Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

Improved Local Search for Job Shop Scheduling with Uncertain Durations

Inés Gonzalez-Rodriguez
Dept. of Mathematics, Statistics and Computing,
University of Cantabria,
39005 Santander (Spain)
e-mail: ines.gonzalez@unican.es

Abstract

This paper is concerned with local search methods to solve
job shop scheduling problems with uncertain durations mod-
elled as fuzzy numbers. Based on a neighbourhood structure
from the literature, a reduced set of moves and the conse-
quent structure are defined. Theoretical results show that the
proposed neighbourhood contains all the improving solutions
from the original neighbourhood and provide a sufficient con-
dition for optimality. Additionally, a makespan lower bound
is proposed which can be used to discard neighbours. Exper-
imental results illustrate the good performance of both pro-
posals, which considerably reduce the computational load of
the local search, as well as a synergy effect when they are
simultaneously used.

Introduction

Scheduling problems form an important body of research
since the late fifties, with multiple applications in industry,
finance and science (Pinedo 2008). Traditionally, schedul-
ing has been treated as a deterministic problem that as-
sumes precise knowledge of all data. However, modelling
real-world problems often involves processing uncertainty
stemming from various sources; among others, activity
processing times. In the literature we find different pro-
posals for dealing with uncertainty in scheduling (Herroe-
len and Leus 2005). Perhaps the best-known approach is
stochastic scheduling, where uncertain durations are taken
to be stochastic variables. It is also possible to model ill-
known durations using fuzzy numbers or, more generally,
fuzzy intervals in the setting of possibility theory. It is ar-
gued that the latter proposes a natural framework, simpler
and less data-demanding than probability theory, for han-
dling incomplete knowledge about scheduling data. Al-
though less common, the fuzzy approach has been around
for more than two decades and has received the attention
of several researchers (c.f. (Dubois, Fargier, and Fortemps
2003),(Stowiniski and Hapke 2000)).

The complexity of scheduling problems such as shop
problems means that practical approaches to solving them
usually involve heuristic strategies. Extending these
strategies to problems with uncertain durations repre-
sented as fuzzy numbers usually requires a significant

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

154

Camino R. Vela and Jorge Puente
and Alejandro Hernandez-Arauzo
Dept. of Computer Science and A.IL. Centre,
University of Oviedo, 33271 Gij6n (Spain)
e-mail: {crvela,puente,alex } @uniovi.es

reformulation of both the problem and solving meth-
ods. For the job shop, we find a neural approach
(Tavakkoli-Moghaddam, Safei, and Kah 2008), genetic
algorithms (Sakawa and Kubota 2000),(Petrovic et al.
2008),(Gonzalez Rodriguez et al. 2008a), simulated anneal-
ing (Fortemps 1997) and genetic algorithms hybridised with
local search (Gonzélez Rodriguez et al. 2008b).

In the following, we consider a job shop problem with
task durations modelled as triangular fuzzy numbers. Based
on a definition of criticality and neighbourhood structure
from (Gonzélez Rodriguez et al. 2008b), we propose an im-
proved local search procedure. A new neighbourhood struc-
ture is defined and shown to improve the existing one. Also,
a lower bound for the makespan is defined and used to im-
prove the efficiency of the local search. The potential of both
proposals, used independently or jointly, is illustrated by the
experimental results .

The Fuzzy Job Shop Scheduling Problem

The classical job shop scheduling problem, JSP in short,
consists in scheduling a set of jobs {.J1,...,J,} on a set
{My, ..., M,,} of physical resources or machines, subject
to a set of constraints. There are precedence constraints, so
eachjob J;,i = 1,...,n, consists of m tasks {6;1,...,0;m}
to be sequentially scheduled. There are also capacity con-
straints, whereby each task 6;; requires the uninterrupted
and exclusive use of one of the machines for its whole pro-
cessing time. A feasible schedule is an allocation of starting
times for each task such that all constraints hold. The objec-
tive is to find a schedule which is optimal according to some
criterion, most commonly that the makespan is minimal.

Uncertain Durations

In real-life applications, it is often the case that the exact
time it takes to process a task is not known in advance.
However, based on previous experience, an expert may have
some knowledge (albeit uncertain) about the duration. The
crudest representation for uncertain processing times would
be a human-originated confidence interval. If some values
appear to be more plausible than others, a natural extension
is a fuzzy interval or fuzzy number. The simplest model is
a triangular fuzzy number or TFN, using an interval [a, a3
of possible values and a modal value a? in it. For a TFN A,

denoted A = (a',a?, a®), the membership function takes
the following triangular shape:

Cl)*(ll

cal <z < a?

22 —al
3
pa(z) =49 &% :d®> <z <d® (1)
0 cx<alora® <z

Triangular fuzzy numbers and more generally fuzzy
intervals have been extensively studied in the literature
(cf. (Dubois and Prade 1986)). A fuzzy interval) is a fuzzy
quantity (a fuzzy set on the reals) whose a-cuts Q, = {r €
R: pg(r) > a}, a € (0,1], are intervals (bounded or not).
The support of Q is Qo = {r € R : ug(r) > 0}. A fuzzy
number is a fuzzy quantity whose a-cuts are closed inter-
vals, with compact support and unique modal value.

In the job shop, we essentially need two operations on
fuzzy quantities, the sum and the maximum. These are ob-
tained by extending the corresponding operations on real
numbers using the Extension Principle. However, com-
puting the resulting expression is cumbersome, if not in-
tractable. For the sake of simplicity and tractability of nu-
merical calculations, we follow (Fortemps 1997) and ap-
proximate the results of these operations by a TFN, eval-
uating only the operation on the three defining points of
each TFN. The approximated sum coincides with the sum
of TFNs as defined by the Extension Principle, so for any
pair of TENs M and N:

M+ N = (m* +nb,m? +n? m?® 4+ n?) 2)
Regarding the maximum, for any two TFNs
M,N, if F denotes their maximum and G =
(max{m?!, n'}, max{m? n?}, max{m3 n3}) its ap-
proximated value, it holds that:

Vael0,1], f, <9, a <o 3)

where [f . f,] is the a-cut of F. In particular, F" and G
have identical support and modal value, that is, Fy = G
and F; = (1. This approximation can be trivially extended
to the case of more than two TFNs.

The membership function 1 of a fuzzy quantity () can be
interpreted as a possibility distribution on the real numbers;
this allows to define the expected value of a fuzzy quan-
tity (Liu and Liu 2002), given for a TFN A by

E[A] = i(a1 +2a” 4 a®).
The expected value coincides with the neutral scalar substi-
tute of a fuzzy interval and can also be obtained as the centre
of gravity of its mean value or using the area compensation
method. It induces a total ordering <pg in the set of fuzzy in-
tervals (Fortemps 1997), where for any two fuzzy intervals
M,N M <g N if and only if E[M] < E[N]. Clearly, for
any two TFNs A and B, if Vi, a’ < b', then A <p B.

“)

The Disjunctive Graph Model Representation

A job shop problem instance may be represented by a di-
rected graph G = (V, AU D). Each node in the set V' repre-
sents a task of the problem, with the exception of the dummy

155

nodes start or 0 and end or nm + 1, representing tasks with
null processing times. Task 6;;,1 < i <n,1 < j < m,is
represented by node © = m(i — 1) + j. Arcs in A are called
conjunctive arcs and represent precedence constraints (in-
cluding arcs from node O to the first task of each job and arcs
form the last task of each job to node nm—+1). Arcs in D are
called disjunctive arcs and represent capacity constraints;
,,,,, mD;, where D; corresponds to machine M;
and includes two arcs (x,y) and (y,x) for each pair (z,y)
of tasks requiring that machine. Each arc is weighted with
the processing time of the task at the source node (a TFN
in our case). A feasible processing order of tasks o corre-
sponds to an acyclic subgraph G(o) = (V, AU R(0)) of G,
where R(0) = U;=1..mRi(0), Ri(c) being a hamiltonian
selection of D;. Using forward propagation in G(o), we can
obtain the starting and completion times for all tasks and,
therefore, the makespan C,,,4. ().

Since task processing times are fuzzy intervals, the addi-
tion and maximum operations used to propagate constraints
are taken to be the corresponding operations on fuzzy in-
tervals, approximated for the particular case of TFNs as ex-
plained above. The obtained schedule will be a fuzzy sched-
ule in the sense that the starting and completion times of
all tasks and the makespan are fuzzy intervals, interpreted
as possibility distributions on the values that the times may
take. However, the task processing ordering o that deter-
mines the schedule is crisp; there is no uncertainty regarding
the order in which tasks are to be processed.

To illustrate these ideas, consider a problem of 3 jobs and
2 machines with the following matrices for fuzzy processing
times and machine allocation:

(3,4,7) (1,2,3) 12
(1,2,6) (1,2,4) 2 1

A feasible task processing order for this problem is given by
o =(1 354 2 6); its corresponding solution graph can be
seen in Figure 1.

347

Gan . 29

@(4,5,6) /\‘@2,3,4) ©
456) | (12%) 2,34
v Y

’

(:> (1,2,6)

Figure 1: Solution graph G(o) for the processing order
0 =(135426). Crnaz(c) = (7,10, 16)

(1,24

If S, and C, denote, respectively, the starting and com-
pletion times of a task z, it is easy to check that, for in-
stance for task 4, Sy = max{C5,C1} = (4,5,7) and Cy =
S4+py = (6,8,11). Figure 2 corresponds to the Gantt chart
(adapted to TFNs following (Fortemps 1997)) of the result-
ing schedule, where each block is labelled with the corre-
sponding task number. It shows the final makespan as well
as the starting times of tasks scheduled in each machine: for

Makespan A
0 5 10 15 20
-6
i D=t |
0 5 10 15 20
M7 ° ‘5\‘\2 | |
0 5 10 15 20

Figure 2: Gantt chart of the schedule represented by (1 3 5
426).

(4,5,7), S¢ = (6,8,12), and for
(47 55 6)’ SQ = (5, 7, 12)

Expected Makespan Model

We have stated the goal of the job shop problem as finding a
schedule which is optimal in the sense that the makespan is
minimal. However, neither the maximum nor its approxima-
tion define a total ordering in the set of TFNs. In a similar
approach to stochastic scheduling, it is possible to use the
concept of expected value for a fuzzy quantity and the to-
tal ordering it provides, so the objective is to minimise the
expected makespan E[Cly,q,(0)], a crisp objective function.

Criticality

In the crisp case, a critical path is defined as the longest
path in a solution graph from node start to node end and
a critical arc or critical activity is an arc or activity in a
critical path. It is not trivial to extend these concepts and
related algorithms to the problem with uncertain durations
(cf. (Dubois, Fargier, and Fortemps 2003)). For the fuzzy
job shop considered herein it may even be the case that the
makespan (a TFN) does not coincide with the completion
time of one job (unlike the crisp case).

In (Gonzélez Rodriguez et al. 2008b), a definition of crit-
icality is proposed based on the fact that all arithmetic op-
erations used in the scheduling process are performed on
the three defining points or components of the TFNs. Let
G(o) = (V, AU R(0)) be a solution graph, where the cost
of any arc (z,y) € AU R(0) is a TEN representing the pro-
cessing time p,, of task z. From G(o), we obtain the parallel
solution graphs G' (), i = 1,2, 3, with identical structure to
G/(o) but where the cost of any arc (x,) is p, the i-th com-
ponent of p,.. Since durations in each parallel graph G (o)
are deterministic, a critical path in G*(o) is the longest path
from node start to node end. Notice that it is not necessar-
ily unique; for instance, Figure 3, shows the three parallel
graphs generated from the graph in Figure 1; we see that if
ps = 3 there would be two critical paths in G3(0): (35 2)
and (35 6).

Using the parallel graph representation, criticality for the
fuzzy job shop is defined as follows:

Definition 1. A path P in G(o) is a critical path if and only
if P is critical in some G*(c). Nodes and arcs in a critical

156

=7

7
2NN

a

/@\\
(5
- - - W
. -
N \\N Sl /
N R N
. /
~ /
/
/
/
N
@
N

(2)
Doy &
3.
¥
G?. Critical path= (34 6). C%, .. =10

//\\\
o)
&)

4
' 4

/@\\
>
- = - w
AN o N
SN \°\’ , \,
N ,
~ /
,
/
,
W

G3. Critical path=(356). C3,,, = 16

Figure 3: Parallel graphs corresponding to the graph in Fig-
ure 1, with critical paths in bold.

path are termed critical. A critical path is naturally decom-
posed into critical blocks By, . .., B, where a critical block
is a maximal subsequence of tasks of a critical path requir-
ing the same machine.

Clearly, the sets of critical paths, arcs, tasks and blocks in
G (o) are respectively the union of critical paths, arcs, tasks
and blocks in the parallel solution graphs. The makespan of
the schedule is not necessarily the cost of a critical path, but
each component C?, (o) is the cost of a critical path in the

corresponding soluTi((l)grﬁl parallel graph G*().

Improved Local Search

Part of the interest of critical paths stems from the fact that
they may be used to define neighbourhood structures for lo-
cal search. Roughly speaking, a typical local search schema
starts from a given processing order, calculates its neigh-
bourhood and then neighbours are evaluated in the search
of an improving solution. In steepest descent hill-climbing,
all neighbours are evaluated, the best one is selected and
it replaces the original solution if it is an improving neigh-
bour. In simple hill-climbing, evaluation stops as soon as
the first improving neighbour is found. Local search starts
again from that improving neighbour, so the procedure fin-
ishes when no neighbour satisfies the acceptation criterion.

Previous Approaches

Clearly, a central element in any local search procedure is
the definition of neighbourhood. For the crisp job shop, a
well-known neighbourhood, which relies on the concepts
of critical path and critical block, is that proposed in (Van
Laarhoven, Aarts, and Lenstra 1992), extended to the fuzzy
case in (Gonzélez Rodriguez et al. 2008b) using the given
definition of criticality as follows:

Definition 2. Given a task processing order m and an arc
v = (z,y) € R(m), let m(, denote the processing order
obtained from T after an exchange in the processing order of
tasks in arc v. Then, the neighbourhood structure obtained
from 7 is given by H(m) = {7, : v € R(m) is critical}.
This neighbourhood H has a highly desirable property:

Theorem 1. Let 7 be a feasible task processing order; then
all elements in H(7) are feasible.

Feasibility limits the local search to the subspace of fea-
sible task orders and avoids feasibility checks for the neigh-
bours, hence reducing computational load and avoiding the
loss of feasible solutions usually encountered for feasibility
checking procedures.

An earlier proposal to extend Van Laarhoven’s neighbour-
hood structure to the fuzzy case can be found in (Fortemps
1997), using an alternative definition of critical path. It turns
out that the set of critical arcs, according to the definition
based on parallel graphs, is a strict subset of the critical
arcs according to the earlier definition. Hence, the neigh-
bourhood H is strictly included in that defined in (Fortemps
1997), denoted H'. It can be shown that those neighbours
from H’ — H can never improve the makespan. This is a
consequence of the following property:

Proposition 1. Let 7 be a feasible processing order and let
0 = T(y) where v is not critical in G(r). Then
Crnaz (M) < Croae (0)- ®)

In (Gonzélez Rodriguez et al. 2008b), a local search pro-
cedure using H is hybridised with a genetic algorithm, ob-
taining a memetic algorithm, for which competitive experi-
mental results are reported. Despite being satisfactory, the
results also suggest that the algorithm has reached its full
potential and, importantly, most of the computational time it
requires corresponds to the local search. In order to obtain
better metaheuristics for the fuzzy job shop, it is necessary
to improve the neighbourhood structure and reduce the com-
putational cost of the local search. Additionally, the paral-
lel graph framework causes neighbourhood structures in the
fuzzy case to usually contain considerably more individu-
als than in the classical setting, with the consequent increase
in computational cost. This further justifies the need of a
greater effort to improve efficiency.

In the following, we propose to improve the local search
in three ways. A first idea is to change the scheduling
method in the local search algorithm, evaluating neighbours
in a more efficient manner. A second idea is to reduce the
number of neighbours with more complex structures than
“simply” inverting any critical arc, an approach successful
both for the classical job shop and for the job shop with

Vi,

157

setup times (Nowicki and Smutnicki 1996),(Gonzilez, Vela,
and Varela 2008). A third possibility is to avoid evaluat-
ing certain neighbours by calculating lower bounds of their
makespan, as done, for instance, in (Taillard 1994).

Makespan Calculation for Neighbours

The well-known concepts of head and tail of a task are eas-
ily extended to the fuzzy framework. For a solution graph
G(7) and a task z, let Pv, and Sv, denote the predeces-
sor and successor nodes of = on the machine sequence (in
R(m)) and let PJ, and S.J, denote the predecessor and
successor nodes of x on the job sequence (in A). The
head of task z is the starting time of z, a TFN given by
r, = max{rpj, + pps,,"Pv, + PPy, }, and the tail of
task x is the time lag between the moment when z is fin-
ished until the completion time of all tasks, a TFN given by
¢z = max{qsJ, + PsJ,,qsv, + Psv, }-

Clearly, the makespan coincides with the head of the last
task and the tail of the first task: Cy00 = Tnm+1 = ¢o; other
basic properties that hold for each parallel graph Gi(r) ar
the following: 7, is the length of the longest path from node
0 to node ; ¢, + pt is the length of the longest path from
node x to node nm + 1; and 72, + p, + ¢, is the length of
the longest path from node 0 to node nm + 1 through node
x: it is a lower bound for C¥ (), being equal if node
belongs to a critical path in G*().

Given a task processing order 7 and a critical arc (z,y) in
G(m) the reversal of that arc produces a new feasible pro-
cessing order 0 = (g, With solution graph G(o). This
situation is illustrated in Figure 4. The makespan after the

Py, T Py, 0 = T(z,y)

PJ, *@—> 5J, \ P, % SJ,
pr, — V) SJ, PI; ==y S0,

N /
N ¥

Sv, Sy,

Figure 4: Situation before (7) and after (o) the reversal of a
critical arc (z,y).

move may be calculated as for any solution, using forward
propagation in the graph G(o) from 0. This has been the
method used in (Gonzédlez Rodriguez et al. 2008b). Al-
ternatively, for the classical job shop, “the evaluation of
the makespan of neighbouring solutions may be done very
quickly (in time O(N))” (Taillard 1994). This is still so in
the fuzzy case.

Let r and ¢ denote the heads and tails in G () (before the
move) and let 7' and ¢’ denote the heads and tails in G(o)
(after the move). For every task a previousto z in 7, rq, = 1,
and for every task b posterior to y in 7, ¢, = ¢j. The heads
and tails for x and y after the move (see Figure 4) are given

by the following:

r, = max{rp;, + ppJ,,TPv, + PP, },
r, =max{rpy, +pps,, Ty + Py}
¢, = max{qss, +PsJs,:qSv, + Dsv, }
q, = max{qss, + PsJ,: qy + Da}

(6)

To calculate the makespan Ci,..(0), we need only re-
calculate the heads of tasks from x onwards in the graph
G(o). We propose to incorporate this way of evaluating
neighbours in H to the local search algorithm, an idea
which, albeit simple, may prove a considerable reduction in
computational load.

Makespan Lower Bound

At each iteration of the local search, only those neighbours
with improving makespan are of interest. Another way of
reducing computational cost is to foresee, by means of a
makespan lower bound, that certain neighbours are for sure
not improving. A well-known and inexpensive lower bound
for the makespan in the crisp case was proposed by Taillard
in (Taillard 1994). In the following, we generalise this lower
bound to the fuzzy case.

For a processing order o and tasks z and y, let P, (x V y)
denote the set of all paths in the solution graph G(o) con-
taining x or y, P, (x A y) denote the set of all paths in G(o)
containing both = and y and let P, (—z) denote de set of all
paths in G (o) not containing . Also, for a given set of paths
P, let D[P] denote the TFN such that D?[P] is the length of
the longest path from P in the parallel graph G*, i = 1,2, 3.

Proposition 2. Let o = m(,, where v = (x,y) is an arc in
G(w). Then, the makespan for the new solution is given by:

Cimaz(0) = max{D[P,(x V y)|, D|Pr(—x)]} (7)
Proof. Forevery: = 1,2, 3 it holds that:

Crnaz(0) = max{D'[Po(x V)], D[Py (=2 A —y)]} (8)

Since the only arcs that change between G () and G (o) are

(Pvy(m), x), (z,y), (y, Svy(w)), those paths not containing
x nor y are the same in both graphs G(m) and G(o), so:

Crnaz(0) = max{ D' [Py (z V y)), D' [Pr(=z A =y)]} (9)

Now, for every path in G(7) containing y but not contain-
ing x, either it starts in y or it contains the arc (PJ,,y). In
both cases, the subpath to y is identical in both G(7) and
G(0). If the path does not contain Sv,, it is still a path in
G(o) and if it does contain the arc (y, Sv,), then substi-
tuting (z,y) by (y,x), (z, Sv,) we obtain a longer path in
G(0). Therefore, D[Py (—x Ay)] < D![P,(z V y)] and we
may rewrite (9) as follows:

Cjnaz (U) = maX{Di[PU ((E \ y)]’
D[Py (=2 A =y)], D*[Pr(=z Ay)]}
= max{D'[Py(z V y)], D'[Pr(-2)]} O

The previous proposition shows that C,,, 4. (o) can be cal-
culated as the maximum of two elements; the former pro-
vides an easy-to-compute lower bound for C,,,4.(0):

158

Corollary 1. The TFN defined as:

LB =max{r, +p. + ¢, 7, +py +¢,} (10)

provides a lower bound for the makespan C,q.(0) obtained
after the reversal of arc (x,y) (for i = 1,2,3 LB* <
C? ..(0) and hence LB <g Cpaz(0)).

max

This lower bound, extending that in (Taillard 1994) for the
crisp job shop, can be calculated in time O(1).

Reduced Neighbourhood

A third possibility to increase the efficiency of local search
is to reduce the neighbourhood size without discarding im-
proving solutions. For the crisp case, it is proposed in (Now-
icki and Smutnicki 1996) to consider only the reversal of
arcs which are in the extreme of a critical block.

In the fuzzy setting if (z,y) is critical in some compo-
nent and is in the extreme of a critical block, its reversal
may yield an improving solution but it may also be the case
that the three arcs (Puy,), (z,y), (y, Svy) are all critical
arcs (in different components) and do not belong to the same
critical block or they may be inside a critical block for one
component and in the extreme of a block for another compo-
nent. In these cases, the reversal of arc (z,y) may produce
an improvement.

Let 7 be feasible processing order; for each G*(7) we
select a single critical path u; = (u;1,...,%;.,) contain-
ing w; tasks, which can be decomposed into critical blocks
u; = Bj1,...,B;,,. Letus denote the tasks in each block
as follows: B;; = (Ua; ;,Ua; ;+1,--5Ub; ;)s SO a;;j and
b;,; denote respectively the indices of the first and the last
task in the block B; ;, j = 1,...,7;. With this notation,
Uil = Ua;,, Uiw, = bip, and a;1 < bj1 < bj1+1=
aj2 < bia...a;r < by, Foreach block B; ;, the arcs
candidate for a move will be those in the extreme of the
block: (ua, ;,Ua, ;+1) and (up, ;—1, up, ;). More formally:

Definition 3. The set of arcs candidates for a move on com-
ponent i is V(m,) = Ui, V;(m, 1) where:

N {(me—l(i)aubm)} ifa;1 # bi1,r > 1,
Vil) = {@ otherwise.
{(uai,j) uai,j“rl)) (ubi,jflv ubi’j)}

Vj(m,i) = ifaij # bi; (11)

O otherwise., j=2,...,m—1

Vri (ﬂ',i) — {{(uai,ri’uai,ri‘f’l)} lfai,h’ 7£ bi-,TiaTi > 1,

0 otherwise.

The set of arcs from 7 candidates for a move is ob-
tained as the union over the three components: V()
Ui=1,2,3V(7,).

It follows directly from the definition that V(7) is a subset
of the critical arcs in G (7). The reduced neighbourhood will
be defined based on moves of arcs in V(7):

Definition 4. The reduced neighbourhood structure ob-
tained from T is given by

HR(TF) = {77(1;) NS V(ﬂ')} (12)

Clearly, Hr(m) C H(w) and hence contains only feasi-
ble schedules. The following result shows that those dis-
carded neighbours from H(w) — Hpr(7) never improve the
makespan of the original solution 7.

Theorem 2. Let be a feasible processing order.
Vo € H(r) — Hr(7), E[Ciaz (7)) < ElChaxz(o)] (13)

Proof. Fori=1,2,3letu; = (u;1,..., Ui,) bethesingle
critical path in G*(7) selected to generate Hg (7). Let o €
H(m) — Hg(m), i.e., 0 = m(,) where v = (2, %) such that:
(1) (x,y) € R(w); (2) for at least one component i, x,y
belong to a critical path u/ in G*() (u’ need not be equal to
w);) (2,y) & V().

For any component j for which (z, y) is not critical, let P
be a critical path in G’ () (with length CJ, (). Clearly,
(z,y) does not belong to P. Let us see that there always
exists a path in G’ (o) with greater or equal length than P
(and, therefore, CJ,, (o) > CJ .. (7). We consider three

mazxr
cases:

1. P does not contain any of the arcs (Pv,,x), (z,y),
(y, Svy) that change in the move from 7 to o. In this
case, P is also a path in G’ (o).

2. P contains arc (Pvy,x). In this case, if P,; denotes
the subpath of P from node a to node b, we have P =
Po,pv,,®; Psj, nm+1 and Py py,,y, %, Py, nm+1 1S a
path in G7 (o) longer than P.

3. P contains arc (y, Sv,). Here the proof is symmetric to
the previous case.

For a component ¢ in which (z, y) is critical, if (z,y) is not
in the critical path u; selected to generate Hg (), the same
arguments as above (taking P = wu;) can be used to prove
that C¢ (7)) < C¢ ..(0). If (x,y) is in u;, since (z,y) &
V(m, 1), we have three possibilities:

1. (x,y) is inside a critical block B; ;, 1 < j < r; and
therefore Pv,, x,y, Sv, are in the block B; ;.

2. (x,y) is in the first block B; 1 and it is not the last arc in
the block, therefore, Pv, x,y, Sy, are in the block B; 1
(where Py, may not exist if z is the first node in the path).

3. (,y) is in the last block B; ., and it is not the first arc in
the block, therefore, Pv, x,y, Svy are in the block B; 1
(where Sv, may not exist if y is the last node in the path).

Let us then suppose, without loss of generality, that
Pug,z,y, Sy, all exist and are inside a critical block. It
follows:

(14)
(15)

Crnaz(T) =1y, + D50, + 450,

TSy, = T'pu, + Dy + Dy + Py
In G(o), since the arcs before P, have not changed,
7“33”1 = rpy,, and in consequence:

I A A R A A
> 'y, + Ppu, + Dy + D

=rp,, +0p,, +0,+p, (16)

159

From (15) and (16) we have r’guy > Tisuy- Similarly, we
obtain the inequality ¢, > g, . Therefore:

. p , p
Chnaz(0) 2 75y, + D5y, + G50,

> 15, + 05y, + 5, = Chas(m) O
The proposed neighbourhood Hg () (in fact, the defini-
tion of the subset of critical arcs V()) allows to formulate

a sufficient condition for optimality of a processing order.

Proposition 3. If the set of candidates for a move is empty,
V(7)) =, then 7 is an optimal processing order.

Proof. By definition, V() is empty if and only if V(7,1%) is
empty for all i = 1,2, 3. V(m,4) can be empty in one of the
two following cases:

1. a;j = by, 5 = 1,...,7 ie., all blocks have size 1,
so all arcs correspond to precedence constraints in a job.
Thus, all tasks from the critical path u; belong to the same
job J;. and the length of this path (the makespan C),qz)
corresponds to the makespan lower bound given by the
sum of durations of all tasks in a job: Z;nzl Dix;. Hence
the makespan is optimal.

2. r; = 1, i.e., all tasks in u; belong to the same block B;
and, therefore, they are all processed in the same machine
M;.. As above, the length of the path u; (the makespan)
coincides with the lower bound given by the sum of dura-
tions of tasks in a machine: Z?:l Dijs- O

This guarantees that if the local search procedure stops
because the neighbourhood is empty, not only has it found a
local optimum, but a global one.

Experimental Results

We now consider 12 benchmark problems for job shop: the
well-known FT10 (size 10 x 10) and FT20 (20 x 5), and
La21, La24, La25 (15 x 10), La27, La29 (20 x 10), La38,
La40 (15 x 15), and ABZ7, ABZS8, ABZ9 (20 x 15), the
set of 10 problems identified in (Applegate and Cook 1991)
as hard to solve for classical JSP. Ten fuzzy versions of
each benchmark are generated following (Fortemps 1997)
and (Gonzdilez Rodriguez et al. 2008b), so task durations
become symmetric TFNs where the modal value is the orig-
inal duration, ensuring that the optimal solution to the crisp
problem provides a lower bound for the fuzzified version.
The goal of this section is to evaluate empirically the con-
tribution of our proposals to improving local search effi-
ciency. We consider the memetic algorithm presented in
(Gonzélez Rodriguez et al. 2008b), denoted GVPVO0S in
the following, which compared favourably with previous ap-
proaches from the literature in terms of makespan optimisa-
tion. GVPV08 combines a genetic algorithm with a local
search procedure. In the GA, chromosomes are permuta-
tions with repetition, decodified using G&T algorithm, with
the expected makespan as fitness function. Chromosomes
are paired at random and mated using job order crossover
(JOX) to obtain two offsprings; acceptance consists in se-
lecting the best individuals from both parents and their off-
springs. LS with simple hill-climbing is applied to every

Table 1: Neighbour scheduling algorithm: CPU time (in sec-
onds) of MA vs. GVPV08

Problem | Size | GVPV08 MA | Red%
FT10 10 x 10 801.2 588.2 | 26.59%
FT20 20x 5 1693.9 682.1 | 59.73%
La21 15 x 10 1769.4 1072.8 | 39.37%
La24 15 x 10 1562.4 950.1 | 39.19%
La25 15 x 10 1722.8 993.7 | 42.32%
La27 20 x 10 4137.8 2242.8 | 45.80%
La29 20 x 10 3936.0 2071.7 | 47.37%
La38 15 x 15 3037,6 2556.7 | 15.83%
La40 15 x 15 3220.4 2652.2 | 17.64%
ABZ7 20 x 15 7396.1 5294.7 | 28.41%
ABZ8 20 x 15 8098.5 5780.9 | 28.62%
ABZ9 20 x 15 7308.0 5652.1 | 22.66%

chromosome immediately after its generation, with a high
computational load. We shall use GVPV0S as a baseline al-
gorithm and introduce the different improvements proposed
herein in the LS module, to evaluate their contribution to
increasing efficiency.

The first experiment aims at evaluating the benefit of
scheduling neighbours using heads and tails. We change the
way in which neighbours are scheduled in GVPV0S8 and ob-
tain a new hybrid algorithm denoted MA, which is run with
the same parameters as GVPV08. Notice that the schedules
will be the same with both methods (it is only the way of
calculating them that changes), so the final solution obtained
with both proposals is identical in terms of makespan. Ta-
ble 1 shows the average CPU time in seconds taken by 30
runs of GVPV08 and MA on every family of ten fuzzy in-
stances, showing a clear reduction in time for MA, with the
reduction rate varying across different problem families: the
minimum (15.83%, 17.64%) is obtained for the square prob-
lems of size 15 x 15 and the maximum (59.73%) is obtained
for FT20 of size 20 x 5. For identical number of jobs, the
greater the number of resources, the greater the reduction.
In any case, the scheduling based on heads and tails is al-
ways more efficient than the original one, with an average
reduction in CPU time of 34.5%,

Having ascertained the net contribution of the new
scheduling algorithm to local search efficiency, we pro-
ceed to analyse the remaining proposals. We consider three
variations of the most efficient algorithm MA: incorporat-
ing the lower bound to avoid unnecessary evaluations, de-
noted MA(LB); changing the neighbourhood from H to Hp,
denoted MA(R); and combining both approaches denoted
MA(R+LB). Again, changes w.r.t. GVPVO08 do not con-
cern makespan values and the parameters used for GVPV08
guaranteed convergence, so there is no point in comparing
versions based on makespan values nor in prolonging com-
putation time in an attempt to improve the makespan of the
final solution. The interest is instead in evaluating the contri-
bution of the proposals to reducing the number of evaluated
neighbours and the CPU time required by local search.

Table 2 shows the number of evaluated neighbours in 30

160

"MAR) £xxx3
MA(LB) ——
MA(R+LB) m—

0.8

0.6

02

o o - = re) ~ @ ® 9 N~
- & o o o o [o I N
[[[© © < < S m
L oL 4 49 9 g a3 4aJ a Z

Figure 5: Proportion of evaluated neighbours w.r.t. MA

runs of MA(R), MA(LB) and MA(R+LB) compared to MA;
for the latter, the number of evaluated neighbours is the same
as for GVPVO0S. Figure 5 illustrates that both proposals Hg
and L B considerably reduce the number of evaluated neigh-
bours. In general, the reduction is greater for LB used to
discard neighbours (75% in average) than for Hg (57.02%
in average), although there are differences depending on the
problem structure. A common phenomenon for all prob-
lems, regardless of their structure, is the accumulative effect
of LB and Hp: the proportion of evaluated neighbours for
MA(R+LB) is approximately half of the minimum propor-
tion of the two separate methods. This shows the synergy
in the combined use of both proposals; the number of evalu-
ated neighbours for MA(R+LB) is practically reduced in an
order of magnitude with respect to the original MA.

Table 2 also shows the CPU time for a total of 30 runs
of each algorithm, averaged across the ten fuzzy instances
of each family of problems. Again, each proposal supposes
a considerable reduction w.r.t. the MA, in general greater
for MA(LB) (72.57% in average) than for MA(R) (44.59%).
The synergy effect is not as striking as above; still CPU
times for MA(R+LB) are sensibly smaller. For Hg, the pro-
portion of time dedicated by the MA to evaluating neigh-
bours is reduced, but the time necessary to compute neigh-
bours is increased with the search of arcs in the extreme of
critical blocks. In fact, the number of solutions evaluated
in the local search and the required CPU time are in aver-
age 25.70% and 27.43% of the total for MA(LB), whilst for
MA(R) they are 42.98% and 55.41% of the total. This shows
that approximately 10% of computation time is dedicated to
finding extremes of critical blocks, a search also performed
in MA(R+LB), where the number of evaluated neighbours
is reduced to 13.01% but CPU time is reduced to 23.51% in
average.

Conclusions

We have considered the job shop scheduling problem with
uncertain processing times modelled as triangular fuzzy
numbers and where the objective is to minimise the expected
makespan. With the aim of improving local search effi-

Table 2: Number of evaluated neighbours and CPU time (in seconds)

Problem | MA MA(R) MA(LB) MA(R+LB)

| Neigh. CPU | Neigh. CPU | Neigh. CPU | Neigh. CPU
FT10 2.83E+07 588.2 | 1.44E+07 37290 | 6.25E+06 179.3 | 3.61E+06 166.5
FT20 6.78E+07 682.1 | 1.14E+07 283.1 | 2.25E+07 2954 | 5.16E+06 211.0
La21 4.46E+07 1072.8 | 1.93E+07 6109 | 1.07E+07 327.8 | 5.76E+06 292.2
La24 3.87E+07 950.1 | 2.04E+07 636.4 | 9.00E+06 304.5 | 5.59E+06 284.0
La25 4.28E+07 993.7 | 1.78E+07 555.3 | 1.03E+07 322.4 | 5.75E+06 289.5
La27 8.37E+07 2242.8 | 2.77E+07 1072.5 | 2.53E+07 6419 | 9.79E+06 511.6
La29 7.85E+07 2071.7 | 2.44E+07 962.8 | 2.40E+07 609.8 | 8.90E+06 485.8
La38 5.16E+07 2556.7 | 3.10E+07 1732.8 | 1.11E+07 546.7 | 8.02E+06 514.0
La40 5.42E+07 2652.2 | 3.03E+07 1643.2 | 1.16E+07 565.1 | 8.42E+06 531.5
ABZ7 | 9.74E+07 5294.7 | 4.07E+07 2671.0 | 2.57E+07 1073.8 | 1.30E+07 898.4
ABZS8 1.08E+08 5780.9 | 4.60E+07 2936.5 | 2.87E+07 1168.0 | 1.48E+07 975.2
ABZ9 | 9.65E+07 5652.1 | 443E+07 3107.7 | 2.42E+07 1078.5 | 1.33E+07 925.8

ciency, we have proposed a new neighbourhood structure
and have shown that it improves previous proposals, since it
reduces the set of neighbours by excluding non-improving
ones. Additionally, lower bound for the makespan has been
proposed which allows to discard non-improving neighbours
in an efficient way without evaluating them. The experimen-
tal results clearly show that the new neighbourhood struc-
ture and the lower bound, used independently but even more
when combined, significantly reduce the computational load
of local search and greatly improve its efficiency.

Acknowledgments

This work is supported by MEC-FEDER Grant TIN2007-
67466-C02-01.

References

Applegate, D., and Cook, W. 1991. A computational
study of the job-shop scheduling problem. ORSA Journal
of Computing 3:149-156.

Dubois, D., and Prade, H. 1986. Possibility Theory: An Ap-
proach to Computerized Processing of Uncertainty. New
York (USA): Plenum Press.

Dubois, D.; Fargier, H.; and Fortemps, P. 2003. Fuzzy
scheduling: Modelling flexible constraints vs. coping with

incomplete knowledge. European Journal of Operational
Research 147:231-252.

Fortemps, P. 1997. Jobshop scheduling with imprecise
durations: a fuzzy approach. IEEE Transactions of Fuzzy
Systems 7:557-569.

Gonzilez Rodriguez, I.; Puente, J.; Vela, C. R.; and Varela,
R. 2008a. Semantics of schedules for the fuzzy job shop
problem. IEEE Transactions on Systems, Man and Cyber-
netics, Part A 38(3):655-666.

Gonzilez Rodriguez, I.; Vela, C. R.; Puente, J.; and Varela,
R. 2008b. A new local search for the job shop prob-
lem with uncertain durations. In Proceedings of the Eigh-
teenth International Conference on Automated Planning
and Scheduling, 124-131. Sidney: AAAI Press.

161

Gonzalez, M. A.; Vela, C. R.; and Varela, R. 2008. A
new hybrid genetic algorithm for the job shop scheduling
problem with setup times. In Proceedings of the Eigh-
teenth International Conference on Automated Planning

and Scheduling. Sidney: AAAI Press.

Herroelen, W., and Leus, R. 2005. Project scheduling un-
der uncertainty: Survey and research potentials. European
Journal of Operational Research 165:289-306.

Liu, B., and Liu, Y. K. 2002. Expected value of fuzzy vari-
able and fuzzy expected value models. IEEE Transactions
on Fuzzy Systems 10:445-450.

Nowicki, E., and Smutnicki, C. 1996. A fast taboo search
algorithm for the job shop scheduling problem. Manage-
ment Science 42:797-813.

Petrovic, S.; Fayad, C.; Petrovic, D.; Burke, E.; and
Kendall, G. 2008. Fuzzy job shop scheduling with lot-
sizing. Annals of Operations Research 159:275-292.

Pinedo, M. L. 2008. Scheduling. Theory, Algorithms, and
Systems. Springer, third edition.

Sakawa, M., and Kubota, R. 2000. Fuzzy programming for
multiobjective job shop scheduling with fuzzy processing
time and fuzzy duedate through genetic algorithms. Euro-
pean Journal of Operational Research 120:393-407.

Stowinski, R., and Hapke, M., eds. 2000. Scheduling Un-
der Fuzziness, volume 37 of Studies in Fuzziness and Soft
Computing. Physica-Verlag.

Taillard, E. D. 1994. Parallel taboo search techniques for
the job shop scheduling problem. ORSA Journal on Com-
puting 6(2):108-117.

Tavakkoli-Moghaddam, R.; Safei, N.; and Kah, M. 2008.
Accessing feasible space in a generalized job shop schedul-
ing problem with the fuzzy processing times: a fuzzy-
neural approach. Journal of the Operational Research So-
ciety 59:431-442.

Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job
shop scheduling by simulated annealing. Operations Re-
search 40:113-125.

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

