
Forward Constraint- ased Algorithms for Anytime Planning

Cédric Pralet and Gérard Verfaillie
ONERA, 2 av. Edouard Belin, 31400 Toulouse, France

{Cedric.Pralet,Gerard.Verfaillie}@onera.fr

Abstract

This paper presents a generic anytime forward-search
constraint-based algorithm for solving planning problems ex-
pressed in the CNT framework (Constraint Network on Time-
lines). It is generic because it allows many kinds of search
to be covered, from complete tree search to greedy search.
It is anytime because some parameter settings, together with
domain-specific knowledge, allow high quality plans to be
produced very quickly and to be further improved. It is for-
ward because it systematically considers the decisions to be
made in a chronological order. It is finally constraint-based
because it is built on top of the CNT framework which is
an extension of the CSP framework able to model discrete
event dynamic systems and because it is implemented on top
of the Choco constraint programming tool from which it in-
herits all the constraint handling machinery. Experimental
comparisons are made in terms of quality profile with other
domain-dependent and domain-independent planners.

Introduction
During the last decades, several approaches were proposed
in the field of domain-dependent planning (Ghallab, Nau,
and Traverso 2004) and were shown to induce dramatic
gains in computation time on several domains. Some of
these approaches, such as HTNs (Hierarchical Task Net-
works) used for example in the SHOP2 planner (Nau et al.
2003), express domain-dependent knowledge via task de-
composition methods which help to structure the search and
to avoid the exploration of useless combinations of primitive
tasks. Other approaches express this knowledge via control
rules which are checked at each step of the search. In the
TLplan planner (Bacchus and Kabanza 2000), these rules
take the form of first order LTL formula (Linear Tempo-
ral Logic). In TALplanner (Kvarnström and Doherty 2001),
they are expressed in the TAL formalism (Temporal Action
Logics).

Recently, another way of performing domain-dependent
planning has been proposed in a modeling framework called
CNT for Constraint Network on Timelines (Verfaillie, Pralet,
and Lemaı̂tre 2008). The CNT framework is an extension
of the CSP framework (Constraint Satisfaction Problems
(Rossi, Beek, and Walsh 2006)) introduced to model discrete

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

event dynamic systems and the properties one knows or one
wants to verify or to enforce on them. Its modeling approach
is close to the one of the Constraint-based Attribute and In-
terval Planning framework (Frank and Jónsson 2003), used
in the domain-dependent EUROPA planner. However, the
CNT framework differs in the basic modeling elements it
uses: horizon variables to represent the number of steps to
consider, time references to represent the temporal positions
of each step, and timelines to represent the values of system
attributes at each step.

The first algorithms that were defined in the CNT frame-
work (Pralet and Verfaillie 2008) are optimal algorithms,
able to produce plans that are guaranteed to be optimal with
regard to a given criterion. Thanks to the additional knowl-
edge expressed via constraints, these algorithms were shown
to induce significant gains in computation time when com-
pared with existing domain-independent optimal planning
approaches. However, when compared with other domain-
dependent planning approaches, they are not always able to
produce quickly high quality plans. In other words, their
anytime quality profile i.e., the way plan quality evolves with
computation time, is not very good, even though this any-
time profile is crucial in many situations for which one wants
a high quality plan to be produced by some strict deadline or
as fast as possible (Zilberstein 1996).

This paper tackles the design of an anytime planning al-
gorithm in the CNT framework. This algorithm is based on
a forward search scheme which considers the decisions to
be made in a chronological order. It is developed on top of a
restarted depth-first search CSP solving algorithm, extended
to solve CNTs. It is generic, but contains several parame-
ters that can be easily set depending on the particular plan-
ning problem to be solved. Parameters allow for example a
large scope of search procedures to be covered, from a com-
plete tree search to a greedy stochastic one. They allow also
any variable and value heuristics to be specified. This open
tunable algorithm is the core of SCOT, our Solver for Con-
straints On Timelines, implemented on top of the Choco 2.0
free constraint programming tool1.

The paper is organized as follows: first, the CNT frame-
work is defined again via an illustrative example; then we
present the generic anytime forward-search constraint-based

1Choco: http://choco-solver.net/.

B

265

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

algorithm used in SCOT together with its possible parame-
ter settings; last, experimental results are provided in order
to show that the proposed approach produces plans whose
quality is quickly better than the one of plans produced by
other domain-independent or domain-dependent planners.

The CNT Framework
An illustrative example
Let us consider a planning problem for a team of unmanned
air vehicles (UAVs). This problem involves a set of vehicles
numbered from 1 to Nv and a set A of areas numbered from
1 to Na. The set A is partitioned into a set As of areas that
should be scanned in order to localize an object and a set Ai
of areas of which a image should be taken. For memory lim-
itation reasons, each vehicle v cannot take more than Ni(v)
images. There is also a unique takeoff and landing area Ho,
numbered 0, for all the vehicles. All the vehicles are initially
landed and must be landed at the end of the mission. Each
vehicle can take off at most once. With each pair a, a′ of ar-
eas, is associated the duration Du(a, a′) needed to fly from
a to a′ and to perform the action required for a′ (to scan, to
take image, or to land when a′ = 0, with the takeoff dura-
tion included when a = 0). The team is given the following
mission: within a given maximum duration Md, maximize
the number of visited areas and, as a secondary criterion,
minimize the total duration of the mission. Figure 1 shows
an instance of this problem involving 2 vehicles and 7 areas.

41

7

5

6

2

3
0

v

w

Ho

Du(7,5)=8

Nv = 2

Na = 7

Ai = {1,2,3,4}

As = {5,6,7}

Ni(v) = Ni(w) = 2

Md = 30

Figure 1: Instance of the planning problem for a team of
UAVs.

Let us use this planning problem to illustrate the basic
definitions of the CNT framework.

Horizon variables
Horizon variables are used to represent the number of steps
to be considered.

Definition 1 A horizon variable h is a variable whose do-
main of values is any subset of N. We will use D(h) to denote
the domain of a horizon variable h.

In the planning problem described above, it is possible
to associate one horizon variable hv with each vehicle v.
This variable represents the number of steps in the activ-
ity plan of v. The minimum number of steps is equal to
1 (when v is not used and does not take off). The max-
imum number is equal to Na + 1 (when v visits all the
areas and then goes home; visiting the same area several
times is physically possible, but counterproductive). So,
∀v ∈ [1..Nv], D(hv) = [1..Na + 1].

Time references
Time references are used to represent the temporal positions
of the successive steps.

Definition 2 A time reference t is a pair 〈D,h〉 where D is
any subset of R and h a horizon variable. D is the domain
of values of t and h is its horizon i.e., the number of steps
in t. We will use D(t) and h(t) to denote respectively the
domain and the horizon of a time reference t.

In our planning problem, we associate two time references
with each vehicle v: one time reference tsv to represent the
start time of each step in the activity plan of v and one time
reference tev to represent the end time of each step. Both
share the same horizon variable hv . The minimum time to be
considered is 0 and the maximum is the maximum mission
duration Md. So, ∀v ∈ [1..Nv], h(tsv) = h(tev) = hv and
D(tsv) = D(tev) = [0..Md].

Timelines
Timelines are used to represent the values of the relevant
attributes of the system at the successive steps.

Definition 3 A timeline x is a pair 〈D, t〉 where D is the
domain of values of x and t its time reference. We will use
D(x) and t(x) to denote respectively the domain and the
time reference of a timeline x. To be short, we will often use
h(x) to denote the horizon of the time reference of a timeline
x: h(x) = h(t(x)).

In our planning problem, the relevant attributes at each
step are the visited area and the duration of this visit. So, we
associate two timelines with each vehicle v: one timeline
atv to represent the area and one timeline duv to represent
the duration. Both timelines share the same time reference
tsv and are consequently fully synchronized. However, be-
tween vehicles, timelines are not synchronized. Informally,
time reference tsv (resp. tev) represents the start (resp. end)
time of the visit of area atv , including the travel from atv−1

to atv and the visit of atv itself. Note that time reference
tev has no associated timeline. We have: ∀v ∈ [1..Nv],
t(atv) = t(duv) = tsv , D(atv) = [0..Na], and D(duv) =
[0..Dumax], with Dumax = maxa,a′∈[0..Na]Du(a, a′).

Static variables
Definition 4 A static variable is either a horizon variable,
or any other variable independent from time references and
timelines.

In our planning problem, it is convenient to associate with
each area a a static variable vva of domain [0..Nv] to repre-
sent the vehicle in charge of a (0 when a is not visited). It is
also useful to associate with each vehicle v a static variable
nav of domain [0..Na] to represent the number of areas vis-
ited by v. Last, we introduce a static variable e of domain
[0..Md] to represent the mission duration and a static vari-
able o to represent the optimization criterion.

Dynamic variables
Dynamic variables are associated with steps of time refer-
ences and timelines.

266

Definition 5 A time reference t (resp. timeline x) and an
assignment H of its horizon variable together induce a fi-
nite set of dynamic time variables {ti | i ∈ [1..H]} (resp.
dynamic timeline variables {xi | i ∈ [1..H]}). This set is
empty when H = 0. All these variables share the same do-
main of values D(t) (resp. D(x)).

For example, in our planning problem, an assignment
H = 2 of the horizon hv of a vehicle v induces the dynamic
time variables tsv,1, tsv,2, tev,1, and tev,2 and the dynamic
timeline variables atv,1, atv,2, duv,1, and duv,2. Concerning
timeline atv , variable tsv,2 represents the temporal position
of step 2 and variable atv,2 the value of atv at step 2.

It may be convenient to allow a time reference or a time-
line to be initialized. This induces an additional dynamic
variable indexed by 0. In our planning problem, we consider
that timelines atv are initialized.

Static constraints
Static constraints are used to limit the possible combinations
of assignments of static variables.

Definition 6 A static constraint c is simply a CSP con-
straint (Rossi, Beek, and Walsh 2006) whose scope is limited
to static variables.

In our planning problem, several static constraints can be
defined. First, for each vehicle v, the horizon is equal to the
number of visited areas plus one (Constraint 1) and the num-
ber of visited areas is equal to number of times variables vva

take value v (Constraint 2 which uses the global CSP con-
straint GCC, for Global Cardinality Constraint). Second, the
number of images taken by each vehicle is limited (Con-
straint 3 which uses the same GCC constraint). Last, the
value of the criterion to be maximized is defined by Con-
straint 4, where the weighting factor Md + 1 ensures that
the total number of visited areas has priority over the mis-
sion duration.

∀v ∈ [1..Nv] : hv = nav + 1 (1)
∀v ∈ [1..Nv] : nav = Card{a ∈ A | vva = v} (2)
∀v ∈ [1..Nv] : Niv ≥ Card{a ∈ Ai | vva = v}(3)
o = (

∑
v∈[1..Nv] nav) · (Md + 1)− e (4)

Dynamic constraints
Dynamic constraints are used to limit the possible combi-
nations of assignments of static and dynamic variables. The
difficulty is that the set of dynamic variables, associated with
time references and timelines, is not fixed. It depends on the
assignments of the horizon variables. This leads to a defini-
tion of what is a dynamic constraint which is not as obvious
as the previous definitions are. We will use several examples
to illustrate it.

Definition 7 A dynamic constraint c is a tuple
〈SV, ST, SX, f〉 where SV is a finite set of static
variables, ST is a finite set of time references, SX is a
finite set of timelines, and f is a function which associates
a finite set of CSP constraints with each assignment H of
the horizon variables of the timelines and time references

in ST and SX . Variables in the scope of these induced
CSP constraints must be either static variables in SV or
dynamic variables in the set of dynamic variables induced
by H for time references and timelines in ST and SX .

In our planning problem, several dynamic constraints can
be defined. For each vehicle v, Constraints 5 and 6 initialize
timeline atv and time reference tsv . Constraints 7 to 9 link
timeline duv and time references tsv and tev . Constraints 10
and 11 enforce that landing occurs at the last step. Con-
straint 12 enforces that all the areas visited by v are differ-
ent. Constraint 13 links timeline atv and static variables vv.
Constraint 14 produces a lower bound on the mission dura-
tion e which is greater than or equal to the current time plus
the time v takes to go home. Constraint 15 prunes some sub-
optimal plans. Informally, it ensures that, if v visits areas a,
a′, a′′, and a′′′ in the order a→ a′ → a′′ → a′′′, then it must
not be faster to visit them in the order a→ a′′ → a′ → a′′′.
Last, Constraint 16 defines the mission duration.
∀v ∈ [1..Nv]

atv,0 = 0 (5)
tsv,1 = 0 (6)
∀i ∈ [1..h(v)] : duv,i = Du(atv,i−1, atv,i) (7)
∀i ∈ [2..h(v)] : tsv,i = tev,i−1 (8)
∀i ∈ [1..h(v)] : tev,i = tsv,i + duv,i (9)
∀i ∈ [1..h(v)− 1] : atv,i 6= 0 (10)
atv,h(v) = 0 (11)

AllDifferent(atv,i | i ∈ [1..h(v)]) (12)
∀i ∈ [1..h(v)],∀a ∈ A : (atv,i = a)→ (vva = v)(13)
∀i ∈ [1..h(v)] : e ≥ tsv,i + Du(atv,i−1, 0) (14)
∀i ∈ [3..h(v)] : duv,i−2 + duv,i−1 + duv,i ≤ (15)
Du(atv,i−3, atv,i−1) + Du(atv,i−1, atv,i−2)
+Du(atv,i−2, atv,i)

e = max
v∈[1..Nv]

tev,h(v) (16)

Let us take some examples to illustrate Definition 7.
For each vehicle v, Constraint 7 is a dynamic con-

straint defined by the tuple 〈∅, ∅, {atv, duv}, f7,v〉 with f7,v

the function which associates with each assignment H
of h(v) the set of H ternary CSP constraints {duv,i =
Du(atv,i−1, atv,i) | i ∈ [1..H]}, each one connecting dy-
namic timeline variables duv,i, atv,i−1, and atv,i. Similarly,
Constraint 8 is defined by a tuple 〈∅, {tsv, tev}, ∅, f8,v〉 and
Constraint 9 by a tuple 〈∅, {tsv, tev}, {duv}, f9,v〉.

For each vehicle v, Constraint 12 is a dynamic con-
straint defined by the tuple 〈∅, ∅, {atv}, f12,v〉 with f12,v the
function which associates with each assignment H of h(v)
the unique global CSP constraint AllDifferent({atv,i | i ∈
[1..H]}) which is a particular case of the GCC constraint.

For each vehicle v and each area a, Con-
straint 13 is a dynamic constraint defined by the tuple
〈{vva}, ∅, {atv}, f13,v,a〉with f13,v,a the function which as-
sociates with each assignment H of h(v) the set of H binary
CSP constraints {(atv,i = a) → (vva = v) | i ∈ [1..H]},
each one connecting dynamic timeline variable atv,i and
static variable vva.

267

Constraint networks on timelines
All these definitions can be put together in order to define
constraints networks on timelines.

Definition 8 A constraint network N on timelines (CNT) is
a tuple 〈V,CS, T,X, CD〉 where V is a finite set of static
variables, CS is a finite set of static constraints whose
scopes are included in V , T is a finite set of time refer-
ences whose horizons belong to V , X is a finite set of time-
lines whose time references belong to T , and CD is a finite
set of dynamic constraints whose scopes in terms of static
variables, time references and timelines are respectively in-
cluded in V , T , and X .

It is assumed that a default dynamic constraint ct is as-
sociated with each time reference t ∈ T . This constraint
enforces that the temporal variables associated with a time
reference are totally and strictly ordered: ∀t ∈ T, ∀i ∈
[1..h(t)− 1] : ti < ti+1.

The CNT that results from the modeling of our plan-
ning problem is defined by the tuple 〈V,CS, T,X, CD〉,
with V = (∪Nv

v=1{hv, nav}) ∪ (∪Na
a=1{vva}) ∪ {e, o},

CS = {ci | i ∈ [1..4]}, T = ∪Nv
v=1{tsv, tev}, X =

∪Nv
v=1{atv, duv}, and CD = {ci | i ∈ [5..16]}.

Assignments, solutions, consistency, and optimality
Definition 9 An assignment of a CNT is an assignment of
all its static variables (including all the horizon variables)
and of all the induced dynamic variables.

A solution of a CNT N is an assignment of N such that
all its static constraints and all the CSP constraints induced
by all its dynamic constraints are satisfied.

A CNT is consistent if and only if it admits a solution.
A objective variable o is a static variable which is function

of other static or dynamic variables and whose domain is
equipped with a total order �. A solution S of N is optimal
iff there is no other solution S′ such that S′↓o � S↓o

2.

Figure 2 shows a example of solution of the CNT associ-
ated with the instance of Figure 1. The first table shows the
activity plan of the first vehicle v: initially, v is at home; at
time 0, it triggers the visit of area 1 which takes 7 units of
time; then, it triggers successively the visit of areas 2 and 6
to finally go home. The second table shows the same kind of
plan for the second vehicle w: horizons and times are differ-
ent. The third table shows the assignment of static variables.

More generally, a planning problem can be cast as a CNT
where timelines represent actions and states, and constraints
model action feasibilities and state evolutions, as well as
user objectives, and a valid plan can be extracted from any
CNT solution.

An Anytime Forward Search for CNTs
As said in the introduction, the objective of this paper is to
define anytime algorithms for CNTs. To do this, the strategy
we adopt is the same as the one used in (Pralet and Verfail-
lie 2008) to design optimal algorithms: to use standard CSP

2A↓v denotes the value of variable v in assignment A.

step 0 1 2 3 4
start time tsv - 0 7 15 20

visited area atv 0 1 2 6 0
duration duv - 7 8 5 8
end time tev - 7 15 20 28

step 0 1 2 3
start time tsw - 0 10 18

visited area atw 0 4 7 0
duration duw - 10 8 9
end time tew - 10 18 27

hv = 4, hw = 3, nav = 3, naw = 2
vv1 = vv2 = vv6 = v, vv4 = vv7 = w, vv3 = vv5 = 0

e = 28, o = 127

Figure 2: A solution of the CNT associated with the instance
of Figure 1.

techniques and to adapt them to the specific features of plan-
ning problems. We first present the anytime CSP algorithm
from which we start, and then its adaptation to CNTs.

A standard restarted depth-first search for CSPs
A standard restarted depth-first tree search (restartedDFS)
for CSPs is given in Algorithm 1. This algorithm takes as
an input a CSP defined by a set V of variables, a set C of
constraints, and an objective o ∈ V to be minimized. It
performs a sequence of limited depth-first searches (DFS in
short, line 6) until some stopping condition is met (line 4).
Usually, this stopping condition is the fact that either a max-
imum CPU time has been reached or all the search tree has
been traversed. Before each limited DFS, constraints are
propagated in order to simplify the problem to be solved by
removing inconsistent values from the domains of variables
(line 5). After each limited DFS, a constraint is added to im-
pose that each future solution is strictly better than the best
solution found so far (line 7).

Each limited DFS is a depth-first search which can be
restarted (line 20). A standard restart condition is the fact
that a maximum number of backtracks has been reached.
In function limitedDFS, if all the variables are assigned
(line 12), the complete assignment is returned. Otherwise,
an unassigned variable x is chosen (line 16), as well as a
branching constraint c on x (line 17). Branching constraints
are of the form x cmp b with b a constant and cmp a com-
parator in {=, 6=,≤,≥, <,>}. If the restart condition is not
met, constraint c is added to the current CSP, constraints
are propagated (line 21) and, if no inconsistency is detected
(line 22), the subtree associated with constraint c is explored
(line 23). If a solution is returned, a new constraint is added
to the problem to enforce that each future solution is strictly
better than the best solution found so far (line 24). If the
restart condition is not met, the subtree associated with the
opposite constraint ¬c is also explored (line 19).

Adaptation to CNTs
If only standard CSP settings are used in this algorithm, the
results obtained on CNTs may be quite weak in terms of

268

Algorithm 1: A generic restarted DFS for solving CSPs
1 restartedDFS(V, C, o)1
2 begin2
3 A← null3
4 while ¬stopCondition() do4
5 (V, C)← propagate(V, C)5
6 A′ ← limitedDFS(V, C, o)6
7 if A′ 6= null then (A, C)← (A′, C ∪ {o < A′↓o})7

8 return A8
end9

10 limitedDFS(V, C, o)10
11 begin11
12 if ∀x ∈ V, card(D(x)) = 1 then12
13 return {(x, a) |x ∈ V, D(x) = {a}}13

else14
15 A← null15
16 x← chooseUnassignedVar(V)16
17 c← chooseBranchingConstraint(x, V, C)17
18 (c1, c2)← (c,¬c)18
19 for i = 1 to 2 do19
20 if ¬restartCondition() then20
21 (V ′, C′)← propagate(V, C ∪ {ci})21
22 if ∀x ∈ V ′, D(x) 6= ∅ then22
23 A′ ← limitedDFS(V ′, C′, o)23
24 if A′ 6= null then (A, C)← (A′, C ∪ {o < A′↓o})24

25 return A25

end26

computation time and plan quality. A usual way of overcom-
ing such a difficulty is to design specific parameter settings
for each particular planning problem to be solved. In this
paper, another way is proposed: the definition of generic pa-
rameter settings allowing features of CNTs to be exploited.
Parameters to be set are functions propagate, chooseUnas-
signedVar, chooseBranchingConstraint, and restartCondi-
tion. All the mechanisms described thereafter have been
implemented in the so-called restartedDFS(CNT) algorithm
which is the core of the SCOT CNT solver.
First CSP encoding of CNTs and constraint propaga-
tion At any step, the restartedDFS(CNT) algorithm rea-
sons on a current CSP (V,C). Following the lazy ap-
proach used in (Pralet and Verfaillie 2008), given a CNT
N = (V ′, CS, T, X,CD), at any step, the set V of CSP
variables to be considered is V ′ ∪ {xi | (x ∈ T ∪X) ∧ (i ∈
[1.. min(D(h(x)))])} i.e., the set of variables that are neces-
sarily present in any complete assignment of N due to the
minimum values in the domains of the horizon variables.
The set C of CSP constraints to be considered is obtained
via a function extend which produces a set of constraints
that must be necessarily satisfied by any complete assign-
ment of N . For instance, for dynamic constraint 8 in our
illustrative example (∀i ∈ [2..hv] : tsv,i = tev,i−1), when
the minimum value of hv is 3, function extend returns two
constraints (tsv,2 = tev,1 and tsv,3 = tev,2).

Function propagate needs to be adapted so that function

extend is called whenever the minimum value in the do-
main of a horizon variable is increased. As a result, func-
tion propagate adapted to CNTs can add new variables and
constraints to the current CSP.

Variable choice Concerning the choice of the next vari-
able to assign (function chooseUnassignedVar), a limita-
tion of standard CSP algorithms is that they do not rea-
son in terms of time and sequences of chronologically or-
dered variables, but only in terms of variables and con-
straints, even though many efficient anytime planning algo-
rithms use a forward search approach in which decisions are
made chronologically (Hoffmann and Nebel 2001).

The CNT framework offers the possibility to use both
constraints and forward search. Although intuitive, a for-
ward search in the CNT framework requires some prelim-
inary definitions to be formally defined, mainly because
of the presence of concurrent time references. The basic
idea is to associate with each time reference t a so-called
current index, denoted ci(t), which is the smallest index
i ≤ min(D(h(t))) at which either ti is not assigned, or
there exists a timeline x whose time reference is t such that
xi is not assigned (ci(t) = +∞ when such an index does
not exist). Then, the so-called current time ct(t) of a time
reference t can be defined as the minimum value in the do-
main of dynamic time variable tci(t) (ct(t) = +∞ when
ci(t) = +∞). From this, the current time ct(N) of a CNT N
can be defined as the minimum time over the current times
of all the time references in N . Informally speaking, the cur-
rent time of a CNT is the first time at which a decision must
be made. In the forward approach, when current time ct(N)
is different from +∞, the only variables that can be chosen
by function chooseUnassignedVar are:

• non assigned dynamic timeline variables xci(t(x)) such
that ct(N) is the only possible value in the domain of the
dynamic time variable t(x)ci(t(x));

• if no such variable exists, non assigned dynamic time vari-
ables tci(t) such that ct(t) = ct(N).

If ct(N) = +∞, any non assigned static variable can be
chosen. When several variables can be selected by the for-
ward approach, classical CSP variable choice heuristics can
be used to select one of them. Informally speaking, the for-
ward approach chooses to assign first dynamic timeline vari-
ables that are necessarily associated with the current time of
the CNT, then dynamic time variables that may be associ-
ated with the current time, and finally static variables.

Branching constraint choice As action choice heuristics
are crucial in classical planning, parameter settings for func-
tion chooseBranchingConstraint are crucial for CNT solv-
ing. Several options have been implemented in SCOT:

• random approach: a branching constraint x = b is chosen
in a completely random way over all values b ∈ D(x);

• constraint propagation approach: for each value b ∈
D(x), constraint x = b is added, constraint propagation
is performed, and the lower bound bo(b) on the objec-
tive is recorded; then, a value b that minimizes bo(b) is

269

selected, ties being broken randomly;

• simulation approach: several stochastic greedy searches
are triggered, starting from the current CNT; then, the first
value in one of the best trajectories is selected;

• hand-defined heuristics: the CNT framework allows effi-
cient models to be defined, involving constraints that are
specific to the problem to be solved and help to prune the
search tree; the same way, it is possible to define search
heuristics that are specific to the problem to be solved and
help to guide the search towards high quality plans;

• hand-defined stochastic heuristics: because heuristics
may fail, it may be useful to include a stochastic aspect
in hand-defined heuristics, leading to branching schemes
such as “choose x = b with probability 0.8 and x 6= b
with probability 0.2”.

Restart condition In a standard restarted depth-first
search, restart conditions described in function restartCon-
dition often specify that a restart must be performed when
a maximum number of backtracks is reached. However, in
CNTs, we often observe several constraints connecting vari-
ables associated with the same temporal position. These
constraints connect for example decision variables that to-
gether define a global action. As a result, it may be worth
spending some time searching for a consistent assignment
of these variables. To do that, an option consists in speci-
fying restart conditions not in terms of a maximum number
k of backtracks, but in terms of a maximum number k of
temporal positions on which it is possible to go back. For
example, if k = 0, backtracking to a previous temporal po-
sition is forbidden. As done in several CSP solvers such as
CP Optimizer3, parameter k can be geometrically increased
search after search.

It is worth noting that, through the use of various restart
schemes, the restartedDFS(CNT) algorithm covers both
complete tree search, when no restart is performed, and iter-
ated greedy stochastic search, when no backtrack is allowed,
as well as many intermediate search schemes.

Back to the CSP encoding of CNTs and to constraint
propagation One of the key points in the anytime forward
approach we defined is how CNTs are encoded as CSPs. In
most of the CSP-based approaches to planning (van Beek
and Chen 1999; Do and Kambhampati 2000), the model is
unfolded over a given number of steps. In (Pralet and Ver-
faillie 2008), as explained above, it is unfolded too over a
number of steps which is variable and may increase dur-
ing the search. In both cases, this unfolding may generate
very large CSPs. On some problems, we observed that just
creating the unfolded problem may take several tens of sec-
onds or several minutes. For some problems, there is even
not enough memory for the unfolded problem to be created
without memory swaps. Such a situation is incompatible
with anytime requirements.

To answer this point, we propose a new CSP encoding
of CNTs which is able to reason only on a problem slice,
that is to reason by considering simultaneously only a small

3CP Optimizer: http://www.ilog.com/products/cpoptimizer/.

number of consecutive steps. In its current form, this encod-
ing is defined for problems in which dynamic constraints
link timelines and time references sharing a same horizon
variable h and have the form ∀i ∈ [a..h − b] : ci, with
ci a stationary dynamic constraint, that is a dynamic con-
straint whose definition does not depend on the particular
step i considered. Dynamic constraint 7 in our illustrative
example (∀i ∈ [1..h(v)] : duv,i = Du(atv,i−1, atv,i))
is an example of stationary dynamic constraint. Roughly
speaking, the idea of the automatic encoding is to cre-
ate variables denoted du

(0)
v , at

(−1)
v , and at

(0)
v which rep-

resent respectively the value of timeline duv at the current
step and the value of timeline atv one step before the cur-
rent step and at the current step, and to impose constraint
du

(0)
v = Du(at

(−1)
v , at

(0)
v). Therefore, dynamic constraint 7

is represented at any step of the algorithm by three CSP vari-
ables and one CSP constraint instead of being represented
by 2 · min(D(h(v))) + 1 CSP variables and min(D(h(v)))
constraints. Such an encoding is correct thanks to the for-
ward approach. Note that the planning problem for a team
of UAVs, used as an illustrative example, can be modeled
using such a slice approach and that this approach can be
extended to other kinds of constraints.

The price to pay for this compact encoding is that con-
straint propagation algorithms must be adapted in order to
be able to reason only on a problem slice. This adaptation
has been achieved in SCOT on top of Choco 2.0. See (Pralet
and Verfaillie 2009) for more details.

Experiments
Experiments were performed on three domains:
BlocksWorld (IPC2), Satellite (IPC3, propositional,
simpletime, and time versions), and Trucks (IPC5, propo-
sitional and time versions). For space limitations reasons,
only results on BlocksWorld, Satellite propositional,
Satellite time, and Trucks time are presented. CNT models
have been built for these domains, using a language which
extends to CNTs the usual way of defining constraints in
Choco 2.0. For instance, a constraint like ∀i ∈ [2..hv] :
tsv,i = tev,i−1 is expressed via the following Java code:
postForall(2,h[v],eq(ts[v],offset(te[v],
-1)));. Developing a higher level language to express
CNT models in a more natural way is out of the scope of
this paper. Experiments were run on a SunUltra45, 1.6GHz,
1GBRAM.

Analysis of various parameter settings
The goal of the first experiments performed is to as-
sess the influence of various parameter settings of the
restartedDFS(CNT) algorithm on the quality profile. In Fig-
ure 3, we present some results obtained on two particular in-
stances: instance satellite-time-8 in the first row and instance
trucks-time-8 in the second one. In both cases, the quality is
the makespan to be minimized. Each column corresponds to
the study of a particular parameter: CSP encoding and vari-
able choice in the first column, restart condition in the sec-
ond one, and branching constraint choice in the third one.
Because stochastic choices are made, each parameter conf-

270

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

Iterative deepening, unfolded model
Forward search, unfolded model

Forward search, slice model

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

Greedy search
Chronologically greedy search

Limited backtrack search
No restart search

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

Stochastic hand-defined
Random

Constraint propagation-based

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 5 10 15 20 25 30

Iterative deepening, unfolded model
Forward search, unfolded model

Forward search, slice model

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 5 10 15 20 25 30

Greedy search
Chronologically greedy search

Limited backtrack search
No restart search

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 5 10 15 20 25 30

Stochastic hand-defined
Random

Constraint propagation-based

Figure 3: Median quality evolution on instances satellite-time-8 (first row) and trucks-time-8 (second row). Variable choice and
CSP encoding (first column). Restart condition (second column). Branching constraint choice (third column). Time in seconds.

iguration is run 50 times on each instance with a time limit
of 30 seconds per run. The plots correspond to a median
quality evolution: a point (t, q) means that, at time t, half of
the runs got a quality greater than or equal to q.

Variable choice and CSP encoding In the first col-
umn, we compare three approaches: (1) iterative deepening
(where dimension variables are assigned first and then other
variables in any order, not necessarily chronological), (2)
forward search (as described in paragraph “Variable choice”
in the previous section) on top of an unfolded model, and
(3) forward search on top of a slice model. Fixed parame-
ter settings are no restart and random branching constraint
choice. Plots in the first row clearly show the benefit of
a forward search with regard to an iterative deepening one
and the benefit of a slice model with regard to an unfolded
one. However, the second row shows that, on the second
instance, none of the tested configurations manages to find
a plan within the time limit. This leads us to look at other
parameters.

Restart condition In the second column, we compare four
restart approaches: (1) completely greedy search, restarting
each time a backtrack is needed, (2) chronologically greedy
search, restarting each time a backtrack to a previous tempo-
ral position is needed, (3) limited backtrack search, restart-
ing when a maximum number k of backtracks is reached,
with k geometrically increased restart after restart, and (4)
no restart search. Fixed parameter settings are forward
search, slice encoding, and stochastic hand-defined heuris-
tics. Both rows (the second one more clearly than the first
one) show the superiority of the second and third approaches
with regard to the first and fourth ones which are too diver-
sified for the former and not enough diversified for the latter.

Branching constraint choice Last, in the third column,
we compare three branching heuristics: (1) stochastic hand-
defined heuristics, (2) completely random choice, and (3)
constraint propagation-based heuristics. Fixed parameter
settings are forward search, slice encoding, and limited
backtrack search. Not surprisingly, both rows show the
superiority of stochastic hand-defined heuristics. On the
second instance, they are the only ones able to produce
plans within the time limit. Constraint propagation used as
heuristics seems to be time consuming and not informative
enough.

Comparison with existing planners
Other experiments were performed to compare SCOT with
other planners. For that, we selected:

• one domain-independent planner: SGPlan6 (Hsu and Wah
2008), winner of the temporal satisficing track of the last
planning competition (IPC6);

• two domain-dependent planners: TALplanner, winner of
the domain-dependent track in IPC2, and TLplan, winner
of the same track in IPC3; therefore, we used TALplanner
for domain BlocksWorld (IPC2) and TLplan for domain
Satellite (IPC3); no TALplanner or TLplan model is avail-
able for domain Trucks; moreover, because TALplanner
code is not available on the web, results were collected
from the IPC2 site.

It must be stressed that none of these planners has been
built to be anytime, but to produce as quickly as possible a
plan of as high as possible quality.

For each algorithm, the time limit is of 120 seconds.
The parameter settings used for the restartedDFS(CNT) al-
gorithm in SCOT are forward search, slice encoding, lim-

271

SGPlan6 TALplanner SCOT-first SCOT-best SCOT-opt
Instance TLplan
B-10-0 38 (0.3) 34 (0.3) 34 (1.1) 34 (1.1) (1.3)
B-11-0 106 (5.3) 32 (0.2) 32 (1.1) 32 (1.1) (1.1)
B-12-0 48 (10.4) 40 (0.2) 34 (1.2) 34 (1.2) (1.2)
B-13-0 58 (0.5) 44 (0.2) 44 (1.3) 42 (1.8) (2.8)
B-14-0 - (-) 40 (0.2) 38 (1.3) 38 (1.3) (1.3)
B-15-0 102 (0.8) 48 (0.2) 40 (1.3) 40 (1.3) (1.3)
B-17-0 - (-) 50 (0.2) 46 (1.4) 46 (1.4) (1.4)
B-18-0 164 (143.9) 60 (0.2) 58 (1.7) 58 (1.7) (1.7)
B-19-0 - (-) 62 (0.2) 62 (1.8) 62 (1.8) (1.8)
B-20-0 106 (42.8) 64 (0.2) 60 (1.8) 60 (1.8) (1.8)
B-25-0 - (-) 84 (0.2) 82 (2.4) 82 (2.4) (2.4)
B-28-0 - (-) 96 (0.2) 92 (2.8) 92 (2.8) (2.8)
S-P-05 16 (0.6) 10 (0.02) 9 (0.9) 7 (0.9) (4.8)
S-P-06 24 (0.6) 11 (0.02) 11 (0.9) 8 (0.9) (1.2)
S-P-07 22 (0.8) 10 (0.02) 9 (1.0) 6 (1.1) (1.6)
S-P-08 26 (0.9) 11 (0.02) 11 (1.0) 8 (1.1) (21.4)
S-P-09 34 (0.1) 10 (0.02) 9 (1.2) 6 (41.1) (41.2)
S-P-10 35 (0.1) 10 (0.02) 10 (1.3) 8 (1.4) ?
S-P-11 34 (0.1) 12 (0.03) 12 (1.2) 8 (2.7) (4.9)
S-P-12 72 (0.3) 17 (0.04) 16 (1.9) 14 (2.7) ?
S-P-13 60 (0.4) 18 (0.05) 18 (2.0) 13 (5.9) ?
S-P-14 44 (0.3) 12 (0.03) 11 (1.7) 8 (10.3) (65.8)
S-P-15 51 (0.4) 14 (0.04) 13 (2.4) 8 (108.4) ?
S-P-16 54 (0.6) 11 (0.04) 11 (3.4) 7 (3.6) ?
S-T-05 394.3 (0.6) 170.3 (0.02) 162.4 (1.0) 105.3 (13.5) (13.7)
S-T-06 550.1 (0.6) 140.1 (0.02) 124.3 (1.0) 68.8 (1.9) (1.9)
S-T-07 349.7 (0.9) 121.2 (0.03) 111.2 (1.9) 60.3 (4.9) (26.9)
S-T-08 413.2 (0.1) 79.1 (0.04) 77.5 (2.2) 74.3 (20.4) ?
S-T-09 888.7 (0.2) 127.6 (0.05) 123.7 (1.5) 86.2 (4.6) (31.5)
S-T-10 921.1 (0.2) 209.6 (0.07) 192.5 (1.4) 117.4 (87.9) (103.8)
S-T-11 873.6 (0.2) 174.10 (0.06) 165.9 (1.5) 128.1 (78.9) ?
S-T-12 1452.4 (0.4) 236.5 (0.1) 233.2 (1.9) 139.10 (85.3) ?
S-T-13 971.7 (0.7) 210.4 (0.1) 191.4 (2.2) 127.7 (95.3) (112.7)
S-T-14 727.6 (0.5) 175.8 (0.1) 159.1 (1.9) 105.7 (12.8) (114.2)
S-T-15 852.9 (0.8) 169.3 (0.2) 165.10 (2.5) 103.2 (94.7) ?
S-T-16 1216.5 (1.0) 178.9 (0.3) 150.3 (3.5) 92.5 (77.6) ?
T-T-01 843.3 (0.3) not run 843.3 (1.7) 843.3 (1.7) (22.5)
T-T-02 1711.5 (0.5) not run 1711.5 (2.0) 1711.5 (2.0) ?
T-T-03 1470.2 (0.6) not run 1470.1 (2.7) 1202.6 (4.2) ?
T-T-04 2629.5 (0.8) not run 2629.5 (4.2) 2629.5 (4.2) ?
T-T-05 2250.9 (0.8) not run 2250.9 (3.5) 1671.6 (4.2) ?
T-T-06 5021.1 (0.1) not run 4774.2 (4.0) 4319.0 (5.5) ?
T-T-07 1878.2 (0.9) not run 1854.3 (13.2) 1633.3 (60.7) ?
T-T-08 2303.1 (0.2) not run - (-) 2417.0 (55.2) ?
T-T-09 4835.7 (0.2) not run 3089.2 (10.5) 2667.2 (99.5) ?
T-T-10 3034.5 (0.2) not run 3020.1 (29.4) 2759.1 (97.2) ?
T-T-11 3492.1 (0.2) not run 3225.10 (9.2) 2305.5 (108.6) ?
T-T-12 4543.1 (0.3) not run 3990.9 (10.3) 3024.7 (74.9) ?

Table 1: Comparison between SCOT and existing plan-
ners. “B” stands for BlocksWorld, “S-P” for Satellite-
Propositional, “S-T” for Satellite-Time, and “T-T” for
Trucks-Time.

ited backtrack search, and hand-defined stochastic heuris-
tics. Because of its stochastic features, SCOT is run 20 times
and the median quality evolution is recorded. In Table 1, for
each instance, we display in the first two columns elements
q(t) where q is the quality produced by SGPlan6, TALplan-
ner, or TLplan and t is the associated cpu time. Then, col-
umn SCOT-first displays elements q(t) which indicate that,
at time t, SCOT produces a plan of quality q which is better
than or equal to the quality produced by all the other plan-
ners. The same way, column SCOT-best displays elements
q(t) which indicate that the best plan produced by SCOT is
of quality q and that it is produced at time t. Last, column
SCOT-opt displays elements (t) or ? where (t) indicates that
optimality is proved at time t and ? that it is not established
within the time limit.

These results show that, on almost all the instances, SCOT
manages in a few seconds to produce plans whose quality is
better than or equal to the quality of the plans produced by
all the other planners. Mainly in the last three domains, it

is moreover able to improve on the quality of the first plan
found by a significant factor. Mainly in the first three do-
mains, it is even able to prove the optimality of the best plan
found. On the negative side, it must be emphasized that the
time needed to produce the first plan is always several times
larger than with SGPlan6, TALplanner, or TLplan. One of
the reasons for this is, even with an efficient CSP encoding,
the time needed to create the CSP and all its data structures
which may represent half of the total cpu time.

Conclusion
This paper shows that it is possible to define an efficient
generic anytime forward-search algorithm on top of the CNT
framework. It shows also how the CNT framework and the
associated SCOT solver together allow user knowledge of a
specific planning problem to be incorporated in the form of
constraints, heuristics, or algorithm parameters, in order to
solve it still more efficiently. For future work, an immediate
objective is to reduce the time needed to produce a first plan.

References
Bacchus, F., and Kabanza, F. 2000. Using Temporal Logics to
Express Search Control Knowledge for Planning. Artificial Intel-
ligence 16:123–191.
Do, M., and Kambhampati, S. 2000. Solving Planning-Graph by
Compiling it into CSP. In Proc. of AIPS-00, 82–91.
Frank, J., and Jónsson, A. 2003. Constraint-Based Attribute and
Interval Planning. Constraints 8(4):339–364.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Hsu, C., and Wah, B. 2008. The SGPlan6 Planning System
in IPC6. In Proc. of the International Planning Competition
(IPC6)”.
Kvarnström, J., and Doherty, P. 2001. TALplanner: A Temporal
Logic Based Forward Chaining Planner. Annals of Mathematics
and Artificial Intelligence 30:119–169.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research 20:379–404.
Pralet, C., and Verfaillie, G. 2008. Using Constraint Networks
on Timelines to Model and Solve Planning and Scheduling Prob-
lems. In Proc. of ICAPS-08, 272–279.
Pralet, C., and Verfaillie, G. 2009. Slice Encoding for Constraint-
based Planning. In Proc. of CP-09.
Rossi, R.; Beek, P. V.; and Walsh, T., eds. 2006. Handbook of
Constraint Programming. Elsevier.
van Beek, P., and Chen, X. 1999. CPlan: A Constraint Program-
ming Approach to Planning. In Proc. of AAAI-99, 585–590.
Verfaillie, G.; Pralet, C.; and Lemaı̂tre, M. 2008. Constraint-
based Modeling of Discrete Event Dynamic Systems. Journal of
Intelligent Manufacturing, Special Issue on ”Planning, Schedul-
ing, and Constraint Satisfaction”. Published online.
Zilberstein, S. 1996. Using Anytime Algorithms in Intelligent
Systems. AI Magazine 17(3):73–83.

272

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

