
Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Fast Distributed Multi-Agent Plan Execution with Dynamic Task
Assignment and Scheduling

Julie A. Shah, Patrick R. Conrad, and Brian C. Williams
MIT CSAIL MERS

32 Vassar St. Room 32-D224, Cambridge, MA 02139
julie_a_shah@csail.mit.edu, prconrad@mit.edu, williams@mit.edu

Abstract

An essential quality of a good partner is her responsiveness
to other team members. Recent work in dynamic plan
execution exhibits elements of this quality through the
ability to adapt to the temporal uncertainties of others agents
and the environment. However, a good teammate also has
the ability to adapt on-the-fly through task assignment. We
generalize the framework of dynamic execution to perform
plan execution with dynamic task assignment as well as
scheduling.
 This paper introduces Chaski, a multi-agent executive for
scheduling temporal plans with online task assignment.
Chaski enables an agent to dynamically update its plan in
response to disturbances in task assignment and the
schedule of other agents. The agent then uses the updated
plan to choose, schedule and execute actions that are
guaranteed to be temporally consistent and logically valid
within the multi-agent plan. Chaski is made efficient
through an incremental algorithm that compactly encodes
all scheduling policies for all possible task assignments. We
apply Chaski to perform multi-manipulator coordination
using two Barrett Arms within the authors' hardware
testbed. We empirically demonstrate up to one order of
magnitude improvements in execution latency and solution
compactness compared to prior art.

Introduction
An essential quality of a good partner is her ability to

robustly anticipate and adapt to other team members and
the environment. Recent work in dynamic execution
exhibits elements of this quality through an executive that
schedules activities online, dynamically in response to
disturbances, while guaranteeing the constraints of the plan
will be satisfied. Many recent multi-agent systems exploit
this type of adaptive execution, allowing agents to absorb
some temporal disturbances online (Alami et al. 1998,
Brenner 2003, Lemai et al. 2004, Smith et al. 2006).
However, disturbances triggering task re-assignment still
require re-planning or plan repair. We introduce a multi-
agent executive named Chaski, which generalizes the state-
of -the-art in dynamic plan execution by supporting just-in-
time task assignment as well as scheduling.

 Many recent multi-agent systems perform dynamic
plan execution by exploiting a flexible-time representation
of the plan to absorb temporal disturbances online (ex.
Lemai et al 2004, Smith et al. 2006). These systems
employ a planning process that performs task assignment
to allocate activities among the agents, and synchronization

to introduce ordering constraints among activities so that
concurrent execution remains logically valid (Stuart 1985,
Kabanza 1995, Brenner 2003). The process of task
assignment and synchronization generates temporally
flexible plans described as Simple Temporal Networks
(STNs) (Dechter et al. 1991). Agents dynamically execute
STNs by scheduling plan activities online, just before the
activity is executed (Muscettola et al. 1998, Tsamardinos et
al. 1998). This strategy allows the agent to adapt to some
disturbances that occur prior to the activity without
introducing unnecessary conservatism. However,
disturbances triggering task re-assignment or re-
synchronization still require a deliberative capability to
generate a new plan or perform plan repair.

The key contribution of this paper is an executive named
Chaski that enables execution of temporally flexible plans
with online task assignment and synchronization. Chaski
enables an agent to dynamically update its plan in response
to disturbances in the task assignment and schedule of
other agents. Using the updated plan, the agent then
chooses, schedules, and executes actions that are
guaranteed to be temporally consistent and logically valid
within the multi-agent plan. This capability provides agents
maximal flexibility to choose task assignments, and
schedule and execute activities online without the need for
re-planning or plan repair. Chaski is especially useful for
agents coordinating in highly uncertain environments,
where near-continual plan repair results in execution
delays – we see this, for example, with agents that interact
with or adapt to humans.

The key innovation of Chaski is a fast execution
algorithm that operates on a compact encoding of the
scheduling policies for all possible task assignments. The
compact encoding is computed by applying a set of
incremental update rules to exploit the causal structure of
the plan, as with previous algorithms for incremental
compilation of Simple and Disjunctive Temporal
Constraint Networks (Shah et al. 2007, 2008). We
generalize this work to multi-agent plan execution by
identifying and compactly recording the logical
consequences that a particular task allocation and
synchronization imply for future scheduling policies. We
empirically demonstrate that this compact encoding
reduces space to encode the solution set and execution
latency by up to one order of magnitude compared to prior
art.

289

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

This paper presents the incremental algorithm for
compiling this compact encoding and the algorithm for
distributed execution of plans based on the compact
encoding. We empirically demonstrate Chaski through
multi-manipulator coordination of two Barrett Whole Arm
Manipulators. We show that performing execution on the
compact representation yields low execution latency and
scales well with the size of the multi-agent plan.

Practical Scenario: Multi-robot Coordination
We have successfully applied Chaski to perform multi-

manipulator coordination using two Barrett Arms. In this
section, we present the multi-manipulator coordination
scenario as a motivating example for the rest of the paper.
Fig. 1 shows the two manipulator robots and their
workspace. The robots must coordinate to remove one ball
from each of the four locations in their communal
workspace. Each robot also has one striped ball located in
its own private workspace and must give the striped ball to
the other robot using a hand-to-hand exchange. The
scenario includes temporal constraints specifying the task
must be completed within sixty seconds.

 Figure 1: Multi-manipulator coordination scenario

This scenario is interesting because it contains both
loosely and tightly coupled interaction, and a temporal
constraint on the completion of the task. Also, some
activities are not a-priori allocated to a particular robot. For
example, "Remove one ball from Loc #1" can be
performed by either robot. Finally, the robots have
heterogeneous temporal capabilities. For example, the left
robot has a shorter reach distance to Loc. #1 than the right
robot. As a result, removing a ball from Loc. #1 takes the
left robot 8-10 seconds and takes the right robot 11-13
seconds. We discuss how to perform fast, distributed
execution of multi-agent plans such as this one.

Background
Multi-agent systems typically employ a planning process

that performs task assignment to allocate activities among
the agents, and synchronization to introduce ordering
constraints among activities so that concurrent execution
remains logically valid. For example consider the
following task allocation in the practical scenario
described previously: the left robot performs both the
activities: (1) Remove one ball from Loc. #1, and (2)
Remove one ball from Loc. #2. Any synchronization of

this task allocation would introduce ordering constraints to
exclude concurrent execution of these two activities. The
process of task assignment and synchronization generates
temporally flexible plans described as Simple Temporal
Networks (STNs). Agents exploit this flexible-time
representation of the plan to adapt to some temporal
disturbances online.

Simple Temporal Networks
A Simple Temporal Problem (STN) is composed of a set of
variables X1,…Xn, representing executable events. Events
have real-valued domains and are related through binary
temporal constraints. Binary constraints are of the form:

� � � �., ikikik baXX ��

A solution to an STN is a schedule that assigns a time to
each event such that all constraints are satisfied. An STN is
said to be consistent if at least one solution exists.
Checking an STN for consistency can be cast as an all-
pairs shortest path problem. The STN is consistent iff there
are no negative cycles in the all-pairs distance graph. This
check can be performed in O(n3) time (Dechter et al. 1991).

The all-pairs shortest path graph of a consistent STN is
also a dispatchable form of the STN, enabling real-time
scheduling. A network is dispatchable if for each variable
XA it is possible to arbitrarily pick a time t within its
timebounds and find feasible execution times in the future
for other variables through one-step propagation of timing
information. The constraints in the dispatchable form may
then be pruned to remove all redundant information
(Muscettola et al. 1998). The resulting network is a
minimal dispatchable network, which is the most compact
representation of the STN constraints that still contains all
solutions present in the original network.

In the remainder of this paper we present Chaski, a
multi-agent executive that extends recent work in fast
execution of Disjunctive Temporal Constraint Networks to
perform online task assignment and synchronization.

Disjunctive Temporal Constraint Networks
 A Disjunctive Temporal Constraint Network,
otherwise known as a Temporal Constraint Satisfaction
Problem (TCSP), extends an STN by allowing multiple
intervals in constraints, given by the power set of all
intervals:

� � � �� 	� �.|, ikikikikik babaPXX
��

Determining consistency for a TCSP is NP-hard (Dechter
et al. 1991). In previous work, a TCSP is viewed as a
collection of component STNs, where each component
STN is defined by selecting one STN constraint (i.e. one
interval) from each TCSP constraint. Checking the
consistency of the TCSP involves searching for a
consistent component STN (Dechter et al. 1991). This
approach is the basis of most modern approaches for
solving temporal problems with disjunctive constraints

Loc #1
Loc #2

Loc #3

Loc #4

290

(Stergiou et al. 2000, Oddi and Cesta 2000, Tsamardinos
and Pollack 2003).
 Recent work in dispatchable execution of Disjunctive
Temporal Constraint Networks (Shah et al. 2008) increases
efficiency of execution by reasoning on a compact
encoding of all consistent component STNs. The compact
encoding is generated by an incremental algorithm in the
spirit of other incremental algorithms for truth maintenance
(Doyle 1979, Williams et al. 1998), informed search
(Koenig et al. 2001), and temporal reasoning (Shu et al.
2005). The incremental compilation algorithm exploits the
dependency structure of the network to identify and record
the logical consequences that a particular simple interval
constraint (or set of constraints) implies on the other
constraints in the network. The compilation process first
relaxes the TCSP to an STN and then compiles the STN to
dispatchable form. Next, the algorithm applies Dynamic
Back-Propagation (DBP) rules introduced in (Shah et al.
2007) to recursively propagate the logical consequences of
a constraint change throughout the network. The
incremental compilation algorithm results in a compiled
plan that compactly represents the solution set in terms of
the differences among viable component STNs.

Problem Statement
Chaski takes as its input a multi-agent plan composed of

P=(A,V,C,L), where A is a set of agents, V is a set of
activities, A→V is an function describing the set of
feasible activities and temporal capabilities of each agent,
C is a set of temporal constraints over activities, and L is a
set of logical constraints (for example, resource or agent
occupancy constraints). The output of Chaski is a dynamic
execution policy that guarantees temporally consistent and
logically valid task assignments.

In this section, we reformulate a multi-agent plan as a
Disjunctive Temporal Constraint Network, and provide
insight into the challenges that arise in extending recent
work in dynamic plan execution to perform online task
assignment and synchronization.
 Consider two robots that must coordinate to perform the
following four activities in the practical scenario: Remove
one ball each from Loc. #1 (RB1), Loc. #2 (RB2), Loc. #3
(RB3), and Loc. #4 (RB4). The robots have heterogeneous
temporal capabilities. For example, removing a ball from
Loc. #1 or #2 takes the left robot takes 8-10 seconds and
takes the right robot 11-13 seconds. We also impose the
temporal constraint that all four activities must be
completed within twenty seconds. Fig. 2 presents this plan
described as a Disjunctive Temporal Constraint Network.

Each activity is composed of a begin event and end
event. For example, "a" and "b" represent the begin and
end events, respectively, for activity RB1. The amount of
time each agent takes to perform the activity is represented
as a disjunctive binary constraint. For example, the
disjunctive constraint L[8,10] V R[11,13] between events
"a" and "b" specifies that the left robot "L" takes 8-10s to

Figure 2: Multi-robot plan described as a Disjunctive

Temporal Constraint Network

perform activity RB1, while the right robot "R" takes 11-
13s. The execution order of the four activities is initially
unspecified. The network includes ordering constraints of
the form [0, inf] to specify that the activities must be
executed after the epoch start event "s" and must be
completed before the plan's end event "e". The temporal
constraint [0,20] between events "s" and "e" constrains the
time available to accomplish all four activities. Note that
agents do not "own" the execution of particular activity
events because the plan does not specify task assignments.

Dispatching this network using the method described in
(Shah et al. 2008) will ensure temporally consistent task
assignments at execution. However, this method does not
perform synchronization of the task assignments and
therefore, the execution may not be logically valid. For
example, this plan contains implied agent occupancy
constraints, meaning that each agent may only perform one
activity at a time. We must introduce ordering constraints
among activities to ensure that concurrent execution does
not violate these occupancy constraints. We would like to
compactly compile all feasible synchronizations for
dynamic execution, just as we compile the feasible task
assignments. However, the synchronization problem
requires reasoning on a more general type of disjunctive
constraint: disjuncts in intervals over three or more events.
As a result, the synchronization problem cannot be framed
as a Disjunctive Temporal Constraint Network and solved
using the method presented in (Shah et al. 2008). In the
next section, we address the challenge of compactly
compiling the scheduling policies for all possible task
assignments and their synchronizations.

Incremental Compilation Algorithm for
Multi-agent Temporal Plans

In this section we present an Incremental Compilation
Algorithm (ICA-MAP) for compiling a multi-agent plan
(MAP) to a compact dispatchable form. This compact
representation is compiled by incrementally computing
constraint modifications for task assignments and
synchronizations, and then aggregating common
information among synchronizations. The key idea behind
ICA-MAP is to apply the Dynamic Back-Propagation
(DBP) rules, described in (Shah et al. 2007), to
systematically investigate and record the logical
consequences that a particular task allocation and

s e

a b

c d
e f
g h

RB1 L[8,10] V R[11,13]

RB2 L[8,10] V R[11,13]

RB3 L[11,13] V R[8,10]

RB4 L[11,13] V R[8,10]

[0, 20]

291

synchronization imply for future scheduling policies. As
we empirically show in the next sections, this compact
representation drastically reduces the number of constraints
necessary to encode the feasible scheduling policies and
supports fast dynamic execution.

Pseudo-Code for the ICA-MAP
ICA-MAP takes as input a multi-agent plan (P=A,V,C,L),
where A, V, A→V, and C are described as a Disjunctive
Temporal Constraint Network G (ex. Fig. 2). The pseudo-
code for ICA-MAP is presented in Figures 3-5.

The algorithm is composed of four main steps. The first
two steps mirror the incremental compilation algorithm for
TCSPs (Shah et al. 2008). Step 1 relaxes the Disjunctive
Temporal Constraint Network (G) to a Simple Temporal
Network (S) (Line 1). This is accomplished by relaxing
each disjunctive binary constraint to a simple interval. For
each disjunctive constraint, a new simple temporal
constraint is constructed using the lowerbound and
upperbound of the union of intervals in the disjunctive
constraint. Step 2 then compiles the resulting STN to
dispatchable form (Line 2). If the STN representing the
relaxed plan is inconsistent, then there is no solution to the
multi-agent plan and ICA-MAP returns false (Line 3). If
the STN is consistent, then Line 4 initializes a data
structure L(T,C) to record the scheduling policies for
feasible task allocations (T) and their synchronizations (C).
 In Step 3, the algorithm iterates through the set of full
task assignments (Line 5). For each full task assignment Ti,
the constraints associated with Ti are placed on a queue Qt
(Line 6). For example, consider the following full task
assignment for the multi-agent plan in Fig. 2: Left Robot
performs RB1 and RB2, and Right Robot performs RB3
and RB4. The interval constraints associated with each of
these assignments are placed on the queue: Qt =
{ab|L[8,10], cd|L[8,10], ef|R[8,10], gh|R[8,10]}.
 Each constraint in Qt implies the tightening of a
constraint in the relaxed, compiled network S. The function
BACKPROPAGATE-TASK-ASSIGN propagates the
effect of these constraint tightenings throughout S (Line 7).
This process derives the necessary constraint modifications
to ensure temporally consistent execution of the task
assignment Ti. The modified constraints associated with
task assignment Ti are recorded in L(Ti). During this
process, typically only a subset of the constraints in the
relaxed network S must be modified and recorded,
contributing to the compactness of the representation. If
back-propagation results in an inconsistency, then the task
assignment Ti is temporally inconsistent and the algorithm
continues with the next full task assignment (Line 8).

Given a consistent task assignment Ti, Step 4 collects
the set of feasible synchronizations for Ti (Line 9), and
then iterates through each synchronization y (Line 10).
Each synchronization y imposes a set of ordering
constraints on the plan activities. For example, consider the
task assignment: Left Robot performs RB1 and RB2, and

 Figure 3: Pseudo-code for ICA-MAP

Right Robot performs RB3 and RB4. One possible
synchronization of this task assignment is: {bc|[0,inf],
fg|[0,inf]}. This set of ordering constraints is added to the
queue Qy (Line 11). (Note that our implementation of
Chaski performs synchronization based on agent
occupancy constraints. However, ICA-MAP generalizes to
other synchronizations as well.)

The function BACKPROPAGATE-SYNCH then
propagates the effect of these ordering constraints
throughout the network (Line 12). If back-propagation of a
synchronization y results in an inconsistency, then that
synchronization y and its derived constraints are removed
from L(T,C), and the algorithm continues with the next
synchronization (Line 13). If L(T,C) remains empty after
iterating through all full task allocations and
synchronizations, then there is no solution to the multi-
agent plan and ICA-MAP returns false. Otherwise, ICA-
MAP returns S and L(T,C), which compactly encode the
scheduling policies for feasible task assignments and
synchronizations.
 The key to compactly encoding the scheduling policies
for feasible task allocations and synchronizations lies in the
details of the two functions BACKPROPAGATE-TASK-
ASSIGN and BACKPROPAGATE-SYNCH. Next, we
walk through each of these functions.
 The function BACKPROPAGATE-TASK-ASSIGN
takes as its input the queue of task assignment constraints
Qt, the relaxed network S, and the data structure L(Ti) that
records the constraint modifications for task assignment Ti.
Lines 1 and 2 add each constraint ei in Qt to L(Ti). Line 3
applies the DBP rules to propagate the effect of each
constraint ei. For example, consider applying
BACKPROPAGATE-TASK-ASSIGN to the queue of task
assignments in our example: Qt = {ab|L[8,10], cd|L[8,10],
ef|R[8,10], gh|R[8,10]}. First, we create the network S'
associated with task assignment Ti by intersecting the
constraints in L(Ti) with the constraints in S. We then
apply the DBP rules to propagate the effect of ab|L[8,10]
and the other constraints on Qt throughout the network S'.

function ICA-MAP (P={G,L})
1. S ← Relax-Network-to-STN(G)
2. S ← Compile-STN-to-Dispatchable-Form(S)
3. if S is inconsistent return FALSE
4. L(T,C) ← Initialize-Task-Allocation-Synchronization-List
5. for each full task assignment (Ti)
6. Qt ← add- Ti -constraints-to-queue
7. L(Ti) ← BACKPROPAGATE-TASK-ASSIGN(Qt ,S, L(Ti))
8. if BACKPROPAGATE-TASK-ASSIGN returns false,
 clear L(Ti) and goto Line 5
9. Cy ← Synchronize-Task-Assignment(Ti,L)
10. for each synchronization y in Cy
11. Qy ← add- Cy - ordering-constraints-to-queue
12. L(Ti , Cy) ← BACKPROPAGATE-SYNCH(Qy ,S, L(Ti , Cy))
13. if BACKPROPAGATE-SYNCH returns FALSE, clear
 L(Ti , Cy) and goto Line 10
14. end for
15. end for
16. if L(T,C) is empty return FALSE
17. else return S and L(T,C)

292

 If back-propagation deduces a new constraint zi, and zi is
a positive loop then zi does not have to be recursively
propagated and the algorithm continues at Line 3. If zi is a
negative loop then propagation has exposed an
inconsistency and the function returns false. If zi is neither
a positive nor negative loop, then Line 7 checks to
determine whether zi is tighter than the corresponding
constraint in S'. If so, zi is recorded in L(Ti) and added to
the queue Qn for further propagation (Lines 8 and 9). The
constraints of Qn are recursively propagated through the
network in Line 13. If recursive propagation of the
synchronization constraints does not result in an
inconsistency, then the function returns true (Line 14). The
output of BACKPROPAGATE-TASK-ASSIGN is the data
structure L(Ti), which records the constraint modifications
to S that ensure temporally consistent execution of the task
assignment Ti.
 Next, we present the function BACKPROPAGATE-
SYNCH, which encodes the set of feasible
synchronizations for each full task assignment.
 The function BACKPROPAGATE-SYNCH is called for
each synchronization y of a task assignment Ti. The
function takes as its input the queue of synchronization
constraints Qy, the relaxed network S, and the data
structure L(Ti , C) that records the constraint modifications
for task assignment Ti and Ti's set of synchronizations C.
 Lines 1 and 2 add each constraint ei in Qy to L(Ti , Cy),
which records the constraint modifications for Ti's
synchronization y. Line 3 applies the DBP rules to
propagate the effect of each constraint ei. For example,
consider applying BACKPROPAGATE-SYNCH to the
queue of ordering constraints: Qy = {bc|[0,inf], fg|[0,inf]}.
First we create the network S'' for task assignment Ti and
synchronization y by intersecting the constraints in L(Ti)
and L(Ti , Cy) with the constraints in S. We then apply the
DBP rules to propagate the effect of bc|L[0,inf] and the
other constraints in Qy throughout the network S''.

If back-propagation deduces a new constraint zi, which
is tighter than the corresponding constraint in S'', then
Lines 8-16 perform computations to refactor L(Ti , C) such
that constraints common to all feasible synchronizations of
Ti are recorded in L(Ti). In Line 17, zi is added to the queue
Qn for further propagation. The constraints of Qn are
recursively propagated through the network in Line 21. If
recursive propagation of the synchronization constraints
does not result in an inconsistency, then the function
returns true (Line 22). BACKPROPAGATE-SYNCH
returns L(Ti) and L(Ti,C), which record the constraint
modifications to S that ensure synchronized execution of
the task assignment Ti. The refactoring process in Lines 8-
16 ensures that constraints common to all of Ti's
synchronizations are recorded once, contributing to the
compactness of the encoding.
 We provide a proof sketch that ICA-MAP is complete in
that it compiles a multi-agent plan to a dispatchable form

function BACKPROPAGATE-TASK-ASSIGN (Qt , S, L(Ti))
1. for each constraint ei in Qt
2. add ei to L(Ti)
3. for each DBP incremental update rule propagating ei
4. deduce-new-constraint-zi (ei, S, L(Ti))
5. if is-pos-loop(zi) then goto Line 2
6. if is-neg-loop(zi) then return FALSE
7. if zi-is-tightening(zi , S, L(Ti))
8. L(Ti) ← add zi to L(Ti)
9. Qn ← add zi to Qn
10. end if
11. end for
12. end for
13. BACKPROPAGATE-TASK-ASSIGN (Qn , S, L(Ti))
14. return L(Ti)

Figure 4: Pseudo-code for BACKPROPAGATE-TASK-
ASSIGN
function BACKPROPAGATE-SYNCH (y, Qy , S, L(Ti , C))
1. for each constraint ei in Qy
2. add ei to L(Ti , Cy)
3. for each DBP incremental update rule propagating ei
4. deduce-new-constraint-zi (ei, S, L(Ti , Cy))
5. if is-pos-loop(zi) then goto Line 2
6. if is-neg-loop(zi) then return FALSE
7. if zi-is-tightening(zi , S, L(Ti , Cy))
8. if L(Ti) contains a constraint f with ei's start and end events
9. L(Ti, C) ← add f
10. L(Ti, Cy) ← replace f with ei
11. L(Ti,) ← remove f
12. end if
13. if L(Ti, C) all contain ei
14. L(Ti) ← add ei
15. L(Ti, C) ← remove ei
16. end if
17. Qn ← add zi to Qn
18. end if
19. end for
20. end for
21. BACKPROPAGATE-SYNCH (y, Qn , S, L(Ti , C))
22. return L(Ti) and L(Ti , C)

Figure 5: Pseudo-code for BACKPROPAGATE-SYNCH
that preserves the set of execution possibilities attained
using the [Tsamardinos, 2000] method. We know that to
compile a dispatchable DTP, it is sufficient to compile
each of the component STPs to a dispatchable form. First
(i) we show that ICA-MAP enumerates all the component
STPs for compilation. Second, (ii) we sketch that
compiling each component STP using the Back-
Propagation Rules is complete in that the compiled form
contains the same set of dispatchable executions as the
APSP-dispatchable form.

(i) ICA-MAP explicitly enumerates every possible task
assignment and synchronization (Line 5,10). Each full task
assignment corresponds to choosing one disjunct of each
disjunctive constraint in the TCSP representation of the
multi-agent plan (ex. Fig 2), thus enumerating all possible
component STPs in the TCSP. Synchronization involves
choices over ordering constraints among activities in a
given task allocation, thus enumerating all component
STPs of the full DTP.

(ii) Each component STP is compiled to dispatchable
form by applying constraint tightenings to a relaxed
dispatchable form of the original DTP. The relaxed
dispatchable form is guaranteed to contain all possible

293

successful executions of every component STP. The
Dynamic Back-Propagation (DBP) Rules prune the relaxed
problem so that it contains exactly the set of possible
executions generated by dispatching the All-Pairs-Shortest-
Path form of the component STP. Note that the DBP rules
are not performing an incremental APSP computation.
Instead, they perform a subset of the updates of an APSP
computation, and rely on the propagation of timing
information at execution to enforce full all-pairs-shortest-
paths [see Shah 2007, 2008 for more details].

Empirical Validation of ICA-MAP
 In this section we empirically investigate the
compactness of solutions compiled with ICA-MAP. In a
later section, we empirically demonstrate that this compact
encoding supports fast dynamic execution.
 We apply ICA-MAP to a portfolio of parameterized,
structured multi-agent plans in which parameters are
generated randomly. We compute the number of
constraints necessary to represent our compact encoding of
the solution set, and compare this result to the number of
constraints necessary to represent the solution set using
naïve the approach proposed in prior art (Tsamardinos
2001). The naïve approach maintains a separate, minimally
dispatchable STN for each feasible synchronization of a
full task assignment.
 Both ICA-MAP and the algorithm for computing
component STNs via the naive approach are implemented
in JAVA. As a basis for comparison, we apply the two
algorithms to randomly generated multi-agent plans
involving coordination of two agents. Plans are generated
with n = 8, 12, and 16 activities. Each activity is composed
of two events: a start event S and end event E. A binary
disjunctive constraint of two intervals is randomly
generated between each S and E, where each interval maps
to one of the two agents. Intervals are randomly generated
with upperbound time constraints between [1,
max_duration =10], and lowerbound time constraints
between [0, upperbound] so that the duration is nonzero
and locally consistent. The method of generating
upperbounds and lowerbounds for a disjunctive constraint
ensures non-overlaping intervals. To derive constraints
among activities, we randomly place each activity in a 2D
plan space similar to a simple scheduling timeline, where
overlapping activities represent concurrent activities.
Simple interval constraints are generated with locally
consistent values in order to constrain neighboring
activities. This process ensures that the structure of
randomly generated plans results in plan executions that
generally flow from left to right in the plan space. The
number of constraints in the plan increases with plan size
according to O(3n).
 Fig. 6 shows the number of constraints necessary to
represent our compact encoding of the solution set,
compared to the number of constraints necessary to
represent all consistent component STNs. Thirty random

Figure 6: Space to Represent Solution: Compact
Encoding vs. Component STN Moderately- and
Loosely-Constrained Plans encode 501-1500, and

1501-5000 feasible component STNs, respectively.

multi-agent plans are each generated for plans with 8, 12,
and 16 activities. We characterize each generated plan as
tightly-, moderately-, or loosely-constrained based on the
plan's number of feasible component STNs. The figure
presents the mean and standard deviation in the number of
constraints reported for each compilation method. Fig. 6
shows that the resulting compact representation reduces the
space necessary to encode the multi-agent plan by one
order of magnitude on average, compared to prior art.

Algorithm for Fast Distributed Execution of
Multi-agent Plans

We present the function FAST-MAP-DISPATCH, which
performs fast distributed execution of multi-agent plans.
FAST-MAP-DISPATCH is made efficient by performing
online computations using the compact encoding generated
by ICA-MAP. ICA-MAP drastically reduces the number of
constraints necessary to encode the feasible scheduling
policies, thereby reducing the amount of online
computation required to propagate timing information
FAST-MAP-DISPATCH also performs on-demand
propagation of temporal information, contributing to its
efficiency. Typically during dispatch, the temporal
information of an executed event is propagated to all
immediate neighbors. Instead, we only propagate temporal
information to enabled events, or events that may possibly
be executed at the next timestep, thereby reducing the
amount of propagation for infeasible task assignments and
synchronizations. We empirically show in the next sections
that our dispatch method yields low execution latency and
scales well with the size of the multi-agent plan.

Pseudo-Code for the FAST-MAP-DISPATCH
 The pseudo-code for FAST-MAP-DISPATCH is
presented in Figures 7-8. The function takes as input the
relaxed, compiled network S, and the data structure L(T,C)
that records the necessary constraint modifications to
ensure temporally consistent execution of the feasible task
assignments (T) and their and synchronizations (C). Plan
execution is "distributed" in that each agent makes its own
execution decisions using its own copy of S and L(T,C).
Agents coordinate through communicative acts that are
used to (1) broadcast claims to execute events, (2)

294

negotiate to resolve claim conflicts, and (3) broadcast the
successful execution of events.

In performing distributed dispatch of the plan, each
agent must keep a list E of the events currently enabled for
other agents, and keep a list ESELF of the events currently
enabled for itself. An event N is enabled for an agent A if
there exists some feasible synchronization where: the event
N is assigned to agent A and all events that are constrained
to occur before event N have already been executed. Lines
1 and 2 initialize E and ESELF. Initially, the plan's epoch
start event is placed in either E, ESELF or both, depending
on the event's enablement conditions. Line 3 initializes W
and WSELF, which maintain the feasible windows of
execution for the events in E and ESELF, respectively. In
Line 4 the current time is initialized to zero.
 The algorithm iterates through each enabled event N in
E or ESELF until all plan events are executed (Lines 5,6). In
Lines 7 and 8 the dispatcher compiles WE,N and WSELF,N,
the feasible execution windows of N for other agents and
itself, respectively. If the current time is within another
agent's feasible window of execution (Line 9) then the self-
agent checks whether another agent has broadcast the
successful execution of event N. If so, the self-agent
records N's execution time as the current time, and labels N
with the name of the agent that executed N (Line 10). If N
has not yet been executed by another agent, the self-agent
checks whether the current time is within its own feasible
window of execution (Line 11). If so, then the self-agent
broadcasts a claim to execute N (Line 12). In the case
where another agent has also broadcast a claim to execute
N, then the agents communicate to resolve the conflict. If
after resolution, the self-agent owns the event N, then the
self-agent records N's execution time as the current time,
labels N with its own name, executes N, and broadcasts the
successful execution of N (Line 13).
 Lines 15-18 describe the process of updating the plan in
response to an executed event N. First, the enabled lists E
and ESELF are cleared (Line 15), since the execution of N
may make the task assignments and synchronizations that
support the currently enabled events infeasible. Next, the
function PRUNE-AND-UPDATE-ENABLED is called to
remove infeasible task assignments and synchronizations
from L(T,C), update the enabled lists E and ESELF, and
propagate timing information for the enabled events.
 PRUNE-AND-UPDATE-ENABLED takes as input N,
the recently executed event, S, the relaxed network, and
L(T,C), which records the constraint modifications for the
feasible task assignments and their and synchronizations.
The function iterates through each full task assignment Ti
(Line 1), checking whether the execution of N implies task
assignment Ti is infeasible. Ti may be infeasible due to
inconsistent agent assignment (Line 2), inconsistent
execution time (Line 3), or unsatisfied enablement
conditions (Line 4). If Ti is found to be infeasible, then Ti
and all its synchronizations are marked infeasible. If Ti is
found to be feasible, then the function iterates through each

function FAST-MAP-DISPATCH (S, L(T , C))
1. E ← Initialize-other-agents'-enabled-list
2. ESELF ← Initialize-self-agent's-enabled-list
3. {WE ,WSELF}← Initialize-execution-window-lists
4. current_time = 0
5. while one or more events have not been executed
6. for each event N in E or Eown
7. WE,N ← Compile-Other-Agents'-Windows(N, WE)
8. WSELF,N ← Compile-Self-Agent's-Windows(N, WSELF)
9. if current_time is in WE,N and E contains N
10. if other agent has executed N then set N's execution time
 to current_time and label N with executing agent's name
11. else if current_time is in WSELF,N and ESELF contains N
12. claim N for self-agent and resolve any claim conflict
13. if self-agent owns N then set N's execution time to
 current_time, label N with self-agent's name, execute N,
 and broadcast the successful execution of N
14. end if
15. if N is executed
16. E, ESELF ← clear-lists
17. E, ESELF,WE ,WSELF ←
 PRUNE-AND-UPDATE-ENABLED(N,S,L(T,C))
18. end if
19. end for
20. end while

Figure 7: Pseudo-code for FAST-MAP-DISPATCH

function PRUNE-AND-UPDATE-ENABLED (N, S, L(T , C))
1. for each feasible full task assignment Ti
2. if N's agent assignment is inconsistent with Ti then mark Ti and
 all its synchronizations as infeasible and goto Line 1
3. if N's execution time is inconsistent with Ti then mark Ti and all
 its synchronizations as infeasible and goto Line 1
4. if N's enablement conditions are not satisfied then mark Ti and all
 its synchronizations as infeasible and goto Line 1
5. for each feasible synchronization yn of Ti
6. if N's execution time is inconsistent with yn then mark yn as
 infeasible and goto Line 5
7. if N's enablement conditions are not satisfied then mark yn as
 infeasible and goto Line 5
8. E, ESELF ← gather-enabled-events-using-(yn , Ti ,S)
9. WE ,WSELF ←
 update-windows-of-enabled-events-using -(yn , Ti ,S)
10. end for
11. end for
Figure 8: Pseudo-code for PRUNE-AND-UPDATE-ENABLED

feasible synchronization yn of Ti (Line 5), checking
whether the execution of N implies yn is infeasible. The
synchronization yn may be infeasible due to inconsistent
execution time or unsatisfied enablement conditions (Lines
6,7). If a given synchronization yn of task assignment Ti is
found to be feasible, then Line 8 gathers the enabled
events. Line 9 then propagates the timing information of N
and updates the feasible execution windows for the enabled
events.
 FAST-MAP-DISPATCH has the following properties:
(1) it is correct in that any complete task assignment and
execution sequence generated by the dispatcher also
satisfied the constraints of the multi-agent plan, (2) it is
deadlock-free in that any partial execution generated by the
dispacther can be extended to a complete execution that
satisfies the constraints of the multi-agent plan, and (3) it is
maximally flexible in that the dispatcher generates the
same set of complete execution sequences that are
generated by dispatching the consistent component STPs
of the multi-agent plan. Proofs are omitted for space.

295

In the next section we empirically show that FAST-
MAP-DISPATCH reduces execution latency by up to one
order of magnitude compared to prior art.

Empirical Validation of FAST-MAP-
DISPATCH

In a previous section we have shown that our incremental
compilation method drastically reduces the number of
constraints necessary to encode the set of feasible
scheduling policies. In this section we empirically show
that this compact representation supports fast dynamic
execution of multi-agent plans.
 We empirically validate FAST-MAP-DISPATCH by
dynamically executing randomly generated, structured
multi-agent plans. We compare the execution latency
associated with dispatching our compact encoding to the
execution latency of dispatching the component STN
representation. As a conservative measure, we record the
execution latency to propagate the timing of the first
executed event. This is a conservative measure for
execution latency because all task allocations and
synchronizations are still feasible, thus increasing the
computation required to propagate timing information.

The results of the comparison are shown in Fig. 9. Thirty
structured multi-agent plans are randomly generated for
each n = 8, 12, and 16 activities. The figure presents the
mean and standard deviation of execution latency for each
dispatch method. The results indicate that dispatching the
compact encoding significantly reduces execution latency,
by one order of magnitude on average, compared to the
dispatch of the component STN representation. Also, the
results indicate that our method scales well with the size of
the multi-agent plan. Doubling the size of loosely-
constrained multi-agent plans from 8 to 16 activities
increases the execution latency by no more than 0.03
seconds on average using the compact encoding.

By leveraging a compact encoding of multi-agent plans,
FAST-MAP-DISPATCH enables agents to perform
distributed dynamic execution while (1) reasoning on
flexible scheduling policies for thousands of possible
futures, and (2) achieving execution latency within the
bounds of human reaction time (250 ms).

Conclusion
 In this paper, we introduced an executive named Chaski
that enables execution of temporally flexible plans with
online task assignment and synchronization. Chaski
generalizes the state-of-the-art in dynamic plan execution
by supporting just-in-time task assignment as well as
scheduling. The key innovation of Chaski is a fast
execution algorithm that operates on a compact encoding
of the scheduling policies for all possible task assignments.
We show that Chaski reduces execution latency and the
number of constraints necessary to encode the randomly
generated plans by one order of magnitude on average,
compared to prior art.

Figure 9: Execution Latency: Compact
Encoding vs. Component STN Representation.
Moderately- and Loosely-Constrained Plans
encode 501-1500 and 1501-5000 feasible

component STNs, respectively.

References
[Alami, R., Ingrand, F., and Qutub, S. 1998] A Scheme for
Coordinating Multi-robot Planning Activities and Plans
Execution. In Proc.ECAI, Brighton, UK, 1998.
[Brenner, M. 2003] Multiagent planning with partially ordered
temporal plans. In Proc. AIPS DC.
[Dechter, R., et al. 1991] Temporal constraint networks. AI,
49:61-95.
[Doyle 1979] A truth maintenance system. AI, 12:231-272.
[Kabanza, F. 1995] Synchronizing Multiagent Plans using
Temporal Logic Specifications, Proc. ICMAS. Menlo Park, CA,
217-224.
[Lemai, S., and Ingrand, F. 2004] Interleaving temporeal
planning and execution in robotics domains,. in Proc. AAAI.
[Koenig, S., Likhachev, M. 2001] Incremental A*.
Advances in Neural Information Processing Systems (14).
 [Muscettola, N., et al. 1998]. Reformulating temporal plans for
efficient execution. Proc.KRR-98.
 [Oddi, A., and Cesta, A. 2000] Incremental Forward Checking
for the Disjunctive Temporal Problem. In Proc. ECAI, 108–112.
[Shah, J., et al. 2007] A Fast Incremental Algorithm for
Maintaining Dispatchability of Partially Controllable Plans. Proc.
ICAPS-07.
[Shah, J., et al. 2008] Fast Dynamic Scheduling of Disjunctive
Temporal Constraint Networks through Incremental Compilation.
Proc. ICAPS-08.
[Smith, S.; Gallagher, A.; Zimmerman, T.; Barbulescu, L.;
and Rubinstein, Z. 2006]. Multi-Agent Management of Joint
Schedules. In AAAI Spring Symposium on Distributed Plan and
Schedule Management, 128.135. AAAI Press.
[Stergiou, K., and Koubarakis, M. 2000] Backtracking
Algorithms for Disjunctions of Temporal Constraints. AI 120:81–
117.
[Stuart, C. 1985] An implementation of a multi-agent plan
synchronizer. Proc. ICJAI, Los Angeles, CA, pp. 1031–1033.
 [Tsamardinos, I., et al. 1998] Fast transformation of temporal
plans for efficient execution. Proc. AAAI-98.
 [Tsamardinos, I.; et al. 2001]. Flexible dispatch of disjunctive
plans. In Proc. ECP, 417–422
[Tsamardinos, I., and Pollack, M. E. 2003] Efficient Solution
Techniques for Disjunctive Temporal Reasoning Problems.
Artificial Intelligence 151(1-2):43–90.
[Williams, B.C., and Millar, B. 1998] Decompositional, Model-
based Learning and its Analogy to Model-based Diagnosis, Proc.
AAAI, Milwaukee, Wisconsin,pp. 197-203.

296

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

