
Using Physics- and Sensor- ased Simulation
for High-Fidelity Temporal Projection of Realistic Robot Behavior

Lorenz Mösenlechner and Michael Beetz
Intelligent Autonomous Systems Group

Department of Informatics
Technische Universität München

Boltzmannstr. 3, D-85748 Garching
{moesenle,beetz}@cs.tum.edu

Abstract

Planning means deciding on the future course of action
based on predictions of what will happen when an activ-
ity is carried out in one way or the other. As we apply
action planning to autonomous, sensor-guided mobile
robots with manipulators or even to humanoid robots
we need very realistic and detailed predictions of the
behavior generated by a plan in order to improve the
robot’s performance substantially.
In this paper we investigate the high-fidelity temporal
projection of realistic robot behavior based on physics-
and sensor-based simulation systems. We equip a sim-
ulator and interpreter with means to log simulated plan
executions into a database. A logic-based query and in-
ference mechanism then retrieves and reconstructs the
necessary information from the database and translates
the information into a first-order representation of robot
plans and the behavior they generate. The query lan-
guage enables the robot planning system to infer the in-
tentions, the beliefs, and the world state at any projected
time. It also allows the planning system to recognize,
diagnose, and analyze various plan failures typical for
performing everyday manipulation tasks.

Introduction
Consider a household robot (see Figure 1) performing pick-
and-place tasks in a kitchen environment. The robot uses
its camera to recognize the objects it is required to manipu-
late where the objects are described by partial and possibly
inaccurate object descriptions. Objects may slip out of the
robot’s hand depending on the friction of the objects and
robot grippers. The success of grasps also depends on the
trajectories computed by the motion planner and the accu-
racy with which the arm and gripper controller can follow
those trajectories. Other critical factors include the position
from which the robot is picking up the object and how clut-
tered the surrounding is.

The important conclusions that we draw from our sce-
nario are the following ones. First, the success of actions and
therefore the high-level plans critically depends on low-level
details such as object recognition, selecting standing posi-
tions, grasps, objective functions for the motion planner etc.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Second, improving the performance of robot plans through
action planning requires action planners to adjust low-level
behavior and reason about the consequences of these adjust-
ments. As a consequence, the temporal projection of robot
action plans must be much more accurate, realistic, and de-
tailed than those performed by most current action planning
systems.

Figure 1: Household robot in reality and simulation.

The temporal projection mechanisms investigated in this
paper enable autonomous service robots with manipulators
to improve their performance by revising general purpose
default plans into tailored optimized ones. Consider, for ex-
ample, the table setting task. The default plan instructs the
robot to put items on the table one after the other. Thus,
for this task the robot can revise the default plan in various
ways to improve its performance. For example, the robot can
stack the plates to carry them more efficiently, it can leave
doors open while setting the table, it can slightly change its
position such that more objects are in reach, it can transport
the cups in an order such that it moves these objects that are
obstacles when grasping other ones first.

We formulate the optimization of robot manipulation
plans for everyday activities as a transformational planning
problem. The basic idea is to apply plan transformations to
plan candidates to generate promising plan candidates. In a
second step the new candidate plans are projected to predict
probable execution scenarios, which are then used to assess
the plan’s performance, strengths, and weaknesses.

In this paper we propose the use of physics- and sensor-
based simulation engines for high fidelity temporal projec-
tion of realistic robot behavior. In contrast to current plan-
ners that use simulation only for navigation and motion
panning, our approach enables the planner to reason about
whether the robot manipulates the right object, whether it
misses objects, whether objects are slipping out of the grip-
per, etc. We log the simulation data and use the logged data

B

249

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling



to instantiate first-order symbolic representations of the pro-
jected plan execution. To enable the robot to symbolically
reason about robot behavior, flaws of the behavior, and di-
agnose the reason for these flaws, we contribute in the fol-
lowing ways to the high-fidelity temporal projection of robot
action plans.

We show how symbolic representations of the behavior,
the beliefs, and the intentions of the robot can be grounded
in logged simulation data and internal data of the plan in-
terpreter. Further, we propose a suitable set of predicates
for reasoning about the failures and flaws of robot control
plans based on temporal projections. Finally, we show that
physics-based temporal projection allows to reason about
plan execution at a level of detail that has not been demon-
strated with transition-based symbolic models.

The remainder of this paper is organized as follows. After
motivating our approach for temporal projection, we discuss
classical approaches and the differences to our approach.
Then, we give an overview over the concepts of our ap-
proach, followed by a formalization in first-order logic. We
evaluate our approach by showing the expressive power by
formalizing examples of flaws in program execution. Fi-
nally, we shortly discuss related approaches.

An Example Projection of a Robot Plan

Planning everyday manipulation tasks requires a robot to
reason about its behavior at different levels of abstraction.
Let us consider a table setting task as an illustrative exam-
ple.

1

2

3 Time
216.41 s

1 2 1

2 1 3

1 3

Figure 2: View of the execution of the set-the-table plan.

In order to improve table setting plans, the robot can apply
transformation rules such as the following:

• IF the robot — when executing this plan in order to
transport multiple objects from one place to another
one — might drop objects that it stacked to carry the
objects more efficiently, THEN change the plan such
that the objects are not stacked any more.

• IF the robot — when executing this plan — might over-
look objects that are occluded, THEN change the per-
ception subplan to actively search occluded areas.

To predict behavior flaws our robot temporally projects what
will happen if the plan gets executed using a high-fidelity
physics- and sensor-based simulation. To account for nonde-
terminisms in the execution and for uncertainties, the robot
projects its plans multiple times, applying probabilistic noise
models of its sensors. To project the plans, they are executed
in a realistic simulation environment (Figure 2).

The reasons why such accurate and detailed predictions
are necessary are illustrated in Figure 3. Figure 3(a), for ex-
ample, shows the plate lying upside down because it slipped
out of the gripper. This is a situation where a simulated phys-
ical event (slippage) caused a situation in which the robot
cannot pick up the plate any more and therefore not achieves
the user command. This example shows that variations at a
detailed level decide whether or not the goals at an abstract
planning level are achieved. Using abstract action models,
as used by most action planners, such plan failures could not
be predicted and therefore not planned for.

(a) (b)

Figure 3: The results of laying the table. Due to the detailed
simulation, the execution of plans often results in qualita-
tively different situations.

Based on the temporal projections generated by the
sensor- and physics-based simulation, our planner ([Beetz,
2000; Müller, Kirsch, and Beetz, 2007]) can infer answers
to queries concerning the world states, the intentions, the be-
liefs, the results of plan interpretations and the interactions
between these concepts. Thus, concerning the world states
the robot can for example answer: what objects were on the
cupboard at the beginning? What objects are on the table at
the end? Where did the robot stand in order to pick up ob-
jects? Are all objects placed accurately at the end? Did the
actions cause unwanted side-effects like the displacement of
other objects?

In addition to queries about the world states that our pro-
jector can answer, like many others can do, it can also an-
swer queries about the beliefs of the robot at various states
of plan interpretation as well as interpretation of plan steps.
Examples of such queries are the following ones: what did
the robot see when it looked for the cups on the table? Did
the robot see all cups on the table? Why did the robot pick
up the object with two hands? How often did picking up the
object fail before it succeeded?

To sum up, our example shows that our temporal projec-
tion mechanism can predict robot behavior very realistically
because of the use of sensor- and physics-based simulation.
It can also answer queries about the beliefs and compu-
tational states during plan execution, which is essential in
robotic applications because robots have in most cases only
partial and uncertain information about the world.

Temporal Projection for Robot Planning

Most researchers use a model-based approach to action plan-
ning, which is depicted in Figure 4. They model control
routines that are intended to perform a specific task, such as
navigating to a specified destination, as actions in a sym-
bolic language. The models of actions are typically rep-
resented as a transition system in which an action trans-

250



fers a state into sets of successor states. The different ap-
proaches, such as action logics for example, differ with re-
spect to the assumption they make about the underlying tran-
sition system: whether transitions are deterministic, non-
deterministic, conditional on state properties, representing
the concurrent execution of actions, caused by exogenous
events, etc. A variety of logical representation formalisms
including numerous extensions of the Situation Calculus,
ADL, event calculus, and fluent calculus are the result, to
name only a few.1

Representation

World

Action Models Projected Plan

Control Routines
World Evo-
lution and

Robot Behavior

Entails

Generates

S
em

a
n

tics

S
em

a
n

tics

Figure 4: Model-based robot action planning

Researchers make these ontological commitments in or-
der to provide representation and reasoning mechanisms for
planning systems that satisfy the basic relationship depicted
in Figure 4. In contrast, we want to represent the control
routines of the robot such that we can, in the representation
framework, symbolically infer the consequences of execut-
ing a plan. We consider the meaning of the inferred con-
sequences to accurately (approximately) represent what is
expected to happen in the real world when executing the re-
spective control program.

Almost all logical action representations, for instance
PDDL [Ghallab et al., 1998], work on the basis of conceptu-
alizing an underlying transition system for an action domain.

There are problems with this modeling approach when ap-
plying it to autonomous manipulation. First, in autonomous
robot control the effects of actions are the result of the inter-
action of the robot’s behavior with its environment. Indeed
autonomous robot control addresses this issue through feed-
back control and by monitoring action effects and reactively
recovering from local problems and failures. The second
problem is quantification. Because action models are typ-
ically universally quantified, even if modeled probabilisti-
cally or content specific, and because the effects of actions
are caused by the subtle interplay of actions and situations,
it is difficult to define the models realistically. Indeed the
difficulty of representing robot actions realistically is mir-
rored by the huge number of action logics proposed in the
literature.

Interestingly, the modeling problems that result from
quantifying over models and abstracting away from some
interactions between actions and context seem to be arti-
facts that do not arise in physical robot simulators based on
physics engines such as ODE, PhysX, or Bullet. The rea-
son is that these simulators do very little abstraction, time
has a high resolution, and the state update rules modeling
physics take all current and relevant state variables into ac-
count. However, the realism and accuracy comes at a price.

1See [Thielscher, 2009] for a discussion and an effort of unify-
ing some aspects of the action logic research field.

Simulations can only sample possible episodes but not quan-
tify over all possible ones.

The same holds for very expressive and probabilistic ac-
tion representations. McDermott (1997), for example has
proposed a powerful and expressive action language capa-
ble of representing the concurrent execution of durative ac-
tions with interfering events in a probabilistic setting. Beetz
and McDermott (1997) have shown that by using such sets
of sampled plan projections, realistic robot plans can be re-
liably improved on the basis of a reasonably small set of
sampled projections.

Simulation-Based Temporal Projection

Instead of modeling the actions of the robot at an abstract
level as a transition system, we propose to simply interpret
a robot control program in a sensor- and physics-based sim-
ulator, record all the necessary data, and then translate the
recorded data into a first-order representation of the episode.

To do so, the interpretation and the simulation run in two
coupled loops, where the simulation continually adds the
simulated sensor data to the sense data queue of the program
and the interpreter sets the control signals for each motor and
sensing commands for the simulator (see Figure 5).

Physics-based Simulation

In a nutshell the physics-based simulator works as follows.
It receives the control signals for the respective motors and
the commands for the robot’s sensors as its input. It then
periodically updates the state of the simulated world based
on the dynamics of the simulated system and physical laws.
To do so the simulator performs four steps in each iteration:

1. compute the forces applied at each motor based on the
current motor state and the control signal;

2. determine the objects that the forces apply to;
3. for each object sum the forces applied to it and calcu-

late the effects of the forces based on the object’s cur-
rent dynamic state and the object properties including
friction, weight, center of gravity, etc;

4. calculate the sensor data by applying the sensor models
of the activated sensing processes to the current state of
simulation.

In each iteration, the simulator updates the list of collisions,
applies forces to contact points and motor joints and updates
the location of each object and it’s velocity vector.

The central data structure that the simulator works on is
the set of objects. For example, the robot consists of the
robot base, the different arm modules, the grippers, etc. For
each object the data structure contains the position, mesh,
etc. Models of objects include:

1. 3D-models of all body parts;
2. the position, orientation and velocity of the object;
3. physical properties such as friction, mass and elasticity;
4. joints representing connecting points between bodies

where forces can be applied. Thus, motors are modeled
as joints and control signals are translated into forces
applied to the corresponding joints;

5. the list of collisions between body parts.

251



Logging

Simulation
of Sensors

Motor /
Manipulator
commands

Internal
state

Object

Physics
rules

Environment Simulation

Belief
state

Task
Tree

...

...
...

Interpreter Plan

Plan Interpretation

statei

statei+1

Figure 5: Termporal projection using simulation

This is the most simplistic version of a physics-based sim-
ulator: a simulator that simulates rigid objects in an environ-
ment where only the robot changes the environment. Mod-
ern physics-based simulators also support additional pro-
cesses acting in the world, soft objects, liquids, etc. (PhysX,
Bullet). Some of them [Johnston and Williams, 2008]
are so advanced that they can even simulate the infamous
egg cracking problem in the commonsense problem-solving
community [Morgenstern, 2001].

In physics-based simulation the effects of actions are
computed based on physics rules that map forces and ob-
ject properties into effects (sometimes including some ran-
domization to account for aspects that are not sufficiently
modeled). Consequently, a physics-based simulation does
not have problems when computing the effects of picking
up a pile of plates (based on mass), the consequences of
a wet gripper (changed friction), or another object falling
on the pile while it is carried (interfering effects of con-
current events). Without these “details” a kitchen robot
cannot plan to carry fewer plates after washing its grip-
pers because of the reduced friction in its fingers. Mod-
eling such aspects in abstract first-order representations is
tedious and results in huge axiomatizations. This is well
illustrated in different formalizations of the egg cracking
problem in commonsense reasoning [Morgenstern, 2001;
Johnston and Williams, 2008].

Plan Interpretation

The interpretation of a plan is completely (but not necessar-
ily deterministically) determined by the program state: the
program counter and the variable values. In program inter-
pretation these data are usually kept in a stack of task inter-
pretation frames. Thus, everything that the robot “believes”
in is at sometime somewhere in its interpretation stack. An
example of a stack frame, which we call a task data struc-
ture is depicted in Figure 6. The task data structure contains
the following data. The task environment contains the vari-
ables in the scope of the task, their values at different stages
of execution, and the state of plan interpretation when these
values were assigned. Thus the local variable OBS was ini-
tialized to () and then set to the set of object descriptions
(DES-17 DES-18) at the end of task t-7. The task status con-
tains the change of the task status during the projected plan

interpretation and when the status changed.
TASK T-6

SUPERTASK T-4
TASK-EXPR (ACHIEVE (OBJECT-CARRIED DES-17))
TASK-CODE-PATH ((POLICY-PRIMARY) (STEP-NODE 1)

(COMMAND 1) (STEP 2))
TASK-ENVIRONMENT OBS (BEGIN-TASK T-4) ()

(END-TASK T-7) (DES-17 DES-18)
TASK-STATUS TI10 CREATED TI10 ACTIVE

TI13 DONE

Figure 6: Conceptual view of a projected task.
Let us now consider how the “belief state” of the robot

is encoded in control programs using the position estimate
of our robot as an example. The probability distribution
over the robot’s position at time instant t is computed by
a particle-based Bayesian filtering approach [Beetz et al.,
1998]. For instance, when the robot is navigating in an of-
fice environment, the distribution may show that the robot
has two probable position estimates: one (the correct one) at
the right side of the corridor and a symmetric position at left.
This belief state is abstracted into three program variables
that are used by the control program: RobotPos, PosAccu-
racy and PosAmbiguity that store the belief about the pose of
the robot, the accuracy of the position estimate in the global
maximum of the probability distribution for the robot’s po-
sition and the number of local maxima with a probability
higher than a given threshold.

Interaction between Simulation and Interpretation

The robot control program interacts with the simulator
through a middleware layer that is also used to communi-
cate with real robotic hardware. Motors are simulated by
providing the corresponding command interface and calcu-
lating the respective forces to be applied at the motor joints
of the simulated object. Sensory data is also provided by the
middleware interface and the behavior of the sensors is cal-
culated from the internal simulator data structures, the sim-
ulator’s rendering engine and models of the sensors. For in-
stance for laser sensors, additional noise models of the real
sensor can be applied to make simulation more realistic.

Logging

The simulation of a plan generates sub-symbolic data
streams containing the data from plan interpretation as well

252



as data from the physical simulation. For instance, while the
robot is navigating, for every simulator time step, the new
location of the robot in the simulator data structures and the
new values of it’s self-localization are recorded.

As shown in Figure 5, it receives information from the in-
terpreter, in particular the complete belief state at every point
in time, the plan that is executed, and the task tree. Further-
more, the internal state of the simulator with information on
all objects, the control signals received by the simulator and
the sensory information is recorded by the logging mecha-
nism. In particular, the logged internal state includes infor-
mation such as the list of all collisions, represented as a pair
of object names, the location of all objects, and visibility
information. That means, not only simulated noisy sensor
data but also the corresponding ground truth information is
recorded. This is necessary for the analysis of mispercep-
tions caused by noisy sensor data.

Representing Projected Execution Scenarios

Let us now consider our first-order representation of pro-
jected execution scenarios that allows for detailed reasoning
and diagnosis of plan failures. This representation, which is
generated from the logged data on demand is based on oc-
casions, events, intentions and causing relations, which are
introduced below.

Occasions are states that hold over time intervals where
time instants are intervals without duration. The sentence
Holds(occ, ti) represents that the occasion holds at time
specification ti. The term During(t1, t2) indicates that the
occasion holds during a subinterval of the time interval
[t1, t2] and Throughout(t1, t2) specifies that the occasion
holds throughout the complete time interval.

The second concept are events. Events represent tem-
poral entities that cause state changes. Most often, events
are caused by actions that are performed by the interpreted
plan. We assert the occurrence of an event ev at time ti with
Occurs(ev, ti). Events happen at discrete time instances.

Occasions and events can be specified over two domains:
the world and the belief state of the robot, indicated by an
index of W and B for the predicates Holds and Occurs re-
spectively. Thus, HoldsW (o, ti) states that o holds at ti in
the world and HoldsB(o, ti) states that the robot believes at
time ti that the occasion o holds at ti. Syntactically, occa-
sions are represented as terms or fluents. By giving the same
name o to a occasion in the world as well as to a belief, the
programmer asserts that both refer to the same state of the
world. Thus, an incorrect belief of the robot can be defined
as

∀o, ti.IncorrectBelief(o, ti) ⇔
HoldsB(o, ti) ∧ ¬HoldsW (o, ti)

The meaning of the belief and the world states is their
grounding in the log data of the task network and the sim-
ulator data respectively. For our application domain we use
the occasions shown in Table 1.

We consider the intentions of the robot to be the tasks
on the interpretation stack. By naming a control routine
Achieve(s) the programmer asserts that the purpose of the

Contact(obj1, obj2) Two objects are currently colliding
Supporting(obj1, obj2) objt is standing on objb
Attached(obj1, obj2) obj1 and obj2 are attached to each other.
Loc(obj, loc) The location of an object
Loc(Robot, loc) The location of the robot
ObjectVisible(obj) The object is visible to the robot
ObjectInHand(obj) The object is carried by the robot
Moving(obj) The object is moving

Table 1: Occasion statements.

routine is to achieve state s, i.e. the corresponding occa-
sion. Thus, if there is a control routine Achieve(s) on the
interpretation stack the planner can infer that the robot cur-
rently has the intention to achieve state s. The planner can
also infer that the tasks on top of Achieve(s) help to achieve
s and that Achieve(s) is a sub-goal of the tasks deeper in
the interpretation stack. Intentions are important since they
cause actions which lead to events in the world state and in
the robot’s belief state. Finally, we provide two predicates
CausesB→W (task, event, ti) and CausesW→B(oW , oB , ti)
to represent the relations between the world and beliefs. The
former asserts that a task causes an event whereas the latter
relates two occasion terms, one in the world state, one in the
belief state, to each other. In other words, it allows to infer
that a specific belief was caused by a specific world state.

HoldsW (occ, ti) Occasion assertion in the world state.
HoldsB(occ, ti) Occasion assertion in the belief state.
OccursW (event, ti) Assert the occurrence of an event in the

world state.
OccursB(event, ti) Assert the occurrence of an event in the

belief state.
CausesB→W (task, event, ti) Causing relation between a task and an

event.
CausesW→B(sW , sB , ti) Causing relation between a world state

and a belief state.
SimulatorValueAt(name, ti) Access simulator-internal data structures.
VariableValueAt(name, ti) Access interpreter variable (belief state).

Table 2: Basic Predicates and Function statements.

The predicates defined above are implemented by ac-
cessing the recorded data structures of the execution log.
To perform this low-level access, we define two functions:
SimulatorValueAt(name, ti) to get the value of the simula-
tor data structure identified by name at time instant ti and
VariableValueAt(name, ti) to get the value of the belief state
variable name respectively.

Table 2 summarizes the basic predicates and functions
used to make inferences in the logged execution scenario.

Force-dynamic States

We use force-dynamic states to define the basic physical
properties of states in the context of pick-and-place tasks.
As proposed by Siskind ([Siskind, 2003]) we represent sta-
ble physical scenes in terms of three basic relations:

• Contact(obj1, obj2): the two objects are touching each
other, i.e. there exists a contact point.

• Supporting(obj1, obj2): obj1 is supporting obj2, i.e.
obj2 is standing on obj1. More specifically, this state
is described by asserting that obj2 is above obj1, a con-
tact between both objects exists and obj2 is not moving.

• Attached(obj1, obj2): obj1 is attached to obj2, i.e. a
movement of obj2 causes the same movement of obj1.

253



Using these predicates we can define the actions of interest,
such as pick up or put down, analogously to Siskind who did
it in a modal logic. To do so, we define state terms, used in
the Holds predicate that mirror the semantics of Siskind’s re-
lations but are grounded in the recorded simulator data struc-
tures. As an example, consider the Contact relation. Con-
tacts are similar to collisions. Therefore, the corresponding
Holds term is defined as follows:
Holds(Contact(obj1, obj2), ti) ⇔

Collisions = SimulatorValueAt(Collisions, ti)
Member(〈obj1, obj2〉, Collisions)

The other two state terms are defined accordingly and
grounded in the data structures generated by simulation.

Deriving Symbolic Representations from

Logged Simulations

Our temporal projection module automatically generates the
symbolic representations introduced above on demand, that
is when queried for the respective information. To do so,
the programmer has to define for each symbolic state how
the symbolic state can be inferred from the simulation data
and how the respective belief can be reconstructed from the
logged interpretation stack. The programmer also has to de-
fine how the actions that matter for her planning applica-
tion can be inferred from the temporal evolution of force-
dynamic states. Specifying robot specific procedures is nec-
essary for grounding the predicates of the planner in the data
structures of the robot. Other planning systems do not use
such procedures because they do not ground their reason-
ing. Instead, they assume that the semantics can be axiom-
atized. As stated in Section “Temporal Projection for Robot
Planning”, these axioms often prevent realistic modeling of
autonomous robots.
Asserting States of the World. World states are computed
from the simulator data structures using the predicate Simu-
latorValueAt, which is implemented as a method that com-
putes for state variables the respective value of the variable
at the specified time. Thus, the programmer can state that the
robot is at position 〈x, y〉 at time instance ti if the simulator
data structures say so:
HoldsW (Loc(Robot, 〈x, y〉), ti) ⇔

〈x, y〉 = SimulatorValueAt(RobotPose, ti)
The HoldsW predicate is defined for all occasions that are
used to describe the state of the world. The most important
ones in our household domain are shown in Table 1.
Asserting Beliefs. Analogously, the programmer defines
the beliefs using the interpretation data structures instead
of the simulator data structures. The robot’s belief state is
stored in interpreter variables and is accessed with the func-
tion VariableValueAt. The robot believes to be at pose 〈x, y〉
if its variable RobotPose says so:
HoldsB(Loc(Robot, 〈x, y〉), ti) ⇔
〈x, y〉 = VariableValueAt(RobotPose, ti)

Please note that in contrast to accessing the simulator
state, HoldsB relies on the function VariableValueAt which
queries interpreter variables. Besides Colliding all occasions
of Table 1 are also defined as beliefs.

Asserting Intentions. In order to infer the intentions of a
simulated plan we have to consider the interpretation stack
more carefully. Achieving a state s has been an intention
if the routine Achieve(s) that was on the interpretation stack
during the simulation. The robot pursued the goal Achieve(s)
in the interval between the start and the end of the corre-
sponding task. The purpose of achieving s can be computed
by contemplating the supertasks of Achieve(s): to represent
tasks and the relations between them, we use the predicates
and functions listed in Table 3.

Task(task) task is a task on the interpretation stack.
TaskGoal(task, goal) Relates a specific goal to the task
TaskStart(task) Returns the start time of the task
TaskEnd(task) Returns the end time of the task
Supertask(tasks, taskc) tasks is a super task taskc, i.e. tasks occurs

in the call stack of taskc

Table 3: Intention related statements.

Asserting Events. Actions that are performed
by the robot cause events. For instance, a ma-
nipulation action that intends to achieve the
TaskGoal(task, Achieve(ObjectInHand(obj))) will cause
a PickUp event when the object is not already picked
up. More specifically, the events that are defined in our
systems include Collision(obj1, obj2) and its inverse event
CollisionEnd(obj1, obj2) to state that two objects start
or stop touching each other, LocChange(obj) to state
that the object changed its location and PickUp(obj) and
PutDown(obj) to state the respective manipulation events.
Collision events can only be defined for OccursW based
on simulator data. While the PickUp action can be easily
defined in the belief state by being generated at the end of
the execution of the ObjectInHand goal, the definition in the
simulator state is defined in terms of force-dynamic states
— the Collision events and the Contact and Supporting
occasions.

OccursW (PickUp(Obj1), t) ⇔ ∃t1, t2.
HoldsW (Supporting(Table1, Obj1), Throughout(t1, t))
∧ OccursW (Collision(Obj1, Gripper), t2)
∧ Holds(Attached(Obj1, Gripper), During(t2, t))
∧ OccursW (CollisionEnd(Obj1, Table1), t)

When picking up Obj1, it is first standing on the table, i.e.
supported by the table. Then the gripper approaches the
object and grasps it, resulting in a collision event. When
grasped, the object is attached to the gripper and the pick-up
event is generated when the contact between the table and
the object is removed (indicated by a removed collision),
i.e. the object is actually picked up. Table 4 shows the most
important events defined in our system.

LocChange(obj) An object changed its location
LocChange(Robot) The robot changed its location
Collision(obj1, obj2) obj1 and obj2 started colliding
CollisionEnd(obj1, obj2) obj1 and obj2 stopped colliding
PickUp(obj) obj has been picked up
PutDown(obj) obj has been put down
ObjectPerceived(obj) The object has been perceived

Table 4: Event statements.

254



Evaluation

In order to evaluate the feasibility and potential of our
simulation-based temporal projection framework we discuss
four aspects. First, we show that important prediction tasks
that are tedious, difficult, or even impossible to answer by
abstract temporal projection mechanisms can be handled el-
egantly and accurately in our approach. Second, we show
the feasibility of our approach by referring to the prediction-
based debugging of a natural language Internet instruction
for table setting. Third, we state the computational resources
required by our approach: logging at simulation speed and
answer times for queries. Finally, we give evidence that our
approach is not suitable for the computation of probability
distribution but sufficient for plan debugging.
Diagnosing Unexpected Events. In action logic representa-
tions, unexpected events are hard to model because the pre-
conditions stated for actions in transition systems typically
exclude the situations for which the effects of abstract ac-
tions are difficult to predict. So, typically the model for pick-
ing up an object is defined for situations where the hand is
empty but not when objects are in the hand. Also, the plans
in our approach specify how the robot is to react to sensory
input rather than specifying strict plans handling only well-
defined contingencies. In our approach events are detected
and recognized in simulation data and therefore many more
unexpected events can be predicted. Thus, for the actions in
our system we specify expected events such as a collision of
the robot’s gripper with the object to be picked up. All other
collisions are unexpected ones. The set of expected events at
time t can be queried using the function ExpectedEvents(t):

UnexpectedEvent(event, t) ⇔
Occurs(event, t) ∧
¬Member(event, ExpectedEvents(t))

By using unexpected events, our robot is for example able
to debug incompletely specified actions. Thus when debug-
ging a natural language instruction for setting the table, the
instruction tells the robot to put a plate in front of the chair
but does not specify on the table. The robot infers by default
that the supporting entity is the same one as the one for the
reference object — the floor. Now, when the robot projects
the action by putting the plate in front of the chair it will de-
tect an unexpected collision which suggests that floor is not
the right supporting entity but should be replaced with the
table.
Interfering Effects of Simultaneous Actions Consider, for
example, mobile manipulation where the robot moves its
arm while navigating. In order to predict whether the robot
will collide with objects the projection mechanism has to
consider the superposition of the effects of navigating and
reaching. In general, the interference of effects of concurrent
actions can be extremely complex and heterogeneous. Such
effect interferences are extremely hard to model in transi-
tion systems. The simulation based projection they come
for free because the simulator works at a high temporal res-
olution and applies in each cycle the dynamic rules for all
active physical processes.

Again, in order to predict whether the concurrent reaching
and navigation will cause a flawed behavior we simply have

to ask the simulation whether or not an unexpected collision
of the arm and another object occurred.
Diagnosing Incorrect Beliefs. Many flaws of plan execu-
tion are caused by incorrect or inaccurate belief states. As
an example, we state an incorrect belief of the location of
the robot as follows:
IncorrectBelief(Loc(Robot, posB), ti) ⇔

HoldsW (Loc(Robot, posW ), ti)
∧ HoldsB(Loc(Robot, posB), ti)
∧ ¬(posB =pos posW )

Unachieved Intentions. Another example of a flawed be-
lief state is that the robot believes that it has succeeded in
navigating to a location because its navigation routine termi-
nated with signaling successful task achievement but in the
simulator the robot didn’t arrive at the right location. This
is stated as follows and can be evaluated on our projected
execution scenarios.
FailedNavigation(task) ⇔

TaskGoal(task, Achieve(Loc(Robot, posB)))
∧ TaskStatus(task, Done, t)
∧ HoldsB(Loc(Robot, posB), t)
∧ HoldsW (Loc(Robot, posW ), t)
∧ ¬(posW =pos posW )

Plan Debugging Besides the comparatively simple exam-
ples shown above, we have evaluated our simulation based
projection mechanism by using it in a transformational plan-
ner to debug a plan imported from natural language instruc-
tions. More specifically, the plan was generated from the
table-setting task as described at www.wikihow.com2. It had
major flaws due to underparameterized goal locations, miss-
ing actions, etc.
Computational Resources Projection of a plan runs in sim-
ulation time and the complete reasoning that is done to infer
the behavior flaws of the plan in one step is done in less than
10 seconds on a common PC. Individual queries of behavior
flaws run in fractions of a second.
Probabilistic Plan Debugging Because in physics- and
sensor-based simulation for high fidelity temporal projec-
tion sampling of projected execution scenarios is necessary,
the approach is not suitable for computing probability dis-
tributions over expected execution scenarios. It is however
fully sufficient for probabilistic plan debugging, that is if
we consider planning systems that debug inherent behavior
flaws that occur with a probability p and a detection rate of
e. Beetz and McDermott (1997) state how many samples
have to be drawn depending on the specified p and e.

Related Work

Many planning systems, in particular partial-order planning
systems have their predictive mechanisms deeply integrated
into the planning algorithms. Planning algorithms add con-
straints to plans to ensure that future states will satisfy the
preconditions of the actions that are to be executed in those
states. The action models used by such planners are typi-
cally coarse grained and formulated in the Planning Domain
Description Language PDDL [Fox and Long, 2003].

2http://www.wikihow.com/Set-a-Table

255



Our temporal projection mechanism is designed for the
use in transformational and case-based planners (such as
XFRM [McDermott, 1992]), which completely separate the
generation of plan hypotheses from the testing through tem-
poral projection. In the context of these systems, powerful
temporal projection mechanisms have been developed.

Hanks (1990) developed an algorithm to compute proba-
bilistic bounds on the states resulting from action sequences.
McDermott (1997) developed a very powerful totally or-
dered projection algorithm capable of representing and pro-
jecting various kinds of uncertainty, concurrent threads of
action, and exogenous events. This algorithm is used in
the planning system system XFRM [McDermott, 1992] that
adds capabilities to project the computational state of the
robot while executing a plan. Beetz and Grosskreutz (2000)
further elaborated on the language for specifying action
models and grounded their representation into probabilistic
hybrid automata as a formal underpinning. The representa-
tion language is rich enough to accurately predict reactive
navigation behavior of an autonomous robot office courier.

Asimo [Cambon, Gravot, and Alami, 2004] is a robot ac-
tion planner that is unique in that the reachability of places
at the symbolic representation layer is grounded into the mo-
tion planning mechanisms of the robot. Thus, symbolic ac-
tion planning calls the motion planning algorithm to check
whether or not the reachability of a particular place is given.

Most high-end manipulation robots, such as Justin and
HRP-2 already come with very accurate simulation engines.
These simulation models are designed to be as accurate and
detailed as possible in order to transit from simulations to
the real robots very smoothly and with minimum effort. We
use the Gazebo open-source simulator as our physics- and
sensor-based simulation engine.

Conclusions

In this paper we have proposed physics- and sensor-based
simulation for high fidelity temporal projection as an alter-
native temporal projection method for AI planning, which is
tailored for applications such as autonomous mobile robot
manipulation. Many behavior flaws and failure conditions
for robot behavior that are difficult or impossible to repre-
sent in transition models widely used in AI planning, come
at very low cost in the physics- and sensor-based simulation
for high fidelity temporal projection of realistic robot behav-
ior. We believe that our approach to temporal projection will
make AI planning applicable to modern mobile manipula-
tion platforms that perform pick-and-place tasks in realistic
environments. We expect that this expressiveness of sim-
ulated rather than symbolically projected behavior enables
us to realize and deploy AI action planning systems on au-
tonomous manipulation platforms that can forestall costly
misbehaviors and thereby substantially improve the perfor-
mance of the robots.

In our ongoing research we apply the techniques to pick-
and-place tasks in human living environments and the prepa-
ration of meals in simulation. At the same time we run the
plan language and individual manipulation plans on the real
robot where they prove themselves to be reliable and flexible
enough for real robot control.

Acknowledgements The research reported in this paper is sup-
ported by the cluster of excellence COTESYS (Cognition for Tech-
nical Systems, www.cotesys.org).

References
Beetz, M., and Grosskreutz, H. 2000. Probabilistic hy-
brid action models for predicting concurrent percept-driven
robot behavior. In Proceedings of the Sixth International
Conference on AI Planning Systems. AAAI Press.
Beetz, M., and McDermott, D. 1997. Fast probabilistic
plan debugging. In Recent Advances in AI Planning. Pro-
ceedings of the 1997 European Conference on Planning,
77–90. Springer Publishers.
Beetz, M.; Burgard, W.; Fox, D.; and Cremers, A. 1998.
Integrating active localization into high-level control sys-
tems. Robotics and Autonomous Systems 23:205–220.
Beetz, M. 2000. Concurrent Reactive Plans: Anticipating
and Forestalling Execution Failures, volume LNAI 1772 of
Lecture Notes in Artificial Intelligence. Springer Publish-
ers.
Cambon, S.; Gravot, F.; and Alami, R. 2004. A robot task
planner that merges symbolic and geometric reasoning. In
Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI), 895–899.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDLthe planning domain definition language. AIPS-98
planning committee.
Hanks, S. 1990. Practical temporal projection. In Proc. of
AAAI-90, 158–163.
Johnston, B., and Williams, M. 2008. Comirit: Common-
sense Reasoning by Integrating Simulation and Logic. In
Artificial General Intelligence 2008: Proceedings of the
First AGI Conference, 200. IOS Press.
McDermott, D. 1992. Transformational planning of re-
active behavior. Research Report YALEU/DCS/RR-941,
Yale University.
McDermott, D. 1997. An algorithm for probabilistic,
totally-ordered temporal projection. In Stock, O., ed., Spa-
tial and Temporal Reasoning. Dordrecht: Kluwer Aca-
demic Publishers.
Morgenstern, L. 2001. Mid-sized axiomatizations of com-
monsense problems: A case study in egg cracking. Studia
Logica 67(3):333–384.
Müller, A.; Kirsch, A.; and Beetz, M. 2007. Transforma-
tional planning for everyday activity. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS’07), 248–255.
Siskind, J. 2003. Reconstructing force-dynamic models
from video sequences. Artificial Intelligence 151(1):91–
154.
Thielscher, M. 2009. A unifying action calculus. Artificial
Intelligence Journal.

256


	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences




