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Abstract

Model-based planning often presumes a static system model,
while in a practice physical system may evolve or drift over
time. This paper proposes the idea of pervasive model adap-
tation in a production system, where the model is dynami-
cally updated using observation of production output. The
core idea is the interplay between model adaptation and pro-
duction planning. We seek plans which simultaneously serve
the goals of achieving high productivity for production, and
information gathering for model adaptation. We use a modu-
lar printing example to illustrate issues such as formulation of
the information criterion and search strategy for informative
plans. The idea of pervasive adaptation can be further ex-
tended to improve long term productivity in production sys-
tems.

Introduction

Automated planning has a proven record of achieving high
productivity in production systems. In order to facilitate
high productivity, a model-based planner requires suitable
knowledge of the underlying system to generate plans that
are feasible and optimal. Typically this knowledge can be
found in the system model. However in practice, the system
may evolve over time. Thus model adaptation is important
to model-based tasks such as planning, scheduling, diagno-
sis, and inference. Ignoring dynamism in an evolving sys-
tem is risky, as a production plan that started out feasible can
become infeasible. Furthermore, keeping track of model pa-
rameters is important to system health management. Signif-
icant drifts can be precursors of component failures. Model
adaptation techniques have been used in a number of ap-
plications to monitor aging components and detect incipient
failures (e.g., (Peel 2008)).

Traditionally distinct communities of researchers have ad-
dressed model adaptation and planning seperately. For in-
stance, planning work normally assumes static knowledge
(deterministic or stochastic) regarding actions and the world.
On the other hand, model adaptation is often done with pas-
sively obtained data or offline testing. There are synergistic
effects between model adaptation and production planning
that lead to higher productivity than a decoupled solution:

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model adaptation provides updated knowledge for produc-
tion plan generation, and at the same time, production plans
generate data for further adaptation.

In this paper, we propose a novel paradigm, pervasive
model adaptation, in which production is actively manip-
ulated to facilitate information gathering in order to better
adapt models to dynamic systems. Active adaptation and
production can therefore occur simultaneously, leading to
higher long run productivity. As we shall see in the later
sections, the goal of information collection may impose new
optimality criteria on the planner, calling for new search
techniques. Another significant challenge is model adapta-
tion, an important research topic in its own right. However,
we leave it out of this paper by assuming the optimal adap-
tation scheme is given and/or achievable. We are not ad-
dressing the design of a good model adaptation scheme, but
rather we focus on optimally seeking data for model adap-
tation. The interplay between model adaptation and produc-
tion planning and the resulting implications are the core fo-
cus in this paper.

Related Work

The idea of actively seeking informative evidence is not en-
tirely new. The earlier work in general diagnosis engines
(de Kleer and Williams 1987) calculates the optimal test se-
quence for static circuit diagnosis. Evidence seeking has
also been explored in other statistical inference problems
such as in Bayesian networks (Jordan 1998). The novelty
of pervasive model adaptation is in combining plan gener-
ation with evidence seeking to learn continuous model pa-
rameters. A closely related concept is our earlier work on
pervasive diagnosis (Kuhn et al. 2008a) (Kuhn et al. 2008b)
(Liu et al. 2008), originally proposed for diagnosis of pro-
duction systems with streamlined components or production
actions. The basic idea is to generate production plans which
achieve production goals while optimally collecting diagno-
sis information. This is advantageous: (1) from the produc-
tivity perspective, it does not have to halt production for off-
line testing (2) from the information gain perspective, the
on-line diagnosis gathers information much faster than di-
agnosing from passive data. This paper extends the idea to
model adaptation. Compared to the earlier pervasive diagno-
sis work, the key differentiating novelty of this paper is that
it adapts to the dynamism of the underlying system, while
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pervasive diagnosis assumes static faults. Furthermore, per-
vasive model adaptation addresses the learning of continu-
ous model parameters, while pervasive diagnosis is centered
on diagnosis, which is discrete and categorical in nature.

From the planning perspective, classical planning pre-
sumes complete knowledge of actions and the world. There
is work on planning with incomplete information, with both
(e.g., (Bonet and Geffner 2000)) and without sensory input
(e.g., (Smith and Weld 1998)). These planning techniques
can be used for pervasive model adaptation. In general,
probabilistic planners can be used to generate production
plans, maximizing their chance of success against a per-
formance criterion. One differentiating factor of pervasive
model adaptation is that the planner does not just accommo-
date uncertainties as a probabilistic planner does, but instead
actively seeks evidence to reduce uncertainty in the adapta-
tion stage.

The combination of passive information gathering and
model-based control conditioned on the information has ap-
peared in many domains including automatic compensation
for faulty flight controls (Rauch 1995), choosing safe plans
for planetary rovers (Dearden and Clancy 2002), maintain-
ing wireless sensor networks (Provan and Chen 1999) and
automotive engine control (Kim, Rizzoni, and Utkin 1998).

We are not aware of any other systems which explicitly
seek to increase the information for adaptation returned by
plans primarily intended to achieve operational goals.

Organization of the Paper

The rest of the paper is organized as follows. In the next
section we define the paradigm of pervasive model adap-
tation, followed by a section proposing a general architec-
ture for the planner. In the next section we introduce a con-
crete example of pervasive model adaptation, using a mod-
ular printer whose modules independently introduce delays
which drift over time, based on module usage. Model adap-
tation keeps track of the action delays. This is essential to
determining the achievability of production goals. Though
this example is specific and somewhat simplistic, it explains
the major issues in pervasive model adaptation, and demon-
strates how they can be addressed. The rest of the paper uses
the printing example to explain the information criterion and
heuristics guiding the search. At the end of the paper we
demonstrate the proof of concept via simulations, and sum
up with a conclusion.

Pervasive Model Adaptation

Pervasive Model Adaptation is a new paradigm in which
production is actively manipulated to maximize the informa-
tion available for model adaptation. Production and active
information gathering can therefore occur simultaneously,
leading to higher long run productivity than passive model
adaptation or alternating dedicated testing with production.

Integrating information gathering with the production
strategy results in informative production. The primary ob-
jective in informative production is to continue production.
Under the assumption that there are various ways to achieve
the production goals, informative production chooses a way

that simultaneously maximizes information gathering with
production. Another assumption is that the space of produc-
tion plans overlap with the space of informative plans.

The literature describes different types of production such
as simple production, time efficient production, cost effi-
cient production and robust production. All of these share
the primary objective of achieving production, but differ in
the way they approach the goal. In simple production any
strategy that achieves the production goal qualifies. In all
other approaches the set of production strategies is ranked
by a secondary objective function, and the best production
strategy dominates. For example in time efficient produc-
tion, strategies are ranked by cost, and the most cost efficient
production strategy dominates. Similar to other production
strategies, informative production ranks the set of plans that
achieve production goals by their potential information gain,
and selects the most promising strategy.

Planning in Pervasive Model Adaptation

Before diving into the planning work in more detail we illus-
trate the overall framework in Fig. 1. The basic task carried
out the planner is to create production plans that simultane-
ously achieve production goals and favor information gath-
ering for model adaptation. The extended task carried out
by the adaptation engine is to estimate state parameters and
provide information seeking guidance to the planner. Both
the planner and the adaptation scheme operate with a com-
mon dynamic model of the machine state.
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Figure 1: Overall system architecture for pervasive model
adaptation.

Conceptually, planning can be thought of as the generic
problem of finding an optimal plan with respect to a given
cost function or optimality criterion. In traditional planning,
the cost function is often assumed to have certain properties,
such as being additive over plan components, decompos-
able into locally optimal subsets, or invariant with respect
to component ordering in the plan. These structures enable
efficient computation using A*-search or dynamic program-
ming. In pervasive model adaptation, the integration of pro-
duction plans and model adaptation results in informative
plans; the cost function is the information content. A pro-
duction plan is optimal if its output maximally reduces un-
certainty in the system model. This information-driven cost
function brings challenges to the planning problem.

In this section, we propose the general architecture for
planning under pervasive model adaptation, depicted in
Fig. 2. Its input is a current state (e.g., an estimate and
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uncertainty), and it outputs a production plan. The planner
consists of several components:

(1) Information criterion: given any production plan P ,
the information criterion evaluates the information content
that P provides about the system. Its value depends on P ,
as well as the current belief about the underlying system —
what we can learn from a new input depends on what we
already know. This criterion is specific to pervasive model
adaptation. It differs from traditional production planning,
which uses well-understood criteria such as shorted produc-
tion time or maximal throughput.

(2) System constraint: Production systems have internal
constraints such as contingency and connectivity. Such con-
straints can be expressed in the planning problem. A feasible
production plan is a plan from a known initial state (e.g., raw
material for production) to a known goal state (e.g., finished
product).

(3) Search: The core problem is to search for an opti-
mal feasible plan with respect to the information criterion.
As we shall see later, the information content of a plan P
depends on all components in P , which makes the search
a difficult problem with exponential complexity. The chal-
lenge is thus to find a computationally efficient search strat-
egy which gives an informative plan. For this, we propose
a best-first search strategy (A∗), which maintains a moving
frontier of promising partial plans (those anticipated to pro-
duce informative plans), and expands the partial plans with
highest anticipated information content until the goal state is
reached. The key question is what heuristics to use to guide
the search. We show how the information criterion can gen-
erate such heuristics.

The dynamic nature of production systems adds complex-
ity to the planner. For instance, when a component ages, its
behavior may deviate from the original model, and hence
there is the need to track component behavior over time via
adaptation. This means the planner (shown in Fig. 2) is dy-
namic: given a belief at time t, the planner plans for the next

optimal (or close-to-optimal) plan P (t), which will produce
an output that modifies the belief. The modified belief is fed
back to the planner at time t + 1. This is depicted as the
feedback from production plan to current belief (shown in
dotted lines) in the figure.

Example: Tracking Component Delay

Parameters in Printing

We use a prototype modular printer as a concrete example to
illustrate issues in pervasive model adaptation. Fig. 3 shows
the printer. Sheets enter on the left from one of the feeders
and exit on the right from a paper finisher (output), going
through multiple modules in between, such as paper plan
modules (little squares in the figure), inverters, or print en-
gines. The modularized structure enables continuous print-
ing even if some of the print engines fail or paper plan mod-
ules malfunction causing paper jams. The task of the planner
is to find the sequence of actions, called a plan, which moves
sheets through the system to generate the requested output.

In this prototype system, each action i takes time θi to
handle the paper sheet, known as the action delay. The mod-
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Figure 2: Planner for pervasive model adaptation

ules degrade, for example, mechanical components (spring,
roller, etc) wear with usage. As a result, action delays
{θi(t)} normally increase. A plan requiring a paper sheet
to go from feeder to finisher within a pre-specified amount
of time is feasible when the machine is new, but may be-
come infeasible later. Hence for production systems, it is
important to keep track of the action delays.

To track the drift of model parameters we need two things:
(1) a dynamics model specifying how the underlying states
(in this case action delays) evolve over time, and (2) an ob-
servation likelihood model relating observations to the un-
derlying state. The dynamics model is as follows:

θi(t) =

{
θi(t − 1) + δi + wi(t) for i ∈ P
θi(t − 1) + wi(t) for i /∈ P

(1)

The action delay θi(t) is influenced by two factors: (1) a
wear-related increment δi if module i is used in plan P , and
zero otherwise, and (2) a random drift wi(t). The observa-
tion is the total process time summed over all modules in the
production and a random observation noise n(t) as shown in
the following observation model:

y(t) =
∑
i∈P

θi(t) + n(t). (2)

Although this example is specific to modular printing, the
idea is general and applicable to a variety of problems. For
instance, the same abstract model can be used in printed cir-
cuit manufacturing, in which actions contribute to the etch-
ing process by depositing material (acid or similar) to the
metallic substrate. The observed etched depth in the metal-
lic foil is the total effect of all involved actions. More gen-
erally, the techniques presented in this paper can be directly
extended to any system with linear dynamics and observa-
tion models. At a conceptual level, (Eq. 1) describes differ-
ent drift patterns for modules involved and not involved, and

227



Figure 3: Model of PARC’s prototype modular printer. It
consists of four print engines. Sheets enters from the feeder
on the left and exit from finishers (output) on the right. The
little square blocks represent paper handling modules, where
a paper sheet can follow one of the dark green edges. There
are three main paper highways (horizontal) within the fix-
ture.

(Eq. 2) describes an observation model that relates the ob-
servation to model parameters. As long as they are both lin-
ear, the techniques described here are applicable, although
the detailed mathematical form may change. In practice,
many systems can be well-represented by a linear model.
Linearization techniques have been widely used to approxi-
mate real-world systems.

Information Criterion

The goal of model adaptation is to estimate the underly-
ing model parameters (action delay {θi(t)} in the example)
from the production plan output y(t). The key question is:
which production plan P works best to track the drift in ac-
tion delay parameters? This can be addressed by examining
the uncertainty in delay parameters, i.e., a production plan
P is “informative” if its observation y(t) reduces the uncer-
tainty.

Information Content

For convenience in expression, we use vector notation
Θ(t) = (θ1(t), θ2(t), . . . , θM (t)). The models (Eq. 1, Eq. 2)
can be re-written as:

Θ(t) = Θ(t − 1) + Δ(t − 1) + w(t) (3)

y(t) = HΘ(t) + n(t) (4)

Here H is a binary indicator vector indicating whether an
action i is included in the plan P , i.e., Hi = 1 for all i ∈ P ,
and 0 otherwise. It is fully specified by the plan P . Δ is
the vector of increment: Δ = (δ1H1, δ2H2, · · · , δMHM )T .
For simplicity, we further assume that process noise w(t)
and observation noise n(t) are Gaussian. Under these as-
sumptions, the tracking problem is relatively simple and can
be tracked optimally using a Kalman filter (Kalman 1960)
(Sorenson 1985).

Kalman filter updates the uncertainty in Θ(t), i.e., the co-
variance matrix Rt

θ , recursively over time. The recursion is

as follows. Suppose at time t − 1 we are given Rt−1
θ . The

uncertainty grows due to the drift w; it is easy to show that
the predicted covariance at time t is dilated by drift covari-

ance, i.e., Rt
θ = Rt−1

θ +Σw. Then a new observation y(t) is
made, bringing information to reduce the uncertainty. This
updates the Rt

θ. The recursion then repeats. The Kalman
filter oscillates between such uncertainty expansion and re-
duction. We define information content as the trace of the
covariance matrix: E = trace(Rt

θ). It is straightforward to
show (following the standard Kalman filter algebra) that for
any given production plan H , we have:

E =
||HRt

θ||
2

HRt
θH

T + σ2
n

. (5)

Note that the information depends on the predicted covari-

ance Rt
θ . Here σn is the standard deviation of measurement

noise n.
Another way to derive the information criterion is from

information theory (Cover and Thomas 1991). The informa-
tion content can be measured using the conditional entropy
of Θ given observation y, which in information theory is the
number of bits to fully describe Θ given the observation y.
The conditional entropy is det(Rt

Θ), which in principle is
similar to (Eq. 5).

Given the information content E , the goal of planning is
to find a production plan P , or equivalently the bit vector
H , to maximize the information content. The evaluation of
information content is easy, but the search is difficult. In
practice, there are constraints on action preconditions and
module connectivity that H has to comply with. However,
to gain insight, we first address a much simpler problem: if
there is no constraint, what would be the best H to maximize
information content?

A Simple Example

Consider the simplified case where we have only two actions
A and B. Without loss of generality we assume that Rθ =(

1 ρ
ρ 1

)
. Here ρ is the correlation coefficient, taking on

values −1 ≤ ρ ≤ 1, and is zero if and only if A and B are
independent. For this system, the planner has three choices,
listed in Table 1.

Plan H Info.Content

A [10] EA = 1+ρ2

1+σ2
n

B [01] EB = EA

AB [11] EAB = 2(1+ρ)2

2+σ2
n

Table 1: Plan choices and information content

Notice the following:

• When ρ = 0, it is clear that plan AB is the best choice in
terms of information content.

• When ρ is close to -1, plan A (or equivalently plan B) is
more preferable than plan AB.
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• The switching point of ρ is decided by σ2
n. It is easy to

specify the exact switching point. Furthermore, we can
show that as σn → 0, the switching point will be ρ = 0.

Imagine a situation when initially A and B are independent.
The analysis above suggests that AB is optimal. Taking this
plan, we observe the sum of delay over A and B, which
will make the two modules negatively correlated. The next
step will favor plan A (or equivalently B) over AB due to
the negative correlation. Observing A’s (or B’s) individual
delay will decrease the correlation between A and B, hence
making ρ smaller. At some point in time, we will favor the
plan AB again. The plan search will alternate between the
long plan AB and individual components (A or B).

InfoCollect: a Greedy Strategy for Constructing
Optimal Plans

Note the structure of the information content (Eq. 5). H
is a bit vector, of values 0 or 1 depending on whether an
action is involved in the production plan. The binary-valued
H simplifies the computation significantly. The term in the
numerator HRθ is the selected row-sum of the covariance
matrix Rθ, summing over rows with index i ∈ P . The term
in the denominator HRθH

T is the grid-sum, summing over
all grid points {(i, j), i, j ∈ P}.

Given the information criterion, the planner decides how
to search for the optimal plan. For this task, we first ig-
nore any network constraint on H , and propose InfoCollect,
a greedy strategy which constructs the plan P to maximize
the information content (Eq. 5). The algorithm starts with
an empty plan P = ∅. It incrementally decides which action
to add to P by comparing the benefit of including any single
module k into the plan and greedily selecting the one with
maximum E value. The procedure repeats examining all un-
decided actions, until further including any single action will
decrease the overall E . This is illustrated in Alg. 1.

InfoCollect is greedy in nature. The question is how well
it is compared to the true optimal plan (the “oracle”). We im-
plemented the greedy strategy and applied it to a set of ran-
domly generated covariance matrices. On average, among
the 2M (M = 10 in our simulation) possible plans, about
7% plans are better (giving larger E) than the plan picked
by InfoCollect. The oracle plan gives a E that is roughly
55% larger than that produced by InfoCollect. Overall, we
consider InfoCollect as a efficient and practical way of es-
timating information content. The computation complexity
of InfoCollect is O(M2), where M is the total number of
actions. This is much more efficient than comparing all pos-
sible plans, which has complexity O(2M ). The saving is
apparent. Furthermore, the computation of E is incremental.
This is due to the computational structure: the numerator is
the row-sum, therefore adding a new module corresponds to
adding a new row to the existing row-sum. Likewise, the de-
nominator is a grid-sum of R, which can also be computed
in an similar incremental fashion.

The InfoCollect procedure assumes a fully reachable
graph and does not respect network constraints. In prac-
tice, the set of modules which can be reach from any specific
module may only by a subset of all modules. Such routing

Input: Covariance Matrix Rθ, noise variance σ2
n

Output: (1) Optimal bit vector H and (2) the
corresponding information content

E = ||HRθ||
2

HRθHT +σ2
n

begin
Included node set: P ← ∅
Undecided node set: U ← Asys

Initial score: e ← 0
while U �= ∅ do

for all i ∈ U do
Construct Ptmp by including i into P ;
Compute information content ei using Ptmp

;
end
if max(ei) > e then

Find the action i∗ producing max(ei) ;
e ← max(ei) ;
Modify set: P = P ∪ i∗, and U ← U\i∗ ;

else
U ← ∅

end

end
Generate bit vector H from plan P ;
Output bit vector H and information score E ← e.

end

Algorithm 1: InfoCollect algorithm

constraints limit the choices of production plans. The opti-
mal (in fact suboptimal) plan generated by InfoCollect may
not be feasible.

Search for Informative Plans

The objective of pervasive adaptation is to use the adaptation
engine’s beliefs to influence production plans to gain addi-
tional information about the delays of individual actions.

In a planning system where actions have conditions, ac-
tions are only applicable iff the conditions satisfied. There-
fore the underlying graph is not fully connected as we as-
sumed in InfoCollect. We need to find a suitable algo-
rithm searching for a plan which maximizes the information
criterion (Eq. 5) given the constraints of the action condi-
tions. For this task, we designed a best-first-search algo-
rithm, which keeps a frontier of best nodes to expand, until
a goal state is reached. The algorithm expands and reorders
nodes based on the information criterion (Eq. 5).

Best-first search requires a search node evaluation func-
tion that estimates the quality of a node relative to other
search nodes in the frontier. If the evaluation function is
admissible, best-first search enjoys optimality. In our case
of maximizing information content, we need to estimate the
information gain collected by a plan. For this task, we pre-
compute three sets for each action and we modify the Info-
Collect procedure.
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Figure 4: System used in the example.

The three sets for an action are:{
Succa set of successor actions
Prea set of predecessor actions
NCa = Asys\(Succa ∪ Prea) set of actions not connected

(6)
The InfoCollect procedure will give a close-to-optimal

estimate of how much information can be collected given a
partial plan P and the last action in that plan al. We modify
simply the input bit vector H :{

Hi = 0 for i ∈ Asys\(Succa al ∪ P ) unreachable
Hi = 1 for i ∈ P already visited
Hi = −1 for i ∈ Succa al reachable ahead

(7)
InfoCollect can be used to select which undecided actions
(those with Hi = −1) to include in order to maximize the in-
formation content (Eq. 5). Within the InfoCollect we mod-
ify the algorithm such that if an undecided action a is se-
lected the actions in its corresponding NCa are exonerated
(set to Hi = 0).

Consider the simple example graph in Fig. 4. A plan P
must start at state A and reach goal state G. Initially it has
two choices: B and C:

• If going to B: the visited action set is P = {aA,B}. The
reachable set is Succa = {aB,D, aB,E, aD,G, aE,G}. The
non-reachable set is {aA,C , aC,E}. Using InfoCollect, we
can estimate the information content, denote as EAB

• If going to C: the visited action set is P2 = {aA,C}.
The reachable set is Succa = {aC,E, aE,G}. The non-
reachable set is {aA,B, aB,D, aB,E , aD,G}. Using Info-
Collect, we can estimate the information content, denote
as EAC .

Suppose EAB > EAC , then going to B is a better choice.
The best-first search expands the plan AB first, and main-
tains the frontier {AB, AC} as a sorted list. At this point,
we need to compare D and E using the same InfoCol-
lect mechanism to compute information content EABD and
EABE . Now the frontier contains plan ABD, ABE, AC,
sorted based on their respective information content value.
The procedure repeats until a plan the goal state G is
reached.

Note: although we use best-first search, we do not guar-
antee optimality. The reason is that the estimate generated
by InfoCollect is not always admissible. It would have to al-
ways overestimate the information content to be admissible.
Although the best-first search returns complete plans, Info-
Collect does not obey the complete plan constraint, hence

the evaluation stops including actions at a local informa-
tion gain maximum, producing higher information content
estimate than feasible. However, the InfoCollect algorithm
itself is greedy in nature, hence it could under-estimate.
This breaks the admissible requirement to guarantee opti-
mality. Nevertheless, it provides useful heuristics to guide
the search.

Experiments

To evaluate the practical benefits of pervasive model adap-
tation, we implemented the evaluation function InfoCol-
lect. We combined it with an existing model-based plan-
ner and adaptation engine and tested the combined system
on a model of a modular digital printing press domain (see
(Ruml, Do, and Fromherz 2005) and (Do and Ruml 2006)).
Multiple planways allow the system to parallelize produc-
tion and use specialized print engines for specific sheets
(spot color). A schematic diagram showing the paper plans
in the machine appears in Fig. 3.

The planner receives a job from the queue and creates a
plan that will complete the job. It then sends the plan to a
simulation of the printing press. The simulation models the
physical dynamics of the paper moving through the system.
Plans that execute on this simulation will execute unmodi-
fied on our physical prototype machines in the laboratory.
The simulation determines the observation of the plan given
the set of drifting actions. If the plan is completed without
any delay and the sheet deposited in the requested finisher
tray, we say the plan succeeded in time, otherwise the plan
execution failed or was delayed in time. Pervasive diagnosis
focuses on the case of failure ((Kuhn et al. 2008b)), which
we ignore in this experiment. We focus here on plan execu-
tion delayed in time.

The original plan and the observed delay (delay might be
zero) of the plan execution are sent to the adaptation engine.
The engine updates the uncertainty belief model. Given the
new belief the planner greedily generates new plans based on
the information seeking approach used and releases those for
execution. Since there is a delay between submitting a plan
and receiving the observation, we plan production jobs from
the queue without optimizing for information gain until the
observation is returned. This keeps productivity high.

We evaluated the practical benefits of pervasive model
adaptation in two experiments: In experiment 1 we compare
the information gain of four different information seeking
approaches. In experiment 2 we analyze the long-term pro-
ductivity of four different production strategies.

Experiment 1 — Information Gain

We compare the performance of four approaches using the
same model adaptation scheme, but different in their way of
seeking information:

• Regular model adaptation (passive), which uses regular
production plans (not optimized for model adaptation) to
seek information, hence it is passive in its information col-
lection strategy

• Uniform model adaptation, which generates production
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plans with the objective to use all components of the sys-
tem uniformly in usage count to seek information

• Pervasive model adaptation, which generates informative
production plans using the approach described in the pa-
per to seek information, hence it actively probes the parts
of the system with highest uncertainty for information
collection while producing at the same time.

• Dedicated model adaptation, which generates informative
test plans using the approach described in the paper to
seek information, but not producing any products. Dedi-
cated model adaptation has fewer constraints (no produc-
tion constraints) to obey than pervasive model adaptation
which results in more informative plans due to the bigger
plan space.

The experiment was repeated 200 times for each model
adaptation approach. Within each experiment we uniformly
choose six actions to drift in execution duration and per-
formed 40 “plan, execute, observe, update” cycles.
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Figure 5: Comparison of regular, uniform, pervasive, and
dedicated model adaptation.

The results of the experiment are in Fig. 5. The figure
shows on the x-axis the number of performed “plan, execute,
observe, update” iterations and on the y-axis the uncertainty
as the trace of the covariance matrix (tr(Rt

θ)) in unit time
squared. The uncertainty is introduced by the six actions
with drifting delay. Since Regular model adaptation is not at
all optimized for adaptation it generates plans which in gen-
eral do not provide enough information for the adaptation
engine. We see in Fig. 5 that the uncertainty accumulates
over time and Regular fails in limiting it. Uniform performs
much better than Regular due to the partial optimization for
information gathering, but finally fails in keeping the uncer-
tainty on a steady state. In general Uniform will fail if the
redundancy is high in the system. Pervasive optimizes the
production plan for information gain which results in low
uncertainty in the system. This can only be dominated by

Dedicated due to the fewer constraints. Note that Dedicated
will not produce products. Overall we can see that due to
the active information gain optimization Pervasive and Ded-
icated perform very well in controlling the uncertainty. Fi-
nally Dedicated dominates all other approaches in seeking
information.

Experiment 2 — Long Term Productivity

In the second experiment we compared four production
strategies to assess their performance in long-term produc-
tivity. The four strategies use the same model adaptation
scheme, but differ in their method of production and infor-
mation seeking. Before we explain the four different strate-
gies we define a maximum uncertainty level maxU above
which we switch the goal from production to information
seeking. This switching avoids downtime due to failures.

• Regular w/ dedicated. Regular production runs until
the maximum uncertainty maxU is reached and then
switches to dedicated information seeking.

• Uniform w/ dedicated. Uniform production aims to use
all components of the system uniformly (by usage count).
It runs until the maximum uncertainty maxU is reached,
and then switches to dedicated information seeking.

• Pervasive. Production using pervasive model adaptation,
which generates informative production plans using the
approach described in the paper to seek information.

• Regular w/ pervasive. Regular production, then switch
to production using pervasive model adaptation when
maxU is reach.

The experiment was repeated 200 times for each produc-
tion strategies. Within each experiment we uniformly chose
six actions to cause to drift in execution duration and per-
formed 30 seconds of “plan, execute, observe, update” cy-
cles. We set the production and test rates to vary among the
production strategies: regular production 3.1 sheets/sec,
uniform production 2.0 sheets/sec, pervasive production
1.9 sheets/sec and dedicated information seeking 2.8 test
sheets/sec. Note that dedicated information seeking does
not produce valid products rather than test sheets. Reg-
ular production has the highest rate since it is optimized
for throughput, the second highest rate has dedicated in-
formation seeking since it has not to obey production con-
straints particularly it is not always necessary to perform
slow print actions. Pervasive production has the lowest rate
since obeys production constraints while optimizing for in-
formation gain.

The results of the experiment are in Fig. 6. The upper
figure shows the uncertainty in the system as the trace of
the covariance matrix in unit time squared. We can see that
all four strategies except production using pervasive model
adaptation grow in uncertainty relatively fast until a steady
state of uncertainty is reached. This is due to the fact that we
switch to dedicated information seeking if the uncertainty
reaches maxU . Since we averaged over 200 experiments
the steady state of uncertainty stays under maxU . The dis-
tance to maxU indicate the amount of information gain pro-
vided by the strategies in their production mode. Pervasive
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Figure 6: Comparison of different production strategies.

model adaptation stays far under maxU due to its strong
focus on good information seeking.

The lower figure shows the productivity of the production
strategies as productions per time. The results show that uni-
form w/ dedicated has the lowest productivity. This results
from neither being optimized for throughput nor information
seeking. Regular w/ dedicated and Pervasive perform nearly
similar. Whereas regular production has high throughput but
provides low information gain, Pervasive has low through-
put but provides high information gain. In our experiments
it can be seen that effects cancel each other out. Regular
w/ pervasive combines the strength of both worlds and per-
forms therefore best. Overall the best strategy is to focus
on throughput until the uncertainty grows to the maximum
limit maxU and switch than to informative production plans
provided by pervasive model adaptation until the uncertainty
drops.

Conclusion

The idea of Pervasive Model Adaptation opens up new op-
portunities to efficiently track models for the optimization
of the throughput of model-based systems. Continuous
tracking which would have required expensive production
stoppages can now be addressed on-line during production.
While pervasive model adaptation has interesting theoret-
ical advantages, we have shown that a tight combination
of heuristic planning and classical model adaptation can be
used to create practical real time applications as well.
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