal validity
of action sequences. Third, the definition of a goal state is
changed to reflect the fact that all actions must have finished
executing: the start event queue must be empty.

Planning with split actions allows a planner to solve prob-
lems with required concurrency, which is a problem that is
potentially much harder than classical planning (Rintanen
2007). In practice, the search space is twice as deep (each
durative action becomes two end points), so there is a very
real cost to planning with this representation. Planning with
start- and end-actions also brings with it challenges in terms
of effective search guidance, with existing planners relying
on relaxation-heuristic approaches (Coles et al. 2008). We
consider two questions:

1. How can compression-safe actions be recognised and ex-
ploited to narrow the gap between planning with action
compression and planning with split actions?

2. How can orderings be inferred between the ends of ac-
tions which have started, but not yet finished, reducing
search when planning with split actions?

2.1 Terminology: Variables in Temporal Planning

Considering temporal forward-chaining planning as an in-
cremental variable–value assignment problem, we define
three categories of variables:

• action variables: actn denoting the action start or end
choice at step n in the plan;

• timestamp variables: tn, the time at which actn is applied;

• pairing variables: pairn, the index of the other end of
actn in the plan, or undef if this is not yet in the plan.

To represent the logical and numeric constraints on plans
we use variables to record states:

• fact variables: Pn for each fact P , denoting whether P
holds in the state following execution of actn−1 (or the
initial state when n = 0);

• numeric variables: Vn for each numeric state variable V ,
denoting the value of V in the state following actn−1 (the
initial state when n = 0).

The values of Pn, Vn determine which actions are in the do-
main of actn, according to their preconditions. We abuse
notation by using Pn and Vn to refer to the valuations over
all facts and numeric variables in state n.

The temporal constraints on ti are as follows:

∀i = 0...n · ti + ε <= ti+1 (1)

(pairj = i) ∧ acti is a start action

⇒ (tj − ti) ∈ [mindur(acti), maxdur(acti)] (2)
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Constraint 1 ensures that the actions are properly sequenced

and separated (note that the use of ε could be made depen-
dent on whether the actions actually interfere). Constraint 2
ensures that actions satisfy their duration requirements.

A sequence of actions act0..actn achieves a goal formula
goal, specified over state facts and numeric variables, if the
usual precondition and effect requirements are satisfied and:

(Pn, Vn) |= goal and∀i = 0...n · pairi 	= undef (3)
To support the construction of a plan by forward-search,

each state in CRIKEY3 (Coles et al. 2008) contains:

• The action variables act0..actn;

• The pairing variables pair0..pairn;

• The most recent fact and numeric variables, Pn and Vn;

• A start event queue containing actions whose starts have
appeared in the plan, but whose ends have not.

Search is performed by actions to the end of the sequence,
updating the state variables accordingly, and using a STN to
check if the timestamp variables t0..tn+1 can be consistently
assigned values.

3. Recognising Compression-Safe Actions

We begin by identifying a class of durative actions that can
be safely handled by a form of compression. The technique
we propose here is not quite the same as pure compression,
since we allow actions to have initial preconditions and ef-
fects. However, we show that for the class of actions we call
compression-safe, there is an efficient way to both recog-
nise and exploit them. As a typical example, consider the
action ‘drive-truck’ from the Driverlog domain. This action
performs what can be thought of as a temporally extended
version of a classical STRIPS action, with delete effects tak-
ing immediate effect, add effects delayed until the end and
prevail conditions invariant across the action. Thus, at the
start, the truck leaves A and later, at the end, it arrives at B,
while throughout the driver has to remain in the truck.

When the start of an action is added to a plan, its end must
be applied at some future point, according to the duration
constraints of the action. In general, in forward search, the
end point of an action that has been started will have to be
considered as a choice for application at each incremental
extension of the plan until it is actually applied. The key
to identifying compression-safe actions lies in identifying a
class of actions for which this evaluation can be eliminated.
This arises when the end of the action satisfies constraints
that imply that its application can always be determined by
the structure of the developing plan. This situation arises
when the end of an action can have only positive impact on
the plan structure, which motivates the following definition:

Definition 3..1 — Compression-safe Actions
A durative action, A, is compression-safe if it satisfies:

1. pre(A�) ⊆ pre(A↔);

2. eff−(A�) = ∅;

3. effn(A�) = ∅;

4. effn(A�) does not depend on the duration of A.

It is worth recalling that we are assuming actions have
simple positive preconditions (negative preconditions can

be compiled out, but this process will affect which ac-
tions are compression-safe). The definition ensures that the
ends of compression-safe actions can always be applied in
a state generated in the incremental extension of a plan,
since this extension is required to maintain the invariants of
open actions, which implies the precondition of the ends of
compression-safe actions.

Compression-safe actions form a common idiom in tem-
poral planning domains. It is typical for durative actions to
consume or lock resources they require at the start of exe-
cution, releasing them by positive effects at the end. Note
that this idiom extends to numeric effects, where production
of resources, which can be seen as positive, is enacted at the
end of a durative action. We exclude this case in our defini-
tion for reasons that we discuss below in section 3.3.

The identification of compression-safe actions allows us
to apply a simple technique to eliminate the need to evaluate
the choice of applying the ends of such actions explicitly.

3.1 Compression-Safe Actions in Planning

Recall that in forward search planning in CRIKEY3, on the
addition of a start action C� to the plan an entry for C is
added in the start event queue. The state is also updated to
reflect the effects of execution of C�. At subsequent steps
in the incremental extension of the plan, C� will be con-
sidered as a choice for execution whenever its preconditions
are satisfied. Until it is applied, the invariants of C will be
maintained by rejecting any action choices that violate them.
If C is compression-safe, pre(C�) ⊆ pre(A↔), so C� will
always be applicable until it is applied.

To exploit compression-safety, we modify the behaviour
of the planner as follows: when the start of a compression-
safe action, C�, is applied, after creating an entry for it in
the start event queue (denoted e), we immediately consider
its corresponding end C�, and update the state as follows:

• for each effect p ∈ eff+(C�), p is added to the state fact
set P , annotated with a reference to e to indicate that C�

must be applied to obtain p.

• for each invariant inv ∈ pre(C↔), the fact that e requires
inv as an invariant is annotated with the fact that the in-
variant can be lifted by applying C�.

As planning continues we ignore C� as a possible choice,
but insert it according to the following rules. If a start or end
action, D, is applied then:

• if the negative effects of D conflict only with start event
queue invariants corresponding to compression-safe ac-
tions, then the ends of the conflicting compression-safe
actions are inserted into the plan and D is applied after
them.

• if D requires a precondition p annotated in the current
state with a dependency on one or more event queue en-
tries, then D is considered to be applicable, supported
by a choice of one of the dependencies (typically there
is only one) being selected to end prior to application of
D.

In this way, the choice of where to insert the ends of
compression-safe actions into the plan is avoided: each is
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(a) Total Ordering with C� Inserted
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(b) Minimal Sufficient Ordering of C�

Figure 1: Ordering C� in the Plan

inserted as it is needed, when the consequences of its com-
pletion is required. The consequent reduction in the num-
ber of choice points reduces the search space when planning
with start- and end-actions: only one choice point is intro-
duced for each durative action, rather than two.

In the heuristic evaluation of a state that includes anno-
tated propositions, we simply ignore the annotations (which
represents a further relaxation).

3.2 Efficient Exploitation of Compression-Safety

By recognising compression-safe actions, we have observed
that the ends of such actions can be inserted as needed into
the plan during forward search. There is, however, an impor-
tant potential source of inefficiency arising as a consequence
of the total ordering between states visited along the trajec-
tory constructed by forward search. When C�, the end of a
compression-safe action, is inserted into the plan, the order-
ing constraints identified in section 2.1imply that any action
that has been added to the plan prior to C� must be sched-
uled before it, and any action that is inserted after C� must
be scheduled after it. The former of these has an important
consequence: the makespan of the actions applied between
C� and C� must not exceed its duration. This situation is
shown in Figure 1a. If the application of C� is only ever
considered when it is required to support a precondition or
to avoid the invariant associated with C, then insertion of
C� can be delayed too late, making the STN unsolvable.

Fortunately, we can easily resolve this problem: since the
maintenance of the invariant of C is sufficient to guaran-
tee the executability of C� and C� has only positive effects,
we can insert C� anywhere between C� and the current end
of the plan, subject only to the temporal constraints on the
duration of C (Figure 1b). Thus, when C� is required to
support execution of D for either of the reasons identified
above, C� is inserted into the plan with a temporal constraint
placing it before D and after C�, according to the duration
constraints on C. Similarly, to ensure that the effects of C�

are not exploited after C must have finished, or after another
action could have deleted them, we add a further ordering
constraints, such that for any action F in the plan between
C� and C�: eff−(F ) ∩ eff+(C�) 	= ∅ ⇒ t(F ) < t(C�).
Should the addition of one of these constraints lead to an in-
consistent STN, during addition of an action F to the plan,

then C� is added to the plan prior to F and the temporal
constraints adjusted accordingly.

3.3 Safe Exploitation of Compression-Safety

A natural concern is whether the method just described pre-
serves soundness and does not impact on the completeness
of the search performed by the planner. We claim the fol-
lowing result:

Theorem 1 In a forward-search planner, exploitation of
compression-safety as described in sections 3.1and 3.2is
sound and does not compromise completeness.

Proof: Soundness is confirmed by three observations:
firstly, C� is only applied in a state that precedes the first
point at which the invariant of C is violated and C cannot
itself violate the invariant of any other action. Since the pre-
conditions of C� are implied by the invariant of C, C� must
be applicable in such a state. Secondly, the temporal con-
straints on C are added to the STN and must be solvable in
order to complete the plan. Finally, if C� is added to support
p we can confirm that p is protected from C� until the point
where it is required because all actions deleting p are con-
strained to precede C�. Therefore, any plan produced using
the described techniques will be sound.

Note that we do not claim that the planner is necessarily
complete, but rather that the techniques we describe above
do not compromise completeness. To show this, we need
only demonstrate that the only branches removed from the
search space are branches that contain no solutions. The
only branches that can be affected are those that begin with
the execution of C� after C has started, since it is only these
branches that are no longer considered explicitly. Consider
why application of C� might lead to a solution: there are
only three possibilities. Either some positive effect of C�

supports a subsequent action, or else an invariant of C must
be removed to allow application of an action, or, finally,
some action D must be applied such that t(D) − t(C�) >
maxdur(C). In the first two cases the corresponding branch
remains open to search since the techniques described above
allow C� to be inserted into the plan to support either of
these cases.

The last case is the most subtle. There are two possibil-
ities: either D deletes an effect of C�, in which case the
constraint described at the end of section 3.2leads to a con-
tradiction and, as explained, C� is inserted before D. If D
does not delete an effect of C� then it is added without con-
straint and the effects of C� remain part of the state. There
are now two further possibilities: either one of the earlier
cases occurs and C� is added to the plan, or else the plan
is completed and C� is added at the conclusion of the plan-
ning process. In the former case, the temporal constraints
will place C� prior to D, but the effects of C� will remain
active, since D did not delete them so it will remain valid
to use them, so that this creates a branch equivalent to one
in which C� was added to the plan before D. In the latter
case, the temporal constraints will simply insert C� at the
appropriate point in the plan, completing the plan.

All the branches in which application of C� is useful have
been shown to remain available (if they are not excluded
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from the search space by other features of the planner), so
the techniques described above do not compromise com-
pleteness. ♠

A second question is whether the definition of
compression-safety is both necessary and sufficient to sup-
port the exploitation we have described. The fact that it
is sufficient is demonstrated by the proof of completeness
above. However, our definition of compression-safety is
stronger than is required to be able to safely avoid consid-
ering ending a compression-safe action as a separate choice.
In fact, it is sufficient that actions have only end effects
that cannot interfere with the invariants or preconditions of
any other actions in the plan between the start and end of
the compression-safe action. To identify actions that satisfy
such a condition in general is as hard as planning, since it
is necessary to determine which actions might be applied
during the interval. Thus, compression-safety is defined to
compromise between efficient identification of candidate ac-
tions and the subsequent exploitation of those candidates.

Perhaps the most interesting extension of the current defi-
nition would be to include positive numeric effects: it seems
reasonable to suppose that resource-producing end effects
could be handled in the same way as positive logical effects.
However, there is a complication: where positive logical ef-
fects can be attributed to just one achieving action when
there is a choice, resource production might be split between
some subset of producers. For example, if we have three
producers, producing 1, 2 and 3 units of a resource respec-
tively, then a precondition requiring 3 units of the resource
could be supported by the first and second, the third alone
or all three. The selection of supporters appears to grow ex-
ponentially as the number of producers grows. Nevertheless,
the possibility to extend compression-safety to include some
class of numeric effects is attractive and we are continuing
to explore the ways in which this might be achieved.

4. One-Shot Inference

Although the identification and exploitation of compression-
safe actions offers significant savings when actions do
not participate in interactions that require concurrency, the
whole purpose of splitting actions is to allow us to solve
problems where concurrency is required. Therefore, we now
consider some common structures in domains that have re-
quired concurrency in order to identify ways to improve the
inference process during plan construction and eliminate re-
dundant choices from the search space.

We first consider the ‘one-shot’ constraint family: an ac-
tion A is one-shot if it has a precondition p, true in the initial
state, deleted by A, and added by no other action. Once
A has been applied, it removes its own precondition which
cannot be restored. One-shot actions can be collated into
‘one-shot action sets’ if they are all one-shot actions over
the same resource, p. Only one member of such a set can
ever be applied, since once one of them has deleted P there
is no way to restore it.

We now extend this definition to the temporal case. Any
of the following situations allow us to recognise a durative
action A as one-shot:

tnow

t t

A
A

BB

A

B

�

�



↔

↔
−ε

−ε

−ε

−ε

Figure 2: Temporal Constraints due to Invariants

1. A� has a precondition p, deletes p, and p is not added by
any action (including A�).

2. Either A↔ or A� has a precondition p, A� deletes p, and
p is not added by any action.

3. A� has a precondition p, A� deletes p, p is not added by
any action, and A is mutex with itself.

Note that without the mutual-exclusion restriction in
the last case, one could form the action sequence
A�, A�, A�, A� in a plan. To form one-shot action sets this
mutex constraint needs to be extended: if an action, A, is
one-shot under category 3, the other actions within the set
must be pairwise mutex with A.

Using the terms defined in Section 2.1, a one-shot action set
AS (containing non-temporal actions, or the starts of tempo-
ral actions) adds the constraint:

(acti ∈ AS) ⇒ ∪
n=(i+1)..∞

actn 	∈ AS

We can extend the definition of one-shot actions to in-
clude facts as follows:

Definition 4..1 — One-Shot Fact

A fact p is one-shot iff either:

• p ∈ I , no action adds p, and p ∈ pre(A) ⇒ p ∈ del(A);

• all the actions adding p form a one-shot action group, G,
no actions outside G add p, and p ∈ pre(A) ⇒ p ∈
del(A).

This definition can be used to extend the definitions of one-
shot actions and facts inductively: a set of actions that de-
pend on and delete the same one-shot fact are also one-shot
actions. Effects of these actions are then candidate one-shot
facts and so on.

5. Orderings on Open Action Ends

As discussed in Section 2., to ensure legal solution plans are
found as CRIKEY3 searches with split actions, A� and A�,
three conditions must hold: every action, A, started must
subsequently be ended, its invariants must hold during its
execution and the timestamps assigned to A� and A� are
constrained by the duration constraints on A.

In the STN maintained by CRIKEY3, nodes are added to
represent the ends of actions that are started, with constraints
to ensure that they follow all actions in the plan so far. This
process allows some sources of conflict to be detected early.
For instance, in Figure 2, suppose A and B have both started,
and by time tnow an action C has started and finished. If
mindur(C) exceeds maxdur(A) or maxdur(B), a nega-
tive cycle would be introduced into the STN because the fact
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that A� and B� have yet to complete means the entire du-
ration of C is (inconsistently) included within the execution
of A and B.

Although this temporal reasoning is useful, it can be
strengthened by observing the logical constraints imposed
by the actions and inferring from them temporal constraints.
For example, if we can show that the action that started at
i must finish before that which started at j, we can add the
constraint t(i) + ε ≤ t(j) to the STN, strengthening the in-
ference that is then possible in the STN. We now present two
techniques that allow us to strengthen the STN with further
inferences in similar ways.

5.1 Invariant–End Delete Conflict Ordering

Figure 2 shows the state where two actions have started in
the order A�, B�. This implies that their end points will
have to be added to the plan and that until they are the in-
variants of the actions hold. However, the ends of actions
can have effects that force orderings between the ends of
open actions because of interactions between the final delete
effects and invariants of open actions as follows.

Definition 5..1 — Invariant–End Delete Ordering
If a start-action A� is applied in a state with open event list
E, then its corresponding end, A�, must follow the ends of
the events in the set: {e ∈ E | e.op↔ ∩ eff−(A�) 	= ∅}

In Figure 2, therefore, if eff−(B�) ∩ A↔ 	= ∅ then B�

must follow A�. This constraint can be recognised as a
partial-order planning (POP) strategy to protect a causal
link. The alternatives that are usually considered in a POP
can be ignored because of the ordering constraints implied
by the structure of the plan built by forward search.

5.2 End Effect–End Condition Ordering

Ordering implied by interactions between end effects and
invariants is forced, but when two action ends interact so
that B� adds a precondition p of A�, the ordering is not
forced: some other action that adds p could be added prior
to A�, and B� then follow A�. Similarly, if B� deletes p,
some other action could be added to reestablish p prior to
A�. However, in the case of one-shot actions and one-shot
facts, end orderings can be established:

• if p is a one-shot fact and B� adds p, then application of
B renders all other actions adding p inapplicable, so B�

must precede A�;

• if B is a one-shot action where B� adds p and B� deletes
it then A� must precede B�

• if no action adds p and B� deletes it, then A� must pre-
cede B�.

5.3 Required Concurrency in Temporal Domains

We now consider two patterns that are common structures
in temporal domains with required concurrency: clips and
envelopes (Fox, Long, and Halsey 2004).

Analysis of Clips A clip, as illustrated in Figure 3a is an
action enforcing a maximum separation between two se-
quential actions. For example, if a unit must be inspected
within 10 minutes of closing it down, then the end of A

a,o b

c,o c

BA

c

a bb

c,a

ClipAB

(a) Clipping Action A to B

c
c c

A B

r a,r r

c

b,r

r r

EnvAB

(b) An Envelope containing A and B

Figure 3: Clipping and Envelope Actions

would represent closing the unit down and B would be the
inspection, clipped to the end of A by clipAB which would
have a duration of 10 minutes. In general, clipAB enforces
a maximum separation between the end of A and the start
of B. The clip is constructed so that there is only one legal
ordering for clipAB�, A�, B� and clipAB�.

During forward search, when A� and clipAB� have been
applied, a feasible schedule for this part of the plan is to
start clipAB� a small amount ε after A�. There will then
appear to be a period of as much as maxdur(A) − ε time
left until the end of A. If A encapsulates the availability of
a resource, search can consider many possible plans exploit-
ing this resource, deferring addition of A� and clipAB�.
However, given that A� must precede clipAB�, the max-
imum amount of time left until the end of A is actually
maxdur(clipAB) − ε. Typically, this is much shorter, with
clips often being used to enforce a short separation between
contiguous chunks of activity.

Applying our inference techniques to this situation we
observe that clipAB is one-shot and hence, t(A�) <
t(clipAB�) (Section 5.2). Therefore, the scope for branch-
ing and deferring the end actions is reduced and, in the case
of a tight clip, search quickly determines that the only viable
action sequence, once the clip has begun, is to interleave the
end of A, B and clipAB as illustrated.

Analysis of Envelopes Envelopes, as illustrated in Fig-
ure 3b, can serve two purposes: they can force some action
sequence to occur within a given duration, or they can be
used to model that a resource is only available for a fixed
window. As with clips, in forward search, inefficiencies
arise when an envelope and its content actions have started
but not yet finished. In Figure 3b, supposing the envelope
envAB has started, A has started and finished and B� has
been applied. The open ends at this point are then envAB�

and B�. If mindur(A)+mindur(B) > maxdur(envAB)
then the sequence cannot lead to a solution plan but, while
the open ends are deferred, search can branch over many
possible action choices.

Applying our inference techniques gives:

• envAB� deletes an invariant of B, and hence t(B�) <
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Figure 4: Results for CRIKEY3 with and without inference:
the power of compression-safety.

t(envAB�) (Definition 5..1);

• mindur(B) > maxdur(envAB) − mindur(A), and
hence the STN will enforce t(envAB�) < t(B�).

Together these imply a contradiction, so at the point of
adding B� to the plan, the inconsistency can be inferred and
further pointless search avoided.

6. Evaluation

We evaluate our inference techniques by considering the per-
formance of CRIKEY3 in a range of benchmark domains.

Measurements use a 3.4GHz Pentium IV machine with a
limit of 1GB of memory and 30 minutes on each test.

First, we explore the performance of the compression-safe
action inference and exploitation. The purpose of this infer-
ence is to attempt to mitigate the cost of supporting richer
temporal reasoning needed to solve problems with required
concurrency when facing domains in which this power is
not actually needed. We consider the time taken to solve
problems from 3rd and 4th International Planning Competi-
tions, using the Simple Time formulations from the former
and temporal (STRIPS) formulations from the latter. IPC
benchmark domains contain only simple temporal interac-
tions, making them an ideal test set to demonstrate the power
of compression-safety. The results of this are shown in Fig-
ure 4. In order to ensure that the results are distinguish-
able, we have only plotted the results for a representative
sample of domains. The remaining domains (Pipesworld,
Rovers and Zeno Travel) were also tested providing a sim-
ilar picture. In all benchmark domains tested we observe
that the performance is improved by the inference tech-
niques. We confirmed that the compression-safety technique
is the one responsible for these improvements by disabling
the other techniques. With the exception of the Rovers do-
main, which we discuss later, disabling all of the inferences
other than compression-safety generates performance indis-
tinguishable from that in Figure 4. These domains are tem-
porally simple, with no clips or envelopes, and the actions
are almost all compression-safe, so these results show that
the exploitation of compression-safe actions in domains of
this type leads to the elimination of the overhead involved in
supporting more complex temporal reasoning.

Figures 4b and 4c show a comparison of CRIKEY3 with
Sapa (Do and Kambhampati 2001), with and without the in-
ference enabled, on the same benchmark domains. We select
Sapa for comparison as it is also a forward search temporal
planner, although it explores a reduced search space that pre-
vents it from solving problems with required concurrency.
Sapa and CRIKEY3 without inference have very similar per-
formance, with each planner excelling in a subset of the
problems. Figure 4c shows an important result: CRIKEY3
with inference (in particular, exploiting compression-safe
actions) solves all but two problems faster than Sapa and
solves many more problems than Sapa does. Exploit-
ing compression-safety allows CRIKEY3 to overcome the
penalty associated with using the full temporal flexibility in
domains where it is unnecessary. This is possible because
inference of the application of the ends of compression-safe
actions eliminates reliance on search to find an ordering be-
tween all start and end actions: when appropriate, end ac-
tions are simply inserted into the plan where needed.

6.1 Domains with Further Temporal Interaction

To illustrate the power of our other techniques we must con-
sider problems with required concurrency. There is one do-
main taken from IPC3 that does have some temporal inter-
action and can benefit from inferring end orderings. The
temporal inferences are not specific to this domain but this
is the only instance of such interaction that occurs in the
benchmark domains. In more richly temporal problems,
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Figure 5: Performance in the Transformers and Rovers Do-
mains, with and without End Action Orderings

end-action ordering is much more important.

In Rovers (Simple Time) the action take image has an
invariant, that the camera be calibrated, deleted upon com-
pletion of the action. The effect of this is to ensure that
the camera must be recalibrated for each image to be taken.
When planning with this domain, a planner can fall into the
trap of starting two take image actions, using the same cam-
era and a different target, but then be unable to apply the
end of each action, as each deletes the invariant of the other.
Indeed, this is precisely what happens in CRIKEY3, caus-
ing Enforced Hill Climbing (EHC) (Hoffmann and Nebel
2001) to fail and the planner to resort to best-first search.
Using the same heuristic strategy, the planner explores the
same branch again during best-first search, before eventually
backtracking and finding a solution to the problem (if this
is feasible within the time and memory limitations). How-
ever, invariant–end-delete ordering (Definition 5..1), allows
CRIKEY3 to detect this inconsistency, and therefore not start
two take image actions with the same camera at the same
time: upon attempting to start a second take image ac-
tion the inferred ordering constraint introduces a cycle in
the temporal constraints. As shown by the much improved
scalability in Figure 5 (first two lines in the legend), employ-
ing this ordering allows problems to be solved much faster,
and indeed for many more problems to be solved. The data
shows performance with compression-safety in both cases:
this remains useful for other actions in the domain.

In order to investigate the power of the inference in a tem-
porally complex domain, we used a domain based on an
application problem in voltage control. The details of the
domain are not important, other than to observe that the en-
coding we used for these experiments was selected because
it uses a significant set of clips to link together collections of
actions that service particular elements of the voltage control
system. The clips ensure that these actions are kept tightly
grouped in time, with each action starting shortly after the
previous one ends. In the problem instances we used for
testing the number of clips varies from one in the smallest
problem to 23 in the largest. Other aspects of the problem
changed in this scaling, so the costs for solving the prob-
lems reflect not only the management of the clips, but also
the time required to plan the actions that execute alongside

the clipped sequences. In these experiments the clipped ac-
tions also have continuous linear effects active across their
durations and so we used COLIN (Coles et al. 2009), a
continuous-numeric variant of CRIKEY3, to obtain the re-
sults shown in Figure 5 (lines 3 and 4). As can be seen,
we obtain a significant improvement in performance. For
instance, on problem 15 (planning with 16 clips) the time
taken to find a solution plan is reduced from 24.52 to 7.08
seconds. In both the Rovers domain and here in the voltage
control domain, inference using end-actions has shown to
improve the performance of CRIKEY3 (and its continuous-
planning extension, COLIN).

7. Conclusions and Future Work

We have presented two useful classes of inference tech-
niques to support temporal planning, one to identify sit-
uations in which simpler temporal reasoning is sufficient
for handling actions and the other to prune branches in the
search space using inferences based on interactions between
action end points. A theoretical analysis of the latter reveals
that the techniques cope well with clip and envelope struc-
tures, empirically confirmed by performance in the voltage
control domain. In Planning Competition domains exploit-
ing compression-safety is shown to be highly effective at re-
ducing the burden of managing temporal planning. We now
intend to extend the class of compression-safe actions to in-
clude ‘safe’ numeric effects, and to extend the range of in-
ference techniques applicable in temporal and non-temporal
planning settings.
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