
Exploiting Coordination Locales in
Distributed POMDPs Via Social Model Shaping

Pradeep Varakantham∗, Jun-young Kwak, Matthew Taylor, Janusz Marecki†, Paul Scerri‡, Milind Tambe
University of Southern California, Los Angeles, CA, 90089
∗Singapore Management University, Singapore, 207855

†IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
‡Carnegie Mellon University, Pittsburgh, PA, 15213

pradeepv@smu.edu.sg,{junyounk,taylorm,tambe}@usc.edu,marecki@us.ibm.com,scerri@cs.cmu.edu

Abstract

Distributed POMDPs provide an expressive framework for
modeling multiagent collaboration problems, but NEXP-
Complete complexity hinders their scalability and application
in real-world domains. This paper introduces a subclass of
distributed POMDPs, and TREMOR, an algorithm to solve
such distributed POMDPs. The primary novelty of TREMOR
is that agents plan individually with a single agent POMDP
solver and use social model shaping to implicitly coordinate
with other agents. Experiments demonstrate that TREMOR
can provide solutions orders of magnitude faster than exist-
ing algorithms while achieving comparable, or even superior,
solution quality.

Introduction
The excitement about Distributed Partially Observable
Markov Decision Problems (DEC-POMDPs) is due to
their ability to tackle real-world multi-agent collabora-
tive planning problems under transition and observation
uncertainty (Bernstein, Zilberstein, and Immerman 2000;
Becker et al. 2004; Seuken and Zilberstein 2007; Marecki
et al. 2008). Given the NEXP-Complete complexity
of DEC-POMDPs (Bernstein, Zilberstein, and Immerman
2000), however, the emerging consensus is to pursue ap-
proximate solutions (Nair et al. 2003; Seuken and Zil-
berstein 2007) and sacrifice expressiveness by identify-
ing useful subclasses of DEC-POMDPs (e.g., transition-
independent DEC-MDPs (Becker et al. 2004) and event-
driven DEC-MDPs (Becker, Zilberstein, and Lesser 2004;
Marecki and Tambe 2007)). Such algorithms, through find-
ing non-optimal joint policies or exploiting the structure of
a subclass, are able to significantly reduce planning time.

In this continuing quest for efficiency, our research iden-
tifies a subclass of DEC-POMDPs that allows for signifi-
cant speedups in computing joint policies. This paper pro-
vides two key contributions. The first is a new subclass:
Distributed POMDPs with Coordination Locales (DPCL).
DPCL is motivated by domains, including those found
in DEC-POMDP literature, where multiple collaborative
agents must perform multiple tasks. Agents are typically
able to act independently, except in certain coordination lo-
cales. These coordination locales are identified as a set of
states where agents may be required to coordinate — just

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in case their policies require them to interact — so as to
avoid interfering or facilitating other agents’ performance.
For example, in disaster rescue, multiple robots may act to
save multiple injured civilians. While mostly independent,
the robots could end up colliding in building’s narrow cor-
ridors if their policies simultaneously use the same corridor,
and could clear up debris along the hallway to assist other
robots. DPCL’s expressiveness allows it to model domains
not captured in previous work: it does not require transition
independence (Becker et al. 2004), nor does it require that
the agents’ task allocation and coordination relationships be
known in advance (Becker, Zilberstein, and Lesser 2004;
Marecki and Tambe 2007), but does account for local ob-
servational uncertainty.

Our second contribution is a novel approach to exploit the
decoupling present in DPCLs: TREMOR (Team’s REshap-
ing of MOdels for Rapid execution), an efficient algorithm
for finding joint policies in DPCLs. TREMOR’s primary
novelty is that: (i) it plans for individual agents using single-
agent POMDP solvers, effectively harnessing the most ef-
ficient POMDP solution approaches; (ii) it then manages
inter-agent coordination via social model shaping — chang-
ing the transition functions and reward functions of the indi-
vidual agents at coordination locales. TREMOR avoids the
overhead of searching the entire space of POMDP joint poli-
cies, concentrating on interactions only in coordination lo-
cales. We show that even in the presence of significant agent
interactions, TREMOR can run orders of magnitude faster
than state-of-the-art algorithms such as MBDP (Seuken and
Zilberstein 2007) and provide higher solution quality; how-
ever, its solution quality does suffer in domains with extreme
coordination requirements.

Motivating Domains

This work is motivated by cooperative multiagent domains
where agents are assigned to different tasks as part of a
joint plan. In addition to task allocation, there are pos-
itive and negative interactions between agents when per-
forming tasks (Scerri et al. 2005; Wurman, D’Andrea, and
Mountz 2007). As tasks are initially unassigned, agent inter-
actions are initially unknown, but are limited to set regions
of the state space. Examples include disaster response – fire-
engines and ambulances must be assigned to fight fires and
save civilians (Nair and Tambe 2005), wilderness search and
rescue (Cooper and Goodrich 2008), and space exploration.

313

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

Figure 1: A 4 × 4 Rescue Domain where two rescue robots
plan to reach two victims (1089 joint states).

As an example, consider a specific Rescue Domain. After
a disaster, a group of heterogeneous robots may need to save
civilians trapped in a building with debris impeding their
progress. We use two types of robots, each of which has
to deal with sensing and acting uncertainty. Rescue robots
provide medical attention to victims. Cleaner robots re-
move potentially dangerous debris from building corridors
and walkways. Saving victims provides a high reward, while
cleaning up debris yields a lower reward.

We model this as a discrete grid (Figure 1), where grid
squares may be “safe” or “unsafe.” Each agent begins with
a health value, which is reduced by 1 if it enters an un-
safe square. An agent is disabled if its health falls to zero.
Collisions may occur in narrow hallways if two robots try
to pass through simultaneously, resulting in minor damage
(cost) and causing one of the robots (chosen at random) to
move back to its previous state. If a rescue robot attempts to
traverse a “debris grid,” it will get delayed by one time unit
with high probability. A cleaner robot will instantly remove
debris from the grid square it is in.1

Each agent has eight actions: move in the four cardinal
directions and observe in each of the four cardinal direc-
tions. A movement action may succeed or fail, and observa-
tional uncertainty may lead to inaccurate information about
movement success or safety of a location. Every action has
a small cost and a rescue robot receives a high reward for be-
ing co-located with a victim, ending its involvement in the
task. When modeling this domain as a DEC-POMDP, the
goal of the planner is to obtain a reward-maximizing joint
policy, where each policy assigns a rescue robot to a victim,
and which debris (if any) each cleaner robot will clean.

The DPCL Model
In a DPCL, a team of N agents is required to perform a set
of M tasks, one agent per task but potentially many tasks
per agent, in the presence of transitional and observational
uncertainty. Like a DEC-POMDP, DPCL is also a tuple
〈S, A, P, R, Ω, O, b〉, where S, A, and Ω and the sets of joint
states, actions and observations; P : S × A × S → [0, 1],
R : S × A × S → �, and O : S × A × Ω → [0, 1] are the
joint transition, reward, and observation functions respec-
tively; and b = [b(s)]s∈S is a starting belief state such that
b(s) > 0, s ∈ S and

∑
s∈S b(s) = 1. However, DPCL

1More details of the experimental domain and all DPCLs are
shown in http://teamcore.usc.edu/dpomdp/TREMOR/.

is distinguished from DEC-POMDPs in that they assume
S := Sg × S1 × . . . × SN where Sn is a set of local states
of agent n for 1 ≤ n ≤ N and Sg = (E × St) is a set of
global states where E = {e1, . . . , eH} is the set of decision
epochs and St is a set of task states st that keep track of
the execution of tasks. Precisely, st = (st,m)1≤m≤M where

st,m ∈ {Done, NotDone} is the status of task m.2

Finding optimal joint policies to DEC-POMDPs is
NEXP-Complete due to joint P , R and O functions. Since,
DPCL is designed specifically for domains where the inter-
actions among agents are limited, the transition, observa-
tion, and reward functions are defined for each agent sepa-
rately. TREMOR thus avoids the computational complex-
ity of solving general DEC-POMDPs. Let Pn : (Sg ×
Sn) × An × (Sg × Sn) → [0, 1], Rn : (Sg × Sn) × An ×
(Sg × Sn) → �, and On : (Sg × Sn) × An × Ωn →
[0, 1] denote agent local transition, reward and observa-
tion functions respectively. DPCL restricts a DEC-POMDP
in that it assumes agent observations are fully indepen-
dent, i.e., O((sg , s1, . . . , sN), (a1, . . . aN), (ω1, . . . ωN)) =∏

1≤n≤N On((sg, sn), an, ωn), and that agent transitions

and rewards are partially independent. Precisely, DPCL
identifies situations where agent coordination is necessary,
so that, with the exception of these situations, P and R natu-
rally decompose into {Pn}1≤n≤N and {Rn}1≤n≤N . These
exceptional situations, referred to as coordination locales
(CLs), are assumed in DPCL to be either Same-time (CLs)
or Future-time (CLf) coordination locales.3

Same-Time Coordination Locales STCLs identify situ-
ations where state or reward resulting from the simultane-
ous execution of actions by a subset of agents cannot be de-
scribed by the local transition and reward functions of these
agents. Formally, a STCL for a group of agents (nk)K

k=1
is a tuple cls = 〈(sg, sn1

, . . . , snK
), (an1

, . . . , anK
)〉 where

sg is the current global state and (ank
)K
k=1 are the actions

that agents (nk)K
k=1 execute in their current local states

(snk
)K
k=1. For cls to qualify as a STCL, there must exist

joint states s = (sg, s1, . . . sN), s′ = (s′g, s
′
1, . . . s

′
N) ∈ S

and a joint action a = (an)N
n=1 ∈ A where (snk

)K
k=1 and

(ank
)K
k=1 are specified in cls, such that the joint transition

or reward function is non-decomposable, i.e., P (s, a, s′) �=∏
1≤n≤N Pn((sg, sn), an, (s′g, s

′
n)) or R(s, a, s′) �=∑

1≤n≤N Rn((sg , sn), an, (s′g, s
′
n)). The set of all STCLs

is denoted as CLs.
Example: Consider a robot in the Rescue Domain enter-

ing a narrow corridor. If another robot were to attempt to
enter the same narrow corridor simultaneously, the robots
would collide and one of them would be forced to transition
back to its starting state.

Future-Time Coordination Locales FTCLs identify sit-
uations where actions of one agent impact actions of others
in the future. Informally, because agents modify the global
state sg = (e, st) as they execute their tasks, they can have a
future impact on other agents’ transitions and rewards since
both Pn and Rn depend on sg . Formally, a FTCL for a

2Task statuses need not be binary.
3If agent interactions are limited, |CLs|+ |CLf | � |dom(P)|

and DPCLs are easier to specify than equivalent DEC-POMDPs.

314

group of agents (nk)K
k=1 is a tuple 〈m, (snk

)K
k=1, (ank

)K
k=1〉

where m is a task number and (ank
)K
k=1 are the actions

that agents (nk)K
k=1 execute in their current local states

(snk
)K
k=1. For clf to qualify as a FTCL, the actual rewards

or transitions of agents (nk)K
k=1 caused by the simultaneous

execution of actions (ank
)K
k=1 from states (snk

)K
k=1 must

be different for st,m = Done and NotDone for some global
state sg = (e, st) ∈ Sg.

Precisely, there must exist: (i) starting joint states s =
(sg, s1, . . . sN), s = (sg, s1, . . . sN) ∈ S where (snk

)K
k=1

are specified in clf and sg = (e, st) differs from sg = (e, st)
only on st,m �= st,m, (ii) a joint action a = (an)N

n=1 ∈ A
where (ank

)K
k=1 are specified in clf and (iii) ending joint

states s′ = (s′g, s
′
1, . . . s

′
N), s′ = (s′g, s

′
1, . . . s

′
N) ∈ S where

s′g = (e′, s′t) differs from s′g = (e′, s′t) only on s′t,m �= s′t,m,

such that either P (s, a, s′) �= P (s, a, s′) or R(s, a, s′) �=
R(s, a, s′). The set of all FTCLs is denoted as CLf .

Example: In our domain, a corridor with debris can be
traversed quickly by a rescue robot only if a cleaner robot
has first completed the task of removing these debris.

Solving DPCLs with TREMOR

We are interested in providing scalable solutions to prob-
lems represented using the DPCL model. To that end, we
introduce TREMOR, an approximate algorithm that opti-
mizes expected joint reward while exploiting limited coordi-
nation locales. TREMOR computes an assignment of tasks
to agents and a policy to each agent (for completing the tasks
assigned) using a two stage algorithm: (1) A branch and
bound technique to efficiently search through the space of
possible task assignments. (2) Evaluating task assignments
(for step (1) above) in the presence of uncertainty (transi-
tional and observational) and coordination locales by com-
puting locally optimal joint policies.

Branch and Bound Search

Figure 2: Branch and Bound search in TREMOR

Multiagent planning problems often have a large num-

Algorithm 1 TREMOR-EvalTaskAssign(Agents, Tasks)

1: for agent n = 1, . . . , N do
2: POMDPn ← CONSTRUCTPOMDP (n, Tasks[n])
3: πn ← SOLVEPOMDP(POMDPn)
4: repeat
5: ordering ← GETRANDOMORDER(1, . . . , N)
6: for 1 ≤ k ≤ N do
7: n ← ordering[k]
8: In ← HANDLESTCLS(n,CLs)

9: In
+
← HANDLEFTCLS(n,CLf)

10: for all i ∈ In do
11: πi ← SOLVEPOMDP(POMDPi)
12: until ∪1≤n≤N In = ∅ or maximum number of iterations has

been reached

ber of possible task assignments precluding exhaustive eval-
uation. TREMOR incorporates a Breadth-first Branch
and Bound search algorithm to exploit task decomposition
among a team, significantly pruning the search space. To aid
the search, we compute upper bounds on the expected value
of joint policy using a heuristic that solves the decision prob-
lems of agents as MDPs (ignoring the observational uncer-
tainty). Search begins with computation of upper-bounds for
all task assignments and evaluation of the task assignment
with highest upper-bound using TREMOR. Any assignment
with an upper-bound that is lower than a complete evalua-
tion calculated by TREMOR is pruned. Task assignments4,
with the highest heuristic evaluations are repeatedly evalu-
ated until all remaining allocations are evaluated or pruned.

Task Assignment Evaluation

In this section, we introduce the algorithm that is used to
evaluate task-assignments provided by the branch and bound
step. The goal is to compute an optimal joint policy consis-
tent with the task assignment. To avoid the significant com-
putational complexity involved in searching through the en-
tire joint space of policies, TREMOR’s approach is to search
for a locally optimal joint policy (see Algorithm 1). To that
end, TREMOR performs two steps at every iteration: (a)
Computing a joint policy assuming that agents are not inter-
acting, i.e., by (near) optimally solving updated individual
agent POMDPs (lines 1–3 and 10–11 of Algorithm 1) from
step (b) below; (b) Identifying the interactions, both STCLs
and FTCLs, caused due to the joint policy (computed in (a))
at coordination locales and shaping the models (transition
and reward functions) of individual agents (lines 6–9) to ac-
count for the interactions. As there can be interactions due
to both reward and transition function at any coordination
locale, we provide detailed expressions to update both those
functions for individual agents below. Steps (a) and (b) are
performed until no agent policies can be changed or a max-
imum number of iterations is reached.

At each iteration of Algorithm 1, we re-compute poli-
cies πi for all agents which are part of the sets In, where
1 ≤ n ≤ N . This set (In) includes agents whose local
transition, Pi, and reward functions, Ri, have been changed
due to interactions with agent n. TREMOR considers in-
teractions due to STCLs and FTCLs in Algorithm 2 and 3

4Note that TREMOR allows the number of agents and tasks to
be different, and allow one agent to be assigned to multiple tasks.

315

Algorithm 2 HANDLESTCLS(n, CLs)

1: In ← φ
2: for cls = 〈(sg, (snk

)K
k=1), (ank

)K
k=1〉 ∈ CLs do

3: ĉ ← COMPCLPROB(cls, π)
4: P ′

n ← SHAPESTCLTRANSITIONS(n,cls,Pn, ĉ, P)
5: R′

n ← SHAPESTCLREWARDS(n,cls,Rn, ĉ, R)
6: V ← EU(πn | Pn,Rn)
7: V ′ ← EU(πn | P ′

n,R′
n)

8: V Δ ← (V ′ − V)
9: if V Δ > 0 then

10: In ← In ∪ {nk}1≤k≤K

11: for agent i ∈ {nk}1≤k≤K and (s′g, s′i) ∈ Sg × Si do

12: Ri((sg, si), ai, (s
′
g, s′i))

+
←− V Δ/K

13: Pi ← SHAPESTCLTRANSITIONS(i,cls,Pi, ĉ, P)
14: else if V Δ < 0 then
15: In ← In ∪ ({nk}1≤k≤K \ {n})
16: for agent i ∈ {nk}1≤k≤K \ {n} and (s′g, s′i) ∈ Sg ×Si

do

17: Ri((sg, si), ai, (s
′
g, s′i))

+
←− V Δ/(K − 1)

18: return In

respectively.

Upon verifying that a STCL cls:
〈(sg, sn1

, . . . , snK
), (an1

, . . . , anK
)〉, involves agent n (line

2), Algorithm 2 computes the probability, ĉ that cls will oc-
cur given the current joint policy, π (computation of ĉ is
explained at the end of the section). Lines 4 and 5 of Al-
gorithm 2 compute temporary transition and reward models
for agent n based on ĉ. We then compute the difference
V Δ = V ′ − V in the expected utility, EU(πn) for agent
n’s policy, given that new models of transition, P ′

n and re-
ward functions, R′

n of agent n are employed for state action
pairs in cls (lines 6–8). The algorithm behaves differently,
depending on whether cls is beneficial to agent n.

If the shaping reward, V Δ is positive (beneficial to agent
n; lines 9–13), agents are encouraged to follow policies that
induce cls. Each agent involved in the coordination locale
cls is influenced by adding a fraction V Δ/K of the shap-
ing reward to local reward function Ri of each agent in-
volved in the coordination locale. To ensure coherent dy-
namics models for the agents after interaction, local tran-
sition models of agents are redefined (line 13) by using
the global transition function P (for local state-action pairs
resulting in cls) in the SHAPESTCLTRANSITIONS() func-
tion; such a redefinition takes into account the probabil-
ity of coordination locales. Let e, e′ ∈ E be the start-
ing and ending decision epochs for the transition of inter-
est, ai ∈ Ai be the agent’s action, si, s

′
i ∈ Si be the

starting and ending local agent states, st, s
′
t ∈ St be the

starting and ending task states. The local transition prob-
ability of agent i assuming a STCL cls does not occur,
Pi,¬cls(((e, st), si), ai, ((e

′, s′t), s
′
i)), is given as a domain

input. We derive the local transition probability of agent
i assuming cls occurs, Pi,cls(((e, st), si), ai, ((e

′, s′t), s
′
i)),

from the joint transition function, P . This is accomplished
by summing the probabilities of transitions where the initial
joint state and joint action are determined by cls and the des-
tination state belongs to all the joint states s′ where agent i
is in state s′i, as shown in Equation 1. Then, in Equation 2,
we compute the new transition probability P ′

i by taking a

weighted average of Pi,cls and Pi,¬cls .

Pi,cls(((e, st), si), ai, ((e
′, s′t), s

′
i)) ←X

s′∈S:s′ni
=s′

i

P (((e, st), (snk
)K
k=1), (ank

)K
k=1, ((e

′, s′t), (s
′
n1

, . . . , s′i, . . .)))

(1)

P ′
i ← ĉ · Pi,cls + (1 − ĉ) · Pi,¬cls (2)

To account for the impact of cls on the local reward func-
tion Ri of agent i, we compute new reward models of indi-
vidual agents on line 5 of Algorithm 2. The local reward for
agent i assuming STCL occurs, Ri,cls is computed in Equa-
tion 3. Since, the state transitions of agent i corresponding
to the occurrence of cls are already considered in the com-
putation of Ri,cls , we include a normalization factor βi to
avoid multiplying the reward twice. The local reward for
agent i assuming STCL, cls, does not occur, i.e., Ri,¬cls is
the original reward function for agent i, Ri. Given these, the
new reward function, R′

i is the weighted average of rewards
when cls occurs and when it does not.

Ri,cls(((e, st), si), ai, ((e
′, s′t), s

′
i)) ←X

s′∈S:s′ni
=s′

i

P (((e, st), (snk
)K
k=1), (ank

)K
k=1,

((e′, s′t), (s
′
n1

, . . . , s′i, . . . , s
′
nK

)))·

R(((e, st), (snk
)K
k=1), (ank

)K
k=1,

((e′, s′t), (s
′
n1

, . . . , s′i, . . . , s
′
nK

))) (3)

R′
i ← ĉ ·

Ri,cls

βi

+ (1 − ĉ) · Ri,¬cls , (4)

βi ← Pi,cls(((e, st), si), ai, ((e
′, s′t), s

′
i))

In contrast, if the shaping reward is negative (not benefi-
cial to agent n; lines 14–17) agents in coordination locale
cls are discouraged from executing policies that induce cls,
except for agent n which is given no incentive to modify
its behavior. As cls will not occur in this interaction, there
is no need to redefine the agent local transition functions
in terms of the joint transition function P . To illustrate the
algorithm execution, we provide an example from our mo-
tivating domain. We are initially given the transition and
reward functions for individual agents traveling through the
building. When two robots’ policies lead to a determina-
tion that an STCL (agents i and j bump into each other in
a narrow corridor) has ĉ > 0, we first check if the STCL is
beneficial or not. If it is not beneficial, we provide a negative
reward to one of the robots (robot j) to encourage it to avoid
the narrow corridor; the robots’ transition functions are not
modified since this STCL will not occur. On the other hand,
for a beneficial STCL (i.e., agents gain by bumping into each
other) we provide a positive shaping reward, so that agents
can bump into each other with higher probability. To have
a coherent model of the dynamics after bumping of agents,
we update the transition functions of both the robots using
the above formulae.

TREMOR then considers all FTCLs: clf ∈ CLf ,

〈m, (snk
)K
k=1, (ank

)K
k=1〉, involving agent n in Algorithm 3.

316

Algorithm 3 HandleFTCLs (n, CLf)

1: In ← φ
2: for clf = 〈m, (snk

)K
k=1, (ank

)K
k=1〉 ∈ CLf : m ∈ Tasks[n]

do
3: for all e ∈ E do

4: P
e,s

+
t,m

π ←
P

s∈S:sg=(e,s
+
t,m);a∈A

COMPCLPROB(〈s,a〉, π)
5: for all k ≤ K do

6: P ′
nk

← SHAPEFTCLTRANSITIONS(Pnk
, {P

e,s
+
t,m

π }e∈E)

7: V ′ +
← EU(πnk

| P ′
nk

)

8: V
+
← EU(πnk

| Pnk
)

9: V Δ ← (V ′ − V)
10: if V Δ > 0 then
11: In ← In ∪ {nk}1≤k≤K

12: Pnk
← P ′

nk
, 1 ≤ k ≤ K, nk �= n

13: else if V Δ < 0 then
14: /*Do Nothing*/
15: for all ((sg, sn), an, (s′g, s′n)) ∈ (Sg ×Sk)×An × (Sg ×

Sk) : st differs from s′t on st,m �= s′t,m do

16: Rn((st, sn), an, (s′t, s
′
n)

+
←− RΔ

17: In ← In ∪ n
18: return In

To that end, it computes probabilities, {P
e,s

+
t,m

π }e∈E , that
task m is completed at decision epoch e by agent n, when
the joint policy π is executed (line 4 of Algorithm 3). These
probabilities are used to change the transition functions of
all agents nk at each decision epoch e ∈ E (line 6). We then
compute the difference in expected utility, V Δ (= V ′ − V),
for the current policies of the agents on the updated (V ′)
and original (V) POMDP models. This difference is also the
shaping reward. Similar to STCLs, depending on the sign of
the shaping reward, the behavior of the algorithm differs.

When the shaping reward is positive (coordination locale
clf is beneficial, lines 10-12), agents participating in clf
will have their local transition functions Pi modified using
heuristics so that the execution status of task m can change

from NotDone to Done, with probability P
e,s

+

t,m
π . The

function SHAPEFTCLTRANSITIONS() (line 6) is used for
changing transition functions in FTCLs. Let st ∈ St be
the starting task state where task m (that some other agent j
executes) is not yet completed, i.e., st,m = NotDone and

s′+t , s′−t ∈ St be two possible ending task states that differ

on the status of execution of task m, i.e., s′+t,m = Done and

s′−t,m = NotDone. Pi(((e, st), si), ai, ((e′, s′t), s
′
i))) is re-

quired to be updated based on the probability that task m
will now be completed in decision epoch e with probability

P
e,s

+

t,m
π . The new transition probability is computed for all

agents i, where m /∈ tasks[i] as follows:

P ′
i(((e, st), si), ai, ((e

′, s′+t), s′i)) ← P
e,s

+
t,m

π ·

Pi(((e, st), si), ai, ((e
′, s′−t), s′i))

P ′
i(((e, st), si), ai, ((e

′, s′−t), s′i)) ← (1 − P
e,s

+
t,m

π)·

Pi(((e, st), si), ai, ((e
′, s′−t), s′i))

In contrast, if the shaping reward is not beneficial (lines
13–14), agents will not have to do anything because task
m will not move from NotDone to Done at any decision
epoch. The current shaping reward V Δ is added to n’s lo-
cal reward function Rn, to either encourage (if V Δ > 0) or
discourage (if V Δ < 0) agent n from executing task m. Fi-
nally, n is added to In to indicate that n’s model has changed
and needs to be solved again.

Computation of ĉ We now describe the COM-
PCLPROB() function, which is used to com-
pute ĉ (line 3 of Algorithm 2) for an STCL,
cls = 〈((e, st), sn1

, . . . , snK
), (an1

, . . . , anK
)〉. The

same function is also used in computation of P
e,s

+
t,m

π for
an FTCL (line 4 of Algorithm 3). We first calculate the
probability ĉi that agent i will engage in the coordination
locale cls at time T . Let πi : Bi × Ai → {0, 1} be

a deterministic policy of agent i and b
(0)
i be its starting

belief state. Let ĉ
(t)
i (b) be the probability that agent i will

execute at time T action ani
from state sni

, if it starts the
execution at time 0 ≤ t ≤ T in a belief state b, and Gi be
the belief state transition operator for agent i. We calculate

ĉ
(t)
i (b) using the following recursive scheme: ĉ

(t)
i (b) ={

b(sni
)πi(b, ani

) t = T ,P
a∈Ai

πi(b, a)
P

ω∈Ωi
P a

i (ω|b) · ĉ(t+1)
i (Ga,ω

i (b)) t ≤ T
,

Ga,ω(b)(s′) = 1
P a(ω|b)O

a(ω|s′)
∑

s∈S P a(s′|s)b(s),

P a(ω|b) =
∑

s′∈S [Oa(ω|s′)
∑

s∈S P a(s′|s)b(s)]

represent the equations for computing belief state transi-
tions (Littman, Cassandra, and Kaelbling 1995). The prob-

ability ĉi is then ĉ
(0)
i (b

(0)
i). Finally, since agents coordinate

only at coordination locales, cls, we have ĉ =
∏

i ĉi.

Empirical Results
This section demonstrates that TREMOR can successfully
solve DPCL problems in time orders of magnitude faster
than existing locally optimal algorithms, while discovering
policies of higher or comparable value. To that end, we
evaluate TREMOR’s performance on a set of disaster res-
cue tasks (described in the Motivating Domain section) with
three existing planning approaches.

Experimental Setup TREMOR employs EVA (Varakan-
tham et al. 2007) as the single agent POMDP solver. We
compare against JESP (Joint Equilibrium-based Search for
Policies) (Nair et al. 2003) and MBDP (Memory-Bounded
Dynamic Programming for DEC-POMDPs) (Seuken and
Zilberstein 2007), two of the leading algorithms for approx-
imately solving DEC-POMDPs. Lastly, we consider a plan-
ner that ignores interactions between agents (constructed
using TREMOR’s algorithms without any of the model-
shaping), henceforth referred to as Independent POMDPs.

The maximum number of iterations in TREMOR is set to
50 and ε for EVA is 2.0. MBDP experiments used the param-
eters suggested by the authors: type of algorithm = approx-
imate, max trees = 3, max observations = 2, depth of recur-
sion = 2, and backup type = Improved Memory-Bounded Dy-
namic Programming. Experiments were run on quad-core
Intel 3.2GHz processors with 8GB of RAM. All techniques

317

Figure 3: Comparison with MBDP and Independent POMDPs: State Space and Time Horizon Scale-Up.

were run 20 times on each DPCL and we report the average
wall-clock time. All planners were given a maximum wall-
clock time of 4 hours. Each joint policy’s expected value is
measured as the average value of 500 executions.

State Space This set of experiments show that TREMOR
scales to problems with large state spaces. Every problem
has one cleaner robot, two rescue robots, and a time horizon
of 10. The state space changes from 81 to 6561 joint states
(2×2 to 4×10 grids). Figure 3a shows TREMOR’s runtime
with respect to the size of state space. The x-axis shows the
number of joint states and the y-axis shows the runtime in
seconds on a log scale. MBDP is only able to solve tasks of
up to 361 joint states within the time limit and requires 1.6–
2.1 orders of magnitude more time than TREMOR. Indepen-
dent POMDPs plan faster than TREMOR as they disregard
all inter-agent interactions.

TREMOR’s runtime does not increase monotonically
with the size of the state or horizon, as shown in Figure 3a. It
depends on (i) the time taken to resolve interactions at each
iteration (lines 5–11 in Algorithm 1), (ii) the maximum num-
ber of such iterations, both of which depend on the specifics
of the problem. JESP was unable to solve any task within the
time limit and thus is not shown. For illustrative purposes,
we ran JESP on a 81 joint state problem with T=2 (reduced
from T=10). It finished executing in 228 seconds, yielding
a reward of 12.47, while TREMOR required only 1 second
and received a reward of 11.13.

Figure 3b displays the average reward accrued by polices
on the y-axis over the same set of tasks as in 3a. TREMOR
outperforms MBDP, even though MBDP plans with joint
models. In addition, TREMOR also achieved the statisti-
cally significant result (via t-tests) of outperforming Inde-
pendent POMDPs with respect to average reward.

Time Horizon In the second set of experiments, we var-
ied the time horizon from 2–23 as shown in Figures 3c and
3d. These results show that increased time horizon leads
to higher runtimes and that TREMOR can generate deep
joint-policy trees. We considered problems with two res-
cue robots, one cleaning robot and 361 joint states. MBDP
is able to solve tasks up through T=14, but takes 1.8–2.6
orders of magnitude more time than TREMOR, while its fi-
nal policies’ rewards are dominated in most of the cases.
TREMOR requires 0.3–1.7 orders of magnitude more time
than Independent POMDPs, but produces policies that ac-
crue significantly more reward.

Figure 4: Agents and Tasks Scale-Up

Number of Agents and Tasks In the third set of exper-
iments, we keep the state space and time horizon constant
(1089 joint states and T=10) and show that TREMOR scales
well with the number of agents, relative to Independent
POMDPs. Figures 4a and 4b show the runtime and reward
accrued on tasks with one cleaning robot and 2–9 rescue
robots (the number of victims and rescue robots are equal).

As shown in Figure 4b, TREMOR and the Independent
POMDPs’ rewards diverge as the number of agents (and
tasks) is increased due to increasing numbers of possible col-
lisions. Increased numbers of interactions leads to a higher
runtime for TREMOR, but also higher rewards. In contrast,
the runtime of Independent POMDPs do not increase as dra-
matically, but rewards suffer as they are increasingly penal-
ized for their lack of coordination. MBDP fails to solve any
case here within the time limit.

Number of CLs The last set of experimental results show
how TREMOR performs when the number of CLs changes:
more CLs imply more inter-agent interactions, increasing
TREMOR’s overhead and reducing its benefit relative to
MBDP. All experiments have 361 joint states, T=10, two
rescue robots, and one cleaning robot; these settings were
chosen explicitly so that MBDP could complete the task
within the cutoff time. Figures 5a and 5b show the runtime
and reward for different number of CLs. The performance
of TREMOR depends on the number of CLs and the max-
imum number of model refinement iterations. As we dis-
cussed in the previous section, TREMOR is well-suited for
domains which require limited coordination. These results
demonstrate that the runtime increases and reward decreases
when more coordination is required. It should be noted that
TREMOR can trade off time and quality by tuning the max-
imum number of model refinement iterations.

The runtime of MBDP and Independent POMDPs do not
change with the number of CLs, as they are not explic-

318

Figure 5: Scale-Up with number of CLs

itly considered. MBDP computes a joint policy superior
to TREMOR in problems with very large numbers of CLs
(> 1100), although it requires more time to compute the
joint policy. This is an expected result, because in domains
with large number of CLs, the agents are tightly coupled
and hence an approach like TREMOR, which relies on de-
coupling agent interactions using shaping heuristics, will not
be as effective. To further analyze this result, we consider
two instances of a specific problem with a time horizon of 5.
We consider the problem with two agents, 361 joint states,
and the number of CLs at 544 and 1328.

Specifically, we compare three approaches: MBDP,
TREMOR, and TREMOR+. TREMOR+ is TREMOR with
a problem-specific hand crafted heuristic for selecting the
order of agents (on line 5 of Algorithm 1). As shown
in Figure 6a, when we have very large number of CLs
(1328), MBDP outperforms TREMOR in terms of expected
reward (y-axis). However, when we use a pre-specified
order of agents (TREMOR+) instead of the random order
used in TREMOR, it outperforms MBDP in terms of so-
lution quality. This result indicates that TREMOR’s cur-
rent heuristic to select agents for model shaping is not ideal
for all situations and is an issue for future work. On the
other hand, in domains with a relatively small number of
CLs, TREMOR beats MBDP, and the reward difference be-
tween TREMOR and TREMOR+ is much smaller. The
key conclusion from this experiment is that in tightly coor-
dinated domains, MBDP provides better performance than
TREMOR. However, with better agent ordering heuristics,
TREMOR can provide considerable improvement in perfor-
mance. Figure 6b shows the runtime comparison among
MBDP, TREMOR, and TREMOR+ on the 1328 CL prob-
lem. The y-axis shows runtime on log scale.

Figure 6: Comparison in tightly coordinated domains

We have shown TREMOR’s superior scalability with re-
spect to state space, time horizon, agents, tasks, and coordi-
nation locales. Furthermore, TREMOR provided solutions
of comparable, or even superior, quality to those found by
existing DEC-POMDP solvers.

Related Work

There are three categories of research that are related to
DPCL and TREMOR:
DEC-MDPs: These problems rely on individual full ob-
servability of local state and also collective full observability
of global state (Spaan and Melo 2008). Due to this assump-
tion, approaches employed for solving DEC-MDPs are not
applicable to solving DPCL problems, where there is indi-
vidual partial observability of local state and collective par-
tial observability of global state. However, we include them
for completeness, and to show how ideas from DEC-MDP
research may influence DEC-POMDP work.

Roth et al. (2007) examine factored DEC-MDPs and fo-
cus on exploiting limited agent interactions to speed up cen-
tralized policy generation. While their method is able to
identify where agents can ignore other agents, they focus on
DEC-MDPs which have context-specific independence and
require communication between agents. Interaction-Driven
Markov Games (Spaan and Melo 2008) focus on DEC-
MDPs where agents interact in only a subset of states. When
not in these states the agents are independent, but when in
one of the interaction states the agents must communicate (to
coordinate about the interaction state). In addition to the dif-
ferences mentioned between DPCL and DEC-MDP models,
TREMOR employs a fundamentally different mechanism of
shaping transition and reward functions to solve DPCL prob-
lems, which does not rely on communication.

A sub-category of the research in DEC-MDPs fo-
cuses explicitly on evaluating task allocation. ED-DEC-
MDPs (Becker, Zilberstein, and Lesser 2004; Marecki and
Tambe 2007) and OC-DEC-MDPs (Beynier and Mouaddib
2006) leverage pre-specified task allocation and dependen-
cies to reduce the search space, while assuming the presence
of only task performing actions. Approaches used to solve
these models have been shown to scale up to domains with
hundreds of tasks. When DPCL is compared against ED-
DEC-MDPs and OC-DEC-MDPs, there are two key differ-
entiating factors: (a) While task allocations and dependen-
cies are assumed to be part of the input in ED-DEC-MDP
and OC-DEC-MDP, they are computed as part of the out-
put solution to DPCL; and (b) Whereas ED-DEC-MDP and
OC-DEC-MDP provide solutions assuming the presence of
only task performing actions, DPCL models domains where
there are other actions as well. For instance, in the Rescue
Domain, there are path planning actions in addition to the ac-
tions associated with rescuing civilians (performing tasks).
Due to the presence of general actions, the complexity of
DPCL problems cannot be measured solely by the number
of tasks.
DEC-POMDPs: Becker et al (2004), defined transition in-
dependence, initiating research into restricted DEC-POMDP
classes for efficient solutions. ND-POMDPs (Marecki et
al. 2008) build on transition-independence and add network
structure interactions. Though DPCL assumes observation
independence, it differs due to transition dependence (cap-

319

tured using coordination locales), thus focusing on a broad
new class of multiagent applications. Oliehoek et al. (2008)
provide efficient algorithms for factored DEC-POMDPs by
considering agents that interact with only few other agents,
while also assuming that interactions are statically inferred
from the domain. While interactions in DPCL are confined
to CLs, these interactions influence agents’ policies only if
the policies are observed to interact. Also, in our experi-
ments, all agents can interact with all other agents.

JESP (Nair et al. 2003) has a similar approach to
TREMOR in that it solves single agent POMDPs and up-
dates the individual models to manage inter-agent interac-
tions. However, the model updating in JESP leads to an
exponential increase in state space and hence cannot scale
to larger problems (as shown in the experimental results).
Finally, Nair and Tambe (2005) exploit problem structure
for efficient solutions to DEC-POMDPs that require role al-
location; however, they crucially require a human-specified
abstract policy, which TREMOR does not require.

Model Shaping: TREMOR is similar to Guestrin and Gor-
don (2002), where subsystems can plan separately and then
iteratively re-plan if the subsystems interact unfavorably.
However, the use of POMDPs and social model shaping sets
our work apart. Other recent work has also considered us-
ing reward shaping in DEC-POMDPs (Williamson, Gerd-
ing, and Jennings 2009). In this work, the authors use re-
ward shaping, in conjunction with an estimate of team cohe-
sion, to help reduce the amount of communication necessary
when reasoning in a fully distributed fashion.

Conclusion

This paper has introduced TREMOR, a fundamentally dif-
ferent approach to solve distributed POMDPs. TREMOR is
an approximate algorithm and it does not apply to general
DEC-POMDPs. However, it is extremely efficient for solv-
ing DPCLs, an important subclass of distributed POMDPs.
This subclass includes a range of real-world domains where
positive or negative agent interactions occur in a relatively
small part of the overall state space. By iteratively discov-
ering interactions and using shaping of models to influence
efficient individual POMDPs, TREMOR enables a team of
agents to act effectively and cohesively in environments with
action and observation uncertainty. The main insight be-
hind TREMOR is using social reward and transition shap-
ing allows a DEC-POMDP to be approximated by a set of
single-agent POMDPs. TREMOR can thus exploit advances
in single-agent POMDP solvers. Extensive experimental
results show that TREMOR provides dramatic speedups
over previous distributed POMDP approaches; TREMOR
is mostly able to deliver these speedups without degrading
solution quality. However, TREMOR’s solution quality suf-
fers in tightly coupled domains characterized by a very large
number of coordination locales.

Acknowledgements

We thank the anonymous reviewers for their comments
and suggestions, and Alan Carlin for providing us with the
source code for MBDP. This work was supported in part
by US. Army SBIR contract number W15P7T-09-C-S601,
DARPA SBIR contract number W31P4Q-06-0286, and Per-
ceptronics Solutions, Inc.

References

Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman,
C. V. 2004. Solving Transition Independent Decentralized
Markov Decision Processes. JAIR 22.

Becker, R.; Zilberstein, S.; and Lesser, V. 2004. Decentral-
ized Markov Decision Processes with Event-Driven Inter-
actions. In AAMAS.

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of markov deci-
sion processes. In UAI.

Beynier, A., and Mouaddib, A.-I. 2006. An iterative al-
gorithm for solving constrained decentralized markov de-
cision processes. In AAAI.

Cooper, J., and Goodrich, M. 2008. Towards combin-
ing UAV and sensor operator roles in UAV-enabled visual
search. In HRI.

Guestrin, C., and Gordon, G. 2002. Distributed planning
in hierarchical factored MDPs. In UAI.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P.
1995. Learning policies for partially observable environ-
ments: Scaling up. In ICML.

Marecki, J., and Tambe, M. 2007. On opportunistic tech-
niques for solving decentralized MDPs with temporal con-
straints. In AAMAS.

Marecki, J.; Gupta, T.; Varakantham, P.; Tambe, M.; and
Yokoo, M. 2008. Not all agents are equal: Scaling up
distributed pomdps for agent networks. In AAMAS.

Nair, R., and Tambe, M. 2005. Hybrid BDI-POMDP
framework for multiagent teaming. JAIR 23.

Nair, R.; Pynadath, D.; Yokoo, M.; Tambe, M.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In IJCAI.

Roth, M.; Simmons, R.; and Veloso, M. 2007. Exploit-
ing factored representations for decentralized execution in
multiagent teams. In AAMAS.

Scerri, P.; Farinelli, A.; Okamoto, S.; and Tambe, M. 2005.
Allocating tasks in extreme teams. In AAMAS.

Seuken, S., and Zilberstein, S. 2007. Improved
memory-bounded dynamic programming for decentralized
POMDPs. In UAI.

Spaan, M. T. J., and Melo, F. S. 2008. Interaction-driven
Markov games for decentralized multiagent planning under
uncertainty. In AAMAS.

Varakantham, P.; Maheswaran, R. T.; Gupta, T.; and
Tambe, M. 2007. Towards efficient computation of error
bounded solutions in POMDPs: Expected value approxi-
mation and dynamic disjunctive beliefs. In IJCAI.

Williamson, S. A.; Gerding, E. H.; and Jennings, N. R.
2009. Reward shaping for valuing communications during
multi-agent coordination. In AAMAS.

Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2007. Co-
ordinating hundreds of cooperative, autonomous vehicles
in warehouses. In AAAI.

320

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

