
An Optimal Temporally Expressive Planner: Initial Results
and Application to P2P Network Optimization

Ruoyun Huang,Yixin Chen, Weixiong Zhang
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130, USA

{rh11,chen,zhang}@cse.wustl.edu

Abstract

Temporally expressive planning, an important class of tem-
poral planning, has attracted much attention lately. Tempo-
rally expressive planning is difficult; few existing planners
can solve them, as they have highly concurrent actions. We
propose an optimal approach to temporally expressive plan-
ning based on a SAT formulation of the problem, finding
solutions with the shortest time spans. Our experiments on
several temporally expressive domains showed that our plan-
ner is able to optimally solve many instances in a reasonable
amount of time, comparing favorably to existing temporally
expressive planners.
Our second result is a temporally expressive planning prob-
lem formulation of the Peer-to-Peer (P2P) network commu-
nications. In addition to demonstrating a better performance
of our new method than the only existing temporally expres-
sive planners on several temporally expressive problem do-
mains, we apply our new planner to find optimal communi-
cation schedules for P2P networks. Our results will be poten-
tially useful for designing efficient communication protocols
in P2P networks.

Introduction

Many real-world planning problems are inherently temporal
and contain more intrinsically concurrent actions than what
we have assumed before. The high concurrency of actions
has not been sufficiently exploited in most existing plan-
ning systems. In particularly, the latest results have shown
that a large class of temporal planning problems, the tem-
porally expressive problems, have not been adequately stud-
ied (Cushing et al. 2007a; 2007b). This is in part due to
the lack of a sufficient number of benchmarks that are truly
temporally expressive and representative of real-world prob-
lems. The lack of sufficient temporally expressive domains
is also a barricade to future advance in temporal planning.

Temporal planning

Temporal planning is an important class of planning, as tem-
poral constraints are inherent in most real-world planning
problems. Temporal planning is also difficult and much
more complex than propositional planning. Despite that
temporal planning is important and much effort has been

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

devoted to it, most existing temporal planners, including
SGPlan (Wah and Chen 2006) and CPT (Vidal and Geffner
2006), do not support temporally expressive planning (Cush-
ing et al. 2007a). Part of the reason is that these existing
planners made some assumptions on how actions interact
with one another. The only existing PDDL based temporally
expressive planner that we are aware of is Crikey (Coles et
al. 2008b; 2008a). Crikey combines planning and schedul-
ing for temporal problems, and uses state-based forward
heuristic search, which is Enforced Hill Climbing (EHC)
followed by Best-First Search if EHC fails. A recent work
in (Hu 2007) theoretically studied compilation of temporally
expressive problems by a constraint satisfaction formulation.

The lack of optimal temporally expressive planners is in
sharp contrast with the reality that many real-world planning
problems are highly concurrent. The SAT-based planning
approach (Kautz, Selman, and Hoffmann 1999) has been
proven to be a very successful paradigm for propositional
planning, especially for optimizing parallel actions and min-
imizing time steps. It has also been applied to several other
types of planning problems (Giunchiglia and Maratea 2007;
Mattmüller and Rintanen 2007). Inspired by the enormous
success of the SAT-based planning paradigm, we adopted
its basic idea to formulate temporally expressive planning
problems, and developed a new temporally expressive plan-
ner. Our work was also in part inspired by the result in
(Pham, Thornton, and Sattar 2008), which studied the ad-
vantage of applying a SAT-based method to general tem-
poral problems. In particular, our results showed that the
SAT-based approach is also a good choice for temporally ex-
pressive planning, especially when the problems are highly
concurrent.

Optimizing P2P networks

As pointed out in (Cushing et al. 2007b), all the temporal
planning domains in the recent planning competitions are
not temporally expressive. The shortage of a sufficient num-
ber of temporally expressive planning domains may refrain
future development of temporal planning. Aiming in part at
expanding our pool of temporal planning domains, we con-
sider a critical problem in networks, which is briefly dis-
cussed below.

In Peer-to-Peer (P2P) networks, each computer, called a
peer, may upload or download data from one another. In

178

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

such a network, file transmission is no longer limited by
the bandwidth of a single centralized server, thus the overall
throughput within the network is significantly increased. A
large number of services have been developed for P2P net-
works and more related distributed systems (Subramanian
and Goodman 2005) keep coming out; it may potentially be
used in multi-core CPU architecture, a trend in current com-
puter architecture design. One critical issue in P2P networks
is that a substantial amount of inter-peer data communica-
tion traffic is unnecessarily duplicated.

For those systems having consistent and intensive data
sharing between peers, communication latency is a potential
bottleneck of the overall network performance. It is highly
desirable, when designing a P2P network, to have not only a
design plan, but also an optimal one to optimize the potential
utility of the network. Mechanisms in network design, par-
ticularly proxy caching (a.k.a. gateway caching), have been
proposed to reduce duplicated data transmission. Making a
good use of the proxy cache is critical for optimizing data
transmission.

The problems of duplicated communication traffic and
communication latency are intrinsically related. To reduce
or remove duplicated communication and to effectively use
proxy cache amount to optimizing communication traffic.
The main issue is to determine each peer’s actions at ev-
ery time point, with the objective of letting all peers get all
data requested within the shortest possible time. Due to its
importance, optimizing communication traffic in P2P net-
works has already attracted some attention (Zhang, Goel,
and Govindan 2009). The problem, when casted as a plan-
ning problem, is temporally expressive.

In this work, we approach the problem of optimizing com-
munication traffic in P2P networks from the viewpoint of
temporally expressive planning, propose a SAT-based for-
mulation of the problem, and develop a new temporally ex-
pressive planner for the problem. The most salient feature
of our approach is its optimality in finding a solution with
the shortest time span. There are some existing methods for
general network planning problems. For example, the one in
(Rudenko 2002), is heuristic based and specialized (domain
specific) planning algorithm instead of applying automated
planning methods. To the best of our knowledge, our ap-
proach is the first of this kind for P2P networks and networks
in general which are optimal and temporally expressive.

This paper is organized as follows. We first review the
temporal planning in the first section and consider the SAT
encoding for temporal planning problems. Next, the prob-
lem of optimizing P2P networks is discussed and modeled.
After that, We present our experimental results on the P2P
network domain and several other domains. Finally, we con-
clude in the last section.

Temporal Planning

A fact f is an atomic proposition that can be either true or
false. We denote ft when f is true at time t. An action
o is defined by a tuple (ρ, π�, π↔, π�, α�, α�), where ρ, a
constant, is the duration of o; π�, π↔, π� are the conditions
that must hold at the start, over its lifetime, and at the end of

action o; α�, α� are the add-effects at the start or the end of
o, respectively.

Note that the time in this formulation is treated as discrete.
Therefore, assuming o is executed at time t, which implies
that o ends at time t + ρ − 1, we need all the conditions
to be satisfied as follows: a) ∀f ∈ π�, ft is true, b) ∀f ∈
π�, ft+ρ−1 is true, and c) ∀f ∈ π↔, t′ ∈ (t, t + ρ − 1), ft′

is true.

Definition 1 (Temporal planning) An instance of temporal
planning is defined as a tuple (I, F,O, G,A), where, I is
the initial state, F is a set of facts, O is a set of durative
actions, G is a set of goal facts, and A is a set of axioms.

This formulation of temporal planning is a subset of
PDDL2.1. For simplicity, we assume each action o ∈ O to
be durative and grounded. We use the method proposed in
(Helmert 2008) to translate conditional quantifiers into ax-
ioms, which are denoted in a way that is similar to simple
actions. Given an axiom a, we denote pre(a) as its condi-
tions, and eff(a) as its instantaneous effects.

Temporally expressive The concept of temporally ex-
pressive planning was first proposed in (Cushing et al.
2007a; 2007b), from which we adopt the definition of re-
quired concurrency.

Definition 2 (Required concurrency) A problem has a re-
quired concurrency if there exists a plan for solving the
problem and every solution has concurrently executed ac-
tions.

A temporal planning problem is temporally expressive if
it has a required concurrency, otherwise, it is temporally sim-
ple.

SAT-based Temporally Expressive Planning

In this section, we formulate temporal planning using a SAT-
based approach (Kautz, Selman, and Hoffmann 1999). Our
overall procedure is in Algorithm 1. Each iteration of the
procedure increases the time span by a fixed step size. A set
of partial order variables for the goals is used to indicate that
the goal state is achieved at time t (Ray and Ginsberg 2008).
A modified SAT solver solves the instance by assuming one
set of the goal variables to be true. As such, we solve the
problem with multiple time spans at each iteration.

Note that in (Ray and Ginsberg 2008), a planning graph is
first generated to help estimate the step size. Although there
exists earlier research in applying planning graph to tempo-
ral planning, all existing works that we are aware of either
have limited expressiveness (Smith and Weld 1999) or are
unable to optimize time span (Long and Fox 2003). These
two shortcomings may lead to an overestimation on step size
even for the first iteration of the planning. Therefore, in this
work we will use a predefined constant for the step size. To
estimate a better step size is an interesting open problem and
will be part of our future work.

Transform durative actions

First of all, each durative action o is converted into two sim-
ple actions plus one propositional fact, written as Ψ(o) =

179

Algorithm 1: SAT-based Temporally Expressive Plan-
ning (STEP)

Input: A temporally expressive planning problem
Output: A solution plan
transform durative actions into simple ones;1

set δ as the step size;2

N ← 0;3

Z ← max number of time spans;4

repeat5

N ← N + δ;6

encode the problem with partial order goal variables7

between N − δ + 1 and N ;
solve the encoded SAT instance;8

until a solution is found or N > Z ;9

if a solution found then10

decode the solution and return;11

else12

return with no solution;13

(o�, o�, fo). These two simple actions indicate the starting
and ending event of o. The fact fo, when it is true, indi-
cates that o is executing. We denote the set of all such fo as
F o = {fo | o ∈ O}. We further denote pre(o), add(o) and
del(o) as the set of preconditions, the set of add-effects and
the set of del-effects of a simple action o, respectively.

We transform a planning problem (I, F,O, G,A) into
(I, F s, Os, G, A). Here, F s is F ∪ F o, and Os is {a�, a� |
∀a ∈ O} ∪ {Noop Action for f | ∀f ∈ F s}.

The idea of transforming durative actions was proposed
in (Long and Fox 2003). It has several advantages. For ex-
ample, some techniques from classical planning can be ap-
plied without sacrificing the completeness.

Given the above planning problem representation, it is
necessary to encode action mutual exclusion (mutex) con-
straints to ensure the correctness of solutions. Several al-
gorithms were proposed to detect the mutexes between du-
rative actions in temporal planning (Smith and Weld 1999).
Here we compute those required action mutexes for all trans-
formed actions o ∈ Os, and use them in the encoding.

Encoding in each iteration

We extend the encoding of propositional planning in plan-
ning graph to temporal planning using the above transfor-
mation. Given a time span N and a problem instance
(I, F s, Os, G, A), we define the following variables for the
encoding.

1. action variables Uo,t, 0 ≤ t ≤ N, o ∈ Os.

2. fact variables Vf,t, 0 ≤ t ≤ N, f ∈ F s.

3. goal set variables Wt, N − δ + 1 ≤ t ≤ N .

We also need the following clauses for the encoding.

1. Initial state (for all f ∈ I): Vf,0

2. Partial order goal states (for all t ∈ [N − δ + 1, N]):
Wt →

∧
∀f∈G Vf,t

3. Preconditions (for all o ∈ Os,0 ≤ t ≤ N):
Uo,t →

∧
∀f,f∈pre(o) Vf,t

4. Add-Effects (for all f ∈ F s,0 ≤ t ≤ N):
Vf,t+1 → ∨

∀o,f∈add(o) Uo,t

5. Delete-Effects (for all o ∈ Os,0 ≤ t ≤ N):
Uo,t →

∧
∀f,f∈del(o) ¬Vf,t+1

6. Durative action information (∀o, t, o ∈ O,0 ≤ t ≤ N):
Uo�,t ↔ Uo�,t+ρ−1

Uo�,t →
∧

t<t′<t+ρ−1(Vfo,t′ ∧
∧

f∈o↔ Vf,t′)

7. Axioms (for each a ∈ A,0 ≤ t ≤ N):∧
f∈pre(a)(Vf,t) →

∧
f ′∈eff(a)(Vf ′,t)

8. Action mutex:
for all mutex actions (o1, o2), Uo1,t → ¬Uo2,t

9. Fact mutex:
for all mutex facts (f1, f2), Vf1,t → ¬Vf2,t

Theorem 1 (Optimality) The STEP algorithm in Algo-
rithm 1 always finds the solution with the minimal time span,
if such a solution exists.

Starting with 0, each iteration of Algorithm 1 increases
the time span by δ, and then encodes and solves the SAT
instance. Therefore, if there exists a solution with the min-
imal time span, Algorithm 1 will always find it as the first
solution it encounters. The partial order of goal variables is
enforced in the SAT solver so that the first solution found
will give the minimum time span. Therefore, Algorithm 1 is
optimal in total time span.

Expressiveness of parallelism Our approach is not only
powerful enough to handle the temporally expressive se-
mantics, but also capable of handling some other attributes
regarding parallelism in temporal planning. According to
the analysis in (Rintanen 2007), whether a temporal plan-
ning problem can be compiled into a classical planning
problem in polynomial time is determined by whether self-
overlapping is allowed. Our approach supports some of the
self-overlappings.

For a given action o and time t, we have variables Uo�,t

and Uo�,t representing the starting and ending actions of o,
respectively. Suppose action o has two instances, starting
at time t and time t′ (t < t′), respectively. For the starting
action o�, we have different variables Uo�,t and Uo�,t′ to in-
dicate the different starting times of the two instances. Those
fo facts, along with all related conditions, will be enforced
to be true from t to t′ + ρ. Thus, these invariant conditions
of the two action instances do not exclude each other’s exis-
tence.

However, the current encoding cannot handle the case
when the starting times of the two instances are the same,
or the ending times of the two instances are the same. This
is because given a simple action o, for each time point t, we
have only one binary variable to indicate if o is executed at
t.

Modeling Communications in P2P Networks

A small number of benchmark domains exist for tempo-
rally expressive planning; all the benchmark domains in

180

IPC3, IPC4 and IPC5 are temporally simple (Cushing et al.
2007b). Introducing a new, sound and scalable temporally
expressive domain is nontrivial. A few candidates for tem-
porally expressive domains were proposed in (Cushing et al.
2007b; Coles et al. 2008b). Most of them, however, are not
truly representative of real-world problems. We develop a
temporally expressive domain based on communication op-
timization in P2P networks using the PDDL language, and
apply our planner to this domain.

There are at least two different types of optimization in
P2P networks. One of them is approached from the user’s
point of view. Each individual user wants all the data needed
within the shortest possible time (Bhattacharya and Ghosh
2007). The other type is approached from the point of view
of a network service provider (such as an internet service
provider (ISP)), who owns the network but does not control
individual peers. The main concern of a service provider is
to reduce the overall communication load.

These two performance metrics are apparently mutually
exclusive. In this paper we adopt a third performance metric
which lies in the middle ground of the above mentioned two.
Under this metric, the network owner knows each peer’s
needs, and the objective is to minimize the overall time span
for all the data delivery for all peers.

The major constraint in this problem is that to satisfy a file
request from a peer p1, there must be such a file in another
peer p2. p1 can execute the action download to get the file,
when: 1) p1 and p2 are routed, and 2) p2 is serving the file
throughout the networks. As such, these two actions require
a concurrency for a valid plan.

In addition, the proxy cache will guarantee that, when p2

is serving a file, any peer who is routed to p2 can download
the file very fast. The upload bandwidth of a peer is typically
much narrower than its download bandwidth. Therefore, en-
forced by the optimality, the more peers downloading this
particular file, the larger the whole network’s throughput
will be, which bring about a shorter time span in a plan so-
lution.

Due to the space limitation, below we only specify the
PDDL definition for a serve action.

(:durative-action serve
:parameters (?c - computer ?f - file)
:duration (= ?duration (file-size ?f))
:condition(and

(at start (free ?c))
(over all (not(free ?c)))
(at start (saved ?c ?f))
(over all (serving ?c ?f)))

:effect(and
(at start (not (free ?c)))
(at end (free ?c))
(at start (serving ?c ?f))
(at end(not (serving ?c ?f))))

In the definition of the serve action, the serving time of
a file is proportional to its file size. We assume that by ac-
tively sharing a file, the uploading peer uses up its uploading
bandwidth. That is, we assume that it cannot share another
file simultaneously. This assumption will not impose a real

restriction as we can introduce a time sharing scheme to ex-
tend the method we develop. A predicate ‘serving’ as one
of the add-effects at the beginning indicates that the peer is
sharing a file.

When sharing a file from a peer, the connected router will
guarantee that any other peer can get this file in a constant
time (because download speed is much faster), as long as it
is routed to the uploading peer.

It is worthwhile to note that a good temporally expressive
domain must have, but not limited to, at least the following
three properties:

• Scalability in problem size (i.e. in time span);

• Scalability in degree of concurrency;

• Representativeness of a real-world application domain or
problem, to be useful and for further development.

Being motivated by a real world problem, the communi-
cation optimization in P2P domain is scalable in problem
size as an arbitrary number of peers and files may partici-
pate. It is also scalable in degree of concurrency as peers
can be routed very differently.

High concurrency Communication in P2P networks is
unique, since many uploading peers may get involved si-
multaneously in a typical download event. Consequently,
this gives rise to a high concurrency in the resulting tempo-
rally expressive planning, which is very different from the
most temporal planning problems we have seen. To have
a profound understanding of this high concurrency in our
new temporal planning domain, we examine temporal de-
pendency here.

Definition 3 (Temporal dependency) Given two actions o
and o′, we say o temporally depends on o′ when either of
the following conditions holds:

1. ∃f ∈ π(o), such that f ∈ α�(o′) and ¬f ∈ α�(o′);
2. ∃¬f ∈ π(o), such that ¬f ∈ α�(o′) and f ∈ α�(o′).

Two factors can lead to concurrencies in a temporally ex-
pressive problem. One is the required concurrent interaction
(i.e., concurrent execution) among actions, and the other is
enforced deadline (Coles et al. 2008b). Note that a temporal
dependency among actions is just a necessary condition for
required concurrencies. A problem is temporally expressive
only when there exists no action that can achieve the goals
if the temporal dependency is ignored. When solution op-
timality is enforced in the P2P domain, required concurren-
cies are naturally introduced in order to reduce the overall
time span.

Figure 1 illustrates the temporal dependencies in several
instances from different domains. All these instances have
comparable problem sizes. The instance of P2P domain has
90 facts and 252 actions, and the instance of Matchlift do-
main (Coles et al. 2008b) has 216 facts and 558 actions.
Figure 1(I) is an instance of Trucks domain, which is tem-
porally simple, thus all actions are isolated. In Figure 1(II),
each action has up to two actions temporally depending on
it. In Figure 1(III), each action has up to five actions tempo-
rally depending on it.

181

… … ... … … ... … … ...
I. Trucks II. Matchlift III. P2P

Figure 1: This figure partially illustrates temporal dependencies of
actions for instances in three domains, Trucks, Matchlift and P2P.
Each node represents an action. Each edge represents a temporal
dependency between two actions.

We call these problems such as the P2P domain highly
concurrent. The reason is that, with similar sizes, they have
more temporal dependencies than their counterparts of tem-
porally simple problems. The overall required time span
for a highly concurrent temporally expressive problem is ex-
pected to be short.

Experimental Results

In our current implementation of SAT-based temporally
expressive planner (STEP), we used MiniSAT2 (Een and
Sörensson 2003) as its SAT solver. We studied the perfor-
mance of STEP and compared it with Crikey2 (Coles et
al. 2008a)(runnable java JAR) and Crikey3 (Coles et al.
2008b)(static statically-linked binary for x86 Linux). These
are two different versions of the only practical temporally
expressive planner we are aware of. It is important to em-
phasize that this is essentially a comparison of “apple vs.
orange”, since Crikey is fast but incomplete whereas STEP
is relatively slow but optimal in total time span. Other well-
known temporal planners were not considered because they
only support temporally simple problems.

Our experiments were done on the P2P domain and
several other temporally expressive domains (Coles et al.
2008b). The original domain definitions in (Coles et al.
2008b) do not have enough problem instances. Therefore,
we generated most of the instances for our study. Note that
we did not use all the domains in (Coles et al. 2008b)
because some of them are not scalable to large problems
(e.g. the Match domain), and a few of them have variable-
duration actions (e.g. the Café domain), which we do not
consider now.

We ran all experiments on a PC workstation with a 2.0
GHZ Xeon CPU and 2GB memory. The time limit, for each
instance, was set to 3600 seconds. The step size δ of each
new iteration in STEP was set to 5.

The P2P domain

We first experimented on a collection of instances in the P2P
domain, as shown in Table 1. The instances were gener-
ated randomly with different parameter settings, and the size
of each file object was randomly chosen from four to eight
units. The goal state for each instance was that each peer
gets all requested files.

P C F
STEP Crikey3 Crikey2

Time QAL Time QAL Time QAL
1 4 4 6.21 27 1.21 72 - -
2 5 5 25.05 34 17.42 100 - -
3 6 6 131.62 44 300.6 150 - -
4 7 6 334.19 54 T T - -
5 6 7 369.96 49 773.75 200 - -
6 7 7 3168.74 60 T T - -
7 5 25 387.19 32 T T - -
8 6 18 92.06 20 T T - -
9 6 24 283.62 23 T T - -
10 6 30 845.53 31 T T - -
11 6 36 2713.81 36 T T - -
12 7 35 1738.29 29 T T - -

Table 1: Experimental results on the P2P domain. Column ‘P’
is the instance ID. Columns ‘C’ and ‘F’ are the numbers of peers
and files, respectively, in the network. Columns ‘Time’ and ‘QAL’
are the running time and time span of solutions, respectively. ‘T’
means the solver ran out of the time limit of 3600s and ‘-’ means
no solution found.

There are two types of problems settings with different
styles of network topology. One is loosely connected while
the other is more highly connected.

Instances 1 to 6 all have simpler topologies. Each peer
is connected to no more than two other peers. Also, in the
initial state, only leaf peers (those that are only connected
to one other peer) have files to share. There are less con-
currencies in this setting. Crikey3 solved four out of the six
these instances. It was faster on two simpler instances but
slower than STEP on two other larger instances. Overall,
the time spans found by Crikey3 were about three to five
times longer than those found by STEP. Crikey2 failed to
solve any instance in this category.

Instances 7 to 12 have more complicated network topol-
ogy. Nearly all nodes are connected to one another. Every
peer has some files needed by all others. In this setting,
much higher concurrencies are required to derive a plan.
Both Crikey2 and Crikey3 failed to solve any instance within
the resource limit. Crikey3 timed out and Crikey2 reported
no solution was found. It may be due to their incomplete-
ness.

The Matchlift domain

The results on the Matchlift domain (Coles et al. 2008b)
are in Table 2. The original Matchlift domain had some
flaws, in which an electrician’s position was not updated un-
til the ending of the durative action. This deficiency made
both Crikey2 and Crikey3 blow up in the number of elec-
tricians, and eventually the electricians would exist every-
where. STEP is immune to this flaw, because it has the mu-
tually exclusive actions encoded. As a result, STEP forbids
two actions that delete the same fact to be executed at the
same time. To make Crikey2 and Crikey3 work properly on
this domain, we fixed the flaws and used the fixed version of
Matchlift domain for this set of experiments.

We generated all instances randomly using different pa-
rameters for the numbers of floors, rooms, matches and

182

P L,M,R,U
STEP Crikey3 Crikey2

Time QAL Time QAL Time QAL
1 2,3,4,3 2.10 13 0.10 18 1.27 13
2 3,2,9,2 1.54 9 0.25 14 2.33 11
3 2,3,4,3 8.09 20 0.01 28 5.01 23
4 3,3,9,3 8.35 18 0.02 34 3.73 19
5 3,4,9,4 24.77 24 0.03 43 9.36 35
6 3,5,9,5 63.18 25 2.27 47 10.92 39
7 3,6,9,6 511.12 31 0.91 58 15.4 37
8 3,7,9,7 934.29 30 5.55 58 10.91 42
9 4,4,16,4 63.12 26 0.05 43 9.98 39
10 4,5,16,5 193.07 28 0.11 58 19.82 28
11 4,6,16,6 685.70 31 1.80 58 28.71 47

Table 2: Experimental results on the Matchlift domain. The
numbers in Columns L, M, R, U represent the numbers of floors,
matches, rooms and fuses, respectively, which were used in gener-
ating the instances.

fuses. Each instance has the same number of fuses and
matches. In other words, these instances are easier because
we can always find a valid plan, such that there is exactly
one fixing action concurrent with a lighting match action.
In the future, we will have a variant domain of Matchlift
for another set of experiment, where the number of match
resources is less than the number of fuses to be fixed. As
a result, it will require more concurrencies than needed in
these simple Matchlift problem instances.

On all instances, Crikey3 is the fastest to find solutions,
but with the poorest quality. STEP spent more time than
Crikey3 and Crikey2 did, since the former found the opti-
mal solutions. Among the three algorithms, Crikey2 is the
second in terms of both solving time and solution quality
(except the first instance, in which its quality is the same as
that of STEP).

The Matchlift-Variant domain

We also tested on a set of instances in a revised Matchlift do-
main (called Matchlift-Variant domain), which allow more
concurrencies in two aspects. First, the number of matches
is less than the number of fuses, resulting in that multiple
electricians need to share one match. Second, we change the
duration of a ‘MEND FUSE’ action so that an electrician is
able to conduct more actions during one match’s lighting,
which also results in higher concurrencies.

The results are shown in Table 3. All instances were gen-
erated with increasing numbers of fuses and electricians. All
other settings were random. Instances with the same number
of fuses and electricians might still have different degrees of
concurrency, due to different numbers of matches and other
resources available. For example, although Instances 7 and
8 have the same parameters, Instance 8 is more difficult than
Instance 7 due to different ways how the fuses were dis-
tributed over the rooms.

As shown by our experimental results, STEP found op-
timal solutions on all instances tested, whereas Crikey2 and
Crikey3 ran out of time on most instances and generated sub-
optimal plans on the few instances they finished. For the in-
stances they solved, Crikey3 had the worst solution quality.

P E,M,U
STEP Crikey3 Crikey2

Time QAL Time QAL Time QAL
1 2,2,4 2.95 13 11.65 19 2.5 14
2 2,1,4 1.59 13 20.17 18 16.23 13
3 2,3,5 7.45 18 0.02 23 1.87 19
4 2,2,5 30.67 21 108.85 27 13.70 25
5 2,4,6 22.70 22 0.04 33 2.91 29
6 2,2,6 34.66 21 105.16 27 15.43 25
7 3,2,7 140.60 16 T T - -
8 3,2,7 441.41 16 T T 16.52 17
9 3,4,8 110.37 22 T T T T
10 3,2,8 699.33 20 T T T T
11 4,3,8 1886.94 16 T T 1052.56 24
12 4,1,8 3.86 13 T T T T

Table 3: Experimental results on the Matchlift-Variant domain.
The numbers in columns ‘E, M, U’ represent the numbers of elec-
tricians, matches, and fuses, respectively. ‘T’ means the solver ran
out of the time limit and ‘-’ means no solution found.

It was very efficient in finding a solution in two instances,
but in other four instances, it was even slower than STEP,
which was able to find optimal solutions.

The results on Instances 11 and 12 are special and inter-
esting. These two instances were generated under the same
parameter setting, except for the number of matches. In-
stance 12 has only one match, which means the four elec-
tricians need to cooperate with each other perfectly to get
all the fuses fixed. Comparing to Instance 11, Instance 12
turned out to be more difficult for Crikey2, because it re-
quired more concurrencies. As a result, Crikey2 solved In-
stance 11 but failed on Instance 12. As a comparison, In-
stance 12 was much easier than Instance 11 for STEP. STEP
solved Instance 12 in just about three seconds, while spent
more than 1800 seconds on Instance 11.

The Driverlogshift domain

The problem instances in the Driverlogshift domain (Coles
et al. 2008b) have much longer time spans than those in the
Matchlift and P2P domains. The actions with duration of
two were changed to three to distinguish �,� and ↔ con-
ditions and effects. This change was made to accommodate
STEP for solving discrete problems.

This domain is different from P2P and Matchlift. It has
long durative actions, which give rise to longer time spans.
Therefore, it is relatively difficult to optimally solve in-
stances in this domain. These observations are reflected by
our experimental result in Table 4.

We now compare STEP and Crikey3. As shown, the op-
timal time spans of the instances tested, provided by STEP,
are typically much shorter than those by Crikey3. For exam-
ple, the optimal time span for Instance 4 in Table 4 is about
one third of the time span reported by Crikey3. As a trade-
off, STEP needs longer time for finding optimal solutions.

Now consider Crikey2, a suboptimal solver. Surprisingly,
it was able to generate solutions of the same quality as what
STEP found on most instances in this domain. However, a
close examination led us to believe that some of the solu-
tions produced by Crikey2 are flawed. For example, it may

183

P D,P,T
STEP Crikey3 Crikey2

Time QAL Time QAL Time QAL
1 2,2,2 249.72 102 0.21 224 ∗3.6 ∗122
2 2,2,2 585.36 122 0.2 122 2.37 122
3 2,3,2 734.99 122 0.4 125 3.7 122
4 2,3,2 763.48 122 0.52 323 4.62 122
5 2,4,2 240.76 102 0.55 238 16.12 102
6 2,4,3 366.75 118 0.91 326 ∗1.76 ∗122

Table 4: Experimental results on the DriverlogShift domain. The
numbers in columns ‘D, P, T’ represent the numbers of drivers,
packages, and trucks, respectively. The result marked with a ‘∗’
means the solution is invalid.

generate solutions with fragments of invalid action sequence
as follows:

...
102:(REST driver2) [20.00]
102:(DRIVE-TRUCK truck1 s1 s0 driver2)[10.00]
...

Such a plan requires the same driver to perform two actions,
REST and DRIVE, at the same time. It apparently violates
the domain specification, which defines that DRIVE needs
to be concurrent with a WORK action and the WORK ac-
tion is mutual exclusive with the REST action.

Number of variables and clauses

One may concern about the size of SAT encoding and the
time complexity of STEP, which are issues any optimal plan-
ner faces. In Table 5, we list the numbers of variables and
clauses of each instance (the last iteration encoding). Due to
space limitation, we only show data on the P2P domain and
the Matchlift-Variant domain. The solving time is presented
to show the difficulty of the instances.

Similar to other SAT problems, it is obvious that the size
of the encoding does not necessarily reflect the complex-
ity of a problem. For example, the numbers of variables or
clauses of Instance 6 in the P2P domain are only half of that
of Instance 7. However, Instance 6 required computation ten
times more than that required by Instance 7.

In general, the encoding sizes of STEP on current problem
instances may be up to hundreds of thousands of variables,
which are within the reach of current SAT solvers. Various
boosting methods for SAT-based planning could also be ap-
plied to STEP. We plan to further study techniques such as
encoding in new formulations (Robinson et al. 2008) and to
derive constraint-based pruning clauses (Chen et al. 2009).

Conclusions and Discussions

In this paper, we proposed and developed a novel SAT-based
temporally expressive planning. A critical piece of our work
was a SAT-based formulation of temporally expressive prob-
lems. Our work was motivated by the observation that high
action concurrency is a main characteristic of temporally ex-
pressive planning problems. Such high concurrency is ex-
emplified by the new P2P network communications domain

P
P2P Matchlift-Variant

#VAR #Clause Time #VAR #Clause Time
1 498 1032 6.21 3632 13502 2.95
2 1538 4161 25.05 2583 8892 1.59
3 5799 17378 131.62 7122 33414 7.45
4 7076 19961 334.19 6431 29363 30.67
5 19230 58521 369.96 11608 66468 22.70
6 47046 152042 3168.74 6798 31826 34.66
7 95080 410983 387.19 7524 34137 140.60
8 59526 198216 92.06 7524 37663 441.41
9 91482 344504 283.62 18513 128674 110.37
10 95080 410983 845.53 10043 52352 699.33
11 59526 198216 2713.81 13601 75843 1886.94
12 91482 344504 1738.29 5449 21113 3.86

Table 5: The numbers of variables and clauses on P2P domain
and Matchlift-Variant domain. Column ‘#VAR’ is the number of
variables, column ‘#Clause’ is the number of clauses and column
‘Time’ is the overall solving time.

that we introduced. This type of problems makes the SAT-
based approach an excellent choice as it is effective in han-
dling parallel executions. Our experiments on several tem-
porally expressive domains, including our new P2P network
domain, showed that our new planner is able to optimally
solve the instances in these domains in a reasonable amount
of time, comparing favorably against the existing nonopti-
mal temporally expressive planners.

Our current work is an effort to advance the state-of-the-
art of temporal planning. While we have reported some sig-
nificant initial results, including a novel optimal temporally
expressive planner and some encouraging experimental re-
sults on several problem domains, our work can be further
improved. One limitation of our current SAT-based method
is that it is not expressive enough for numerical constraints
and other complex PDDL2.1 properties. For example, com-
paring to Crikey, the major limitation of our current imple-
mentation is that it does not support variable action dura-
tions. To fully support PDDL2.1 and take advantage of SAT-
based planning technique, we are extending our new plan-
ner; we are implementing a new version by adding an outer
layer to the planner to handle complex temporal constraints
and to support richer semantics. Furthermore, in our current
formulation of the P2P network domain, we ignored some
technically involved issues, such as the cost for establishing
a connection, the potential of data compression which might
take additional processing time but shorten communication
delay, file segmentation to further increase concurrency, and
stochastic nature of communication channels. We are cur-
rently extending our modeling effort to incorporate these im-
portant features. Our goal is to develop a practical temporal
planning system for this important network communication
optimization problem.

Acknowledgement

The research was supported by NSF grants IIS-0535257,
DBI-0743797, IIS-0713109, a DOE ECPI award, and a Mi-
crosoft Research New Faculty Fellowship.

184

References

Bhattacharya, A., and Ghosh, S. 2007. Self-optimizing
peer-to-peer networks with selfish processes. In Proc. of
Int’l Conf. on Self-Adaptive and Self-Organizing Systems.
Chen, Y.; Huang, R.; Xing, Z.; and Zhang, W. 2009. Long-
distance mutual exclusion for planning. Artificial Intelli-
gence 173:197–412.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2008a. Managing concurrency in temporal planning us-
ing planner-scheduler interaction. Artificial Intelligence
173:1–44.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008b. Plan-
ning with problems requiring temporal coordination. In
Proc. of AAAI-08.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007a. When is temporal planning really temporal? In
Proc. of Int’l Joint Conf. on AI.
Cushing, W.; Kambhampati, S.; Talamadupula, K.; Weld,
D. S.; and Mausam. 2007b. Evaluating temporal planning
domains. In Proc. of ICAPS-07.
Een, N., and Sörensson, N. 2003. An Extensible SAT-
solver.
Giunchiglia, E., and Maratea, M. 2007. Planning as satis-
fiability with preferences. In Proc. of AAAI-07.
Helmert, M. 2008. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 503–535.
Hu, Y. 2007. Temporally-expressive planning as constraint
satisfaction problems. In Proc. of ICAPS-07.
Kautz, H.; Selman, B.; and Hoffmann, J. 1999. Unifying
sat-based and graph-based planning. In Proc. of Int’l Joint
Conf. on AI.
Long, D., and Fox, M. 2003. Exploiting a graphplan frame-
work in temporal planning. In Proc. of Int’l Conf. on Auto-
mated Planning and Scheduling.
Mattmüller, R., and Rintanen, J. 2007. Planning for tempo-
rally extended goals as propositional satisfiability. In Proc.
of Int’l Joint Conf. on AI.
Pham, D.; Thornton, J.; and Sattar, A. 2008. Modelling and
solving temporal reasoning as propositional satisfiability.
Artificial Intelligence 172:1752–1782.
Ray, K., and Ginsberg, M. L. 2008. The complexity of
optimal planning and a more efficient method for finding
solutions. In Proc. of Int’l Conf. on Automated Planning
and Scheduling.
Rintanen, J. 2007. Complexity of concurrent temporal
planning. In Proc. of AAAI-07.
Robinson, N.; Gretton, C.; Pham, D.; and Sattar, A. 2008.
A compact and efficient sat encoding for planning. In Proc.
of ICAPS-08.
Rudenko, A. 2002. Automated Planning for Open Network
Architectures. Ph.D. Dissertation, UCLA.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. of Int’l Joint Conf. on
AI.

Subramanian, R., and Goodman, B. D. 2005. Peer to Peer
Computing: The Evolution of a Disruptive Technology. IGI
Publishing.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal pocl planner based on constraint pro-
gramming. Artificial Intelligence 170:98–335.
Wah, B. W., and Chen, Y. 2006. Constraint partitioning in
penalty formulations for solving temporal planning prob-
lems. Artificial Intelligence 170:187–231.
Zhang, H.; Goel, A.; and Govindan, R. 2009. An empirical
evaluation of internet latency expansion. ACM SIGCOMM
Computer Comms. Review to appear.

185

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

