
Optimality Properties of Planning Via Petri Net Unfolding: A Formal Analysis

Sarah Hickmott
School of CS and IT

RMIT University
Melbourne, Australia

sarah.hickmott@rmit.edu.au

Sebastian Sardina
School of CS and IT

RMIT University
Melbourne, Australia

sebastian.sardina@rmit.edu.au

Abstract

We provide a theoretical analysis of planning via Petri net
unfolding, a novel technique for synthesising parallel plans.
Parallel plans are generally valued for their execution flexi-
bility, which manifests as alternative choices for the order-
ing of operators and potentially faster plan executions. Being
a relatively new approach, the flexibility properties of plans
synthesised via unfolding, and even the concurrency seman-
tics supported by this technique, are particularly unclear and
only understood at an informal level. In this paper, we first
formally characterise the concurrency semantics of planning
via unfolding as a further restriction on the standard notion
of independence. More importantly, we then prove that plans
obtained using this approach are optimal deorderings and op-
timal reorderings in terms of the number of ordering con-
straints on operators and plan execution time, respectively.
These results provide objective guarantees on the quality of
plans obtained by the unfolding technique.

Introduction
In this paper, we formally characterise the concurrency
semantics supported by the Petri net unfolding approach
to automated planning and prove optimality guarantees
on the “flexibility” of plans constructed by the technique.
Planning via Petri net unfolding (Hickmott et al. 2007;
Bonet et al. 2008) is a novel approach for synthesis-
ing parallel plans, that is, partial-order plans with a true
notion of concurrency (i.e., actions can temporally over-
lap). Parallel plans are highly desirable for many practi-
cal applications where greater flexibility is required at ex-
ecution time, see e.g., (Nguyen and Kambhampati 2001;
Smith, Frank, and Jónsson 2000). Such plans are, in prin-
ciple, flexible in that they may avoid over-committing to
action orderings. Making a plan least constrained is use-
ful in that the scheduler may have several alternative ex-
ecution realizations—sequences in the case of interleaved
concurrency—to choose from. This is clearly desirable, for
instance, in contexts where actions have deadlines and ear-
liest release times, and a scheduler is used to post-process
or adapt the plan to find a feasible schedule. Most impor-
tantly, making a plan least constrained is appealing if cer-
tain actions can be executed in parallel in order to reduce the
execution time of the plan.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Planning via unfolding, a verification technique for asyn-
chronous systems (Esparza, Römer, and Vogler 1996;
McMillan 1992), was developed as a middle point – on the
axis of commitment – between traditional state-based and
plan-based approaches to automated planning. It offers the
ability to reason about partially ordered actions whilst main-
taining access to a fully-specified state. The later facilitates
the use of state-based heuristics for guidance and pruning.
The tactic of guiding the unfolding in the manner of heuris-
tic search emerged from the planning community, and is re-
ferred to as directed unfolding.

Nonetheless, precisely what the concurrency semantics
captured by the technique is and to what extent plans ob-
tained via unfolding are flexible are still important open
questions. Here, we provide a theoretical analysis to an-
swer both questions. To that end, we rely on Bäckström
(1998)’s principles for flexibility, which are based on two
operations on plans aimed to reduce plan execution time and
degree of commitment, namely deordering and reordering.
Deordering a plan involves lifting existing action ordering
constraints, while reordering allows for arbitrary modifica-
tions to the orderings.

The contributions of this paper are threefold. First, a char-
acterisation of the the concurrency semantics supported by
the unfolding technique is given, as that of strong indepen-
dence, a further restriction on the standard notion of inde-
pendence that happens to be analogous to the kind of con-
currency captured by monitors for thread synchronization
(Hoare 1974). To achieve this kind of concurrency, a suit-
able transformation of operators with persistent precondi-
tions is employed. Second, the space of solutions explored is
identified as exactly the set of parallel plans that are optimal
with respect to plan deordering—no plan includes unneces-
sary constraints. This result provides new insight into the
form (and size) of the search space of this planning tech-
nique. Finally, it is shown that when the search process
is appropriately guided to prefer faster plans, planning via
directed unfolding is guaranteed to construct a plan that is
an optimal parallel reordering for execution time—changing
its operator ordering constraints arbitrarily will not make it
faster. These results are significant since optimal deorder-
ings and reorderings of plans are not tractable operations
(Bäckström 1998).

We note that we shall not be concerned here with an em-

170

Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

pirical evaluation of the planning via unfolding technique.
Indeed, such kind of analysis is important and necessary,
but it would be orthogonal to the theoretical evaluation car-
ried out in this paper, and has been done—to some extent—
elsewhere, e.g., (Hickmott 2008). The results presented here
give objective guarantees on how flexible plans obtained via
unfolding are, regardless of the domain or specific imple-
mentation. We believe, in fact, that a formal evaluation of
the kind carried out here is necessary for a real understand-
ing of this partial-order technique.

The rest of the paper is organized as follows. In the next
section, we provide an overview of the planning via Petri net
unfolding technique for synthesising parallel plans. We then
characterise, formally, the semantics of concurrency cap-
tured by the planning technique. After that, we discuss—
based on (Bäckström 1998)—the formal framework under
which we shall perform our evaluation, namely, optimal lim-
its of plan deordering and reordering. Finally, we prove op-
timality guarantees on the quality of plans constructed by
the unfolding approach, w.r.t. to degree of commitment and
plan execution time.

Planning via Petri net Unfolding

Here, we quickly review the planning technique that is the
focus of our study, namely, planning via Petri net unfolding.

Let V be a set of propositions and LV = V ∪ {¬v | v ∈
V } the set of literals over V . The complement of a literal v is
denoted by v; this notation trivially extends to sets of literals.
A state S is a consistent subset of L such that |S| = |V |. An
operator o = 〈Pre, Eff〉 is characterised by its preconditions
Pre and effects Eff, where Pre and Eff are consistent subsets
of LV . Operator o is executable in a state S iff Pre ⊆ S (i.e.,
its preconditions hold); its execution will evolve the state to
the new state Eff ∪ (S \ Eff).

A planning problemP is a tuple 〈V, S0, O, G〉, where V is
a set of propositions, S0 is the initial state, O is a set of plan-
ning operators, and G ⊆ LV is a a set of literals representing
the goal. A parallel plan is a tuple π = 〈A,≺〉, where A is a
multi-set of planning operators in O and ≺ is a strict partial
order relation over A. We assume such plans have true con-
currency semantics, meaning that un-ordered operators may
temporally overlap their executions.1 A linearisation of plan
π is any sequential ordering of A which respects ≺. Plan π
is a solution plan for planning problemP if any linearization
of π will transition the system from S0 to a state Sg where
all goal propositions in G hold (i.e., G ⊆ Sg). Finally, a
plan can have a cost associated, by suitably aggregating the
cost of operators. In particular, when the cost of an operator
is taken to be its execution duration (i.e., durative actions),
then the parallel cost of a plan amounts to its (minimum)
execution time.

Planning via Petri net unfolding is a novel method for
synthesising parallel solution plans, which utitlises Petri net
techniques for reasoning about concurrent systems. Roughly
speaking, a planning domain is represented as a Petri net,
and reachability analysis (via unfolding) determines if and

1Note the difference with partial-order plans where an inter-
leaved notion of concurrency is assumed.

how the net can be transitioned from the state representing
S0 to one in which G holds. Below, we briefly go over these
notions by following (Hickmott et al. 2007).

Place transition net

A Petri net or place transition net (PT-net) is a tuple Σ =
〈N, M0〉, where N is a directed bipartite graph with place
nodes P and transition nodes T , and M0 is the initial mark-
ing of N . Dynamic behavior is captured by a flow relation,
F ⊆ (P×T)∪(T×P), indicating the presence (or absence)
of arcs between places and transitions, and vice-versa. A
marking M : P �→ N of a PT-net captures a state of the mod-
eled system by assigning zero, one, or more tokens to each
place. In this paper, we only consider 1-safe nets, meaning it
is never possible for more than one token to exist in a place,
and for easier reading we will often depict a marking by the
set of places containing a token.

The preset •x of node x is the set {y | y ∈ P ∪
T, F (y, x) = 1}, and its postset x• is the set {y | y ∈
P ∪ T, F (x, y) = 1}. Marking M enables transition t if
M(p) > 0 for all p ∈ •t. The occurrence of an enabled
transition t absorbs a token from each of its preset places
and puts one token in each postset place. This corresponds
to a state transition M

t−→ M ′ in the system, moving the
net from M to the new marking M ′ = (M \ •t) ∪ t•. An
occurrence sequence σ = t1, . . . , tn is a sequence of state
transitions, i.e., there exist markings M1, . . . , Mn such that
M0

t1−→ · · · tn−→ Mn; denoted as M0
σ−→ Mn. A marking

M is reachable if there is a sequence σ such that M0
σ−→

M . The reachability problem seeks to find σ for a given
PT-net and a (partially specified) marking M . Figure 1(b)
depicts a PT-net with place nodes P = {a1, a2, b, c, â,̂b, ĉ},
transition nodes T = {o1, o2, o3, o4, o5}, and initial mark-
ing M0 = {a1, a2, b, c}. In this PT-net, transitions o1 and
o2 are concurrently enabled by M0; but transitions o1 and
o3 are not since they conflict on place a1. Also, marking
M = {â,̂b, ĉ} is reachable since σ = o1, o2, o3 is an occur-
rence sequence such that M0

σ−→ M applies.

Petri net representation of planning problem

Hickmott et al. (2007) propose a translation from a planning
problem P = 〈V, S0, O, G〉 to PT-net pnet(P), such that the
problem of finding a solution plan for P is cast as a reacha-
bility problem for pnet(P). The translation proceeds in three
steps: (i) make the operators toggling; (ii) eliminate negative
preconditions; and (iii) map the planning problem to a PT-
net. The purpose of the first two steps is to make operators
compatible with the syntax and semantics of a PT-net.

Informally, an operator is “toggling” if all its effects imply
actual changes (in the truth of propositions).2

Definition 1. An operator o = 〈Pre, Eff〉 is toggling iff
Eff ⊆ Pre. �

Translating the original operators into toggling ones helps
to maintain logical consistency with respect to the state

2Toggling operators were referred to as “1-safe” in (Hickmott
et al. 2007).

171

propositions and model negative effects. A non-toggling op-
erator can be converted into a collection of toggling ones,
by including in the preconditions the complement of ev-
ery literal appearing in the effects, one per combination
of literals missing from the preconditions. For example,
the operator o = 〈{a,¬b, d}, {c,¬d}〉 is accounted for by
the two toggling operators o1 = 〈{a,¬b, c, d}, {¬d}〉 and
o2 = 〈{a,¬b,¬c, d}, {c,¬d}〉.

Compiling away negative preconditions is necessary be-
cause a transition in a Petri net can only be conditioned on
the presence of tokens in places, not their absence. This is
achieved by introducing the set of propositions ̂A = {â |
a ∈ A}; the idea is that â is true exactly when a is false.
Thus, the operator o1 above becomes 〈{a,̂b, c, d}, {̂d}〉. Let
μ be the function which takes a set of operators and produces
a set of toggling operators with no negative preconditions.

Finally, in the third step, the planning problem is mapped
to a PT-net pnet(P) = 〈N, M0〉 as follows. Place nodes
are the state propositions A∪ ̂A and transition nodes are the
operators μ(O). For each transition o = 〈Pre, Eff〉 ∈ μ(O),
•o = Pre and o• = Eff ∪{p | p ∈ Pre,¬p
∈ Eff}. Note that
the postset of a transition explicitly includes the persistent
(non-deleted) preconditions. The initial marking is specified
as M0(p) = 1 iff p ∈ S0.

Planning via unfolding

Having cast a planning problem as a PT-net reachability
problem, one can synthesise a solution plan via unfold-
ing. Unfolding pnet(P) essentially enumerates, in a forward
manner, the space of parallel plans for planning problem P .

Unfolding a PT-net Σ = 〈N, M0〉 produces a pair
Unf (Σ) = 〈ON, ϕ〉, where ON = 〈B, E, F ′〉 is an oc-
currence net and ϕ is a homomorphism that maps the nodes
in ON to nodes in N . An occurrence net is a PT-net with-
out cycles or backward conflicts. Multiple transitions are in
backward conflict if they all feed into some (same) place
p; to eliminate backward conflicts, the unfolding process
replicates p so that each instance of p has a clearly identi-
fiable history. Note that net ON may still contain forward
conflicts, that is, cases where a single place feeds into mul-
tiple transitions. In a planning context, forward conflicts
may represent a choice between non-independent operators;
Unf (pnet(P)) captures every possible resolution of conflict
between operators in P .

In the occurrence net ON , places and transitions are
called conditions B and events E, respectively; each event
(condition) in ON is a particular instance of a transition
(place) in N , uniquely defined by the system transforma-
tions which led to it being executed (containing a token).
For example, Figure 1(c) depicts part of the unfolding of
the PT-net in Figure 1(b); observe that there are multiple in-
stances of place a2, as there are multiple ways to make this
proposition true.

To understand the unfolding process, the most important
notions are that of a configuration and its marking. A config-
uration represents a possible partial run of the original PT-
net, beginning at M0. Formally, a configuration C is a set
of events in ON such that C is causally closed and contains

no forward conflict. The local configuration of an event e,
denoted [e], is the minimal configuration containing event
e. Intuitively, [e] stands for one possible (parallel) history
of events leading to the occurrence of transition ϕ(e). In
our example, [e5] = {e1, e2, e5} is a (local) configuration,
but {e1, e3} is not a configuration because e1 and e3 are in
forward conflict.

From the planning perspective, a configuration C induces
a unique parallel plan πC = 〈A,≺〉, where A is the set of op-
erator instances represented by C and ≺ is the partial-order
relation induced by the relation F ′ on the set C, namely,
a ≺ b iff there exists condition x such that aF ′x and xFb.
For instance, π[e5] = 〈{o1, o2, o3}, {o1 ≺ o3, o2 ≺ o3}〉.

In addition, a configuration C can be associated with
a marking Mark(C) of the original PT-net by identifying
which places will contain a token after the occurrence of
all transitions represented by the events in C. Formally,
Mark(C) = ϕ((B0 ∪ C•) \ •C), where C• (resp. •C) is
the union of postsets (resp. presets) of all events in C. For
instance, the marking for event e5’s local configuration is
Mark([e5]) = {â,̂b, ĉ}.

The places initially marked in N have a 1-1 mapping
with a set of initial conditions B0 in ON . Beginning with
ON = 〈B0, ∅, ∅〉, the unfolding process builds the oc-
currence net by repeatedly identifying any transition o =
〈Pre, Eff〉 such that ON contains conditions representing
Pre, and the causal closure of these conditions has no for-
ward conflict. If satisfied, then instances of o and Eff are
added to ON accordingly. If, at some point, there is a con-
figuration C such that Mark(C) = M , then C captures a
solution to the reachability problem defined by marking M .
It easy to see that reachable markings correspond one-to-one
to reachable states in the planning problem, and hence, we
should sometime blur their distinction. It follows then that
if C is a configuration such that G ⊆ Mark(C), then its in-
duced plan πC = 〈A,≺〉 solves the planning problem of
interest, where A is the set of operator instances in C and ≺
is the partial order relation captured by F ′ on the set C, i.e.
a ≺ b iff ∃x such that aF ′x and xFb.

Concurrency Semantics of PN Unfolding

In the previous section, we defined the notion of a solution
plan based on the set of all possible linearisations of a paral-
lel plan. However, when considering plans with true concur-
rency, this is not enough: one must also take into account
which operators can reasonably be allowed to temporally
overlap.3 In fact, different concurrency semantics may be
used to specify under which conditions two or more opera-
tors can execute at the same time.

Currently, the notion of concurrency supported by the PT-
net unfolding approach to planning, that is, the one result-
ing from the planning problem to PT-net translation and the
PT-net dynamics, is not well understood. In this section,
we address this issue by formally characterising the tech-

3What is “reasonable” could depend on various factors, rang-
ing from the semantic assumptions which were made during for-
mulation of a planning problem to the physical limitations of the
particular artifacts which are to execute the plan.

172

nique’s concurrency semantics and, subsequently, identify-
ing the search space of plans explored.

Comparison with Planning Independence

One of the standard notions of concurrency used by parallel
planners is that of independence—two operators can only
execute at the same time if they are independent.

Definition 2. Two operators o1 = 〈Pre1, Eff1〉 and o2 =
〈Pre2, Eff2〉 are independent, denoted by o1 ∼I o2, iff for all
i, j ∈ {1, 2} and i
= j, it is the case that (i) Prei ∩Effj = ∅;
(ii) Effi ∩ Effj = ∅; and (iii) Prei ∩ Prej = ∅. �
The first condition guarantees that the precondition of op-
erator oi will not be threatened by the effects of operator
oj ; the second condition is the usual post-exclusion princi-
ple (Bäckström 1998, Definition 5.2) stating that both oper-
ators do not contradict themselves in their effects; and the
last condition rules out situations requiring inconsistent pre-
conditions. Pairs of operators which do not satisfy the con-
ditions for independence have been described as eternally
mutually exclusive in the context of Graphplan techniques
(Smith and Weld 1999), as the mutex relationship persists
regardless of the state of execution. Hence, we say that a
plan π = 〈A,≺〉 is independent if for any two different op-
erator (instances) o1, o2 ∈ A such that o1 �I o2, it is the
case that either o1 ≺ o2 or o2 ≺ o1.

The concurrency semantics of plans synthesised via PT-
net unfolding differs from that of independence in two ways.
The first one, already identified in (Hickmott et al. 2007),
involves two operators sharing the same persistent precon-
dition. For instance, o1 = 〈{a}, {b}〉 and o2 = 〈{a}, {d}〉
are independent but any two events in the unfolding corre-
sponding to such operators may be considered in forward
conflict—the corresponding transitions in the Petri net take
a token from place a and therefore, due to the 1-safeness
property of the constructed net,4 they can never fire concur-
rently.

The second source of mismatch between the notion of in-
dependence and the concurrency semantics of planning via
unfolding involves two operators having common effects.
Take for instance o1 = 〈{a}, {b}〉 and o2 = 〈{d}, {b}〉.
Clearly o1 and o2 are independent. However, subject to
the PT-net translation the transitions corresponding to o1

1 =
〈{a,̂b}, {b,¬̂b}〉 ∈ μ(o1) and o1

2 = 〈{̂b, d}, {b,¬̂b}〉 ∈
μ(o2) would appear in forward conflict in the unfolding, as
they share the same precondition ̂b. (Notice in fact that the
auxiliary operators o1

1 and o1
2 are not independent).

While it is not clear how to address the latter source of
mismatch, one can resolve the former by extending the PT-
net translation to avoid conflict between operators with the
same persistent precondition. In (Hickmott et al. 2007),
it was observed that the use of read-arcs (Christensen and
Hansen 1993) in the Petri net would remove the conflict be-
tween two operators with a shared persistent precondition.
Read-arcs allow reading a token without consuming it, like

4By construction, the PT-net representation of a planning prob-
lem is 1-safe (Hickmott et al. 2007, Theorem 2), which means a
place can never contain more than one token.

reading in a database. However, as Hickmott et al. pointed
out, directly incorporating read-arcs in the PT-net would
complicate the unfolding process considerably (see (Vogler,
Semenov, and Yakovlev 1998)). So, we shall instead cap-
ture read-arc semantics with regular arcs by applying the
place replication technique described in (Vogler, Semenov,
and Yakovlev 1998). The idea behind this transformation is
that a place p is replicated as many times as there are tran-
sitions “reading” it, such that each of these transitions has
its own copy of p to “read.” For consistency, any transition
consuming/writing to p must now consume/write to all these
replications of p.

Figure 1(a) depicts the PT-net representation of a planning
problem. There, transitions o1, o2, o3 each contain place a
in their preset; subsequently, they can never execute concur-
rently. However, o1 and o2 do not change the value of a, i.e.,
a is a persistent precondition for these operators. To sup-
port concurrency between o1 and o2, place a is replaced with
places a1 and a2 such that a1 ∈ •o1∩o1

• and a2 ∈ •o2∩o2
•,

as shown in Figure 1(b). In addition, transition o3 now in-
cludes both these places in its preset, and transitions o4 and
o5 include both a1 and a2 in their postset, instead of a. See
that o1 and o2 are now concurrently enabled when places a1

and a2 contain a token, though still in forward conflict with
o3, and that a1 and a2 will have a token iff â has no token.

From now on, this paper will assume the extended PT-
net encoding for a given planning problem P , denoted
pnet+(P), which amounts to applying the aforementioned
persistent-precondition transformation to the original encod-
ing pnet(P)., i.e., pnet+(P) = persprec(pnet(P)).

Strong Independence

Let us now characterise the concurrency semantics sup-
ported by the extended PT-net encoding pnet+(P). To that
end, we first define a stronger version of independence.

Definition 3. Two operators o1 = 〈Pre1, Eff1〉 and o2 =
〈Pre2, Eff2〉 are strongly independent in a state S, denoted
by o1 ∼S

SI o2, iff o1 ∼I o2 and S ∩ (Eff1 ∩ Eff2) = ∅. �
Observe that, unlike the notion of independence, strong

independence is relative to a particular state. The extra con-
dition requires that two actions having a shared effect may
execute concurrently only if such effect is already true—the
actions are not actually updating the proposition in ques-
tion. This condition, together with those from independence,
makes strong independence analogous to monitors (Hoare
1974) for thread synchronization. Intuitively, actions are as-
sumed to “lock” the propositions they refer to, either in the
preconditions or effects. A proposition is locked in shared
mode if the action does not change its truth value (read only
access), whereas the proposition is locked in exclusive mode
if its truth value is to be changed by the action (read and
write access). This behavior may be natural, for instance,
in domains where the actual implementation of an action re-
quires knowing the state of those variables the action de-
pends on.

As done with independence, let us next define the set of
plans that are strongly independent. We use state(π, S, o) to
denote the set of all those states in which operator o in plan

173

ac b

o3

âĉ b̂

o3 o2o1

o4 o5

(a) PT-net encoding pnet(P)

a1 a2c b

o3

âĉ b̂

o3 o2o1

o4 o5

(b) Extended encoding pnet+(P)

c

a1

a2

b

e1

o1

ĉ

a1e1

e2

b̂

a2e2

o2

e3 o3 âe3

e5

o3

âe5

e6

o5

a1

a2

e6

unfolding

continues

(c) Part of the PT-net unfolding Unf (pnet+(P))

Figure 1: (a) The PT-net encoding for a planning problem; (b) the extended encoding with persistent preconditions; and (c) part
of its PT-net unfolding. In (c), a condition node x is labeled with ϕ(x); and ϕ(e) is written besides each event node e.

π may potentially be executed when a linearisation of plan
π is executed in state S.
Definition 4. Let S be a state and π = 〈A,≺〉 a parallel
plan. Plan π is strongly independent in S iff for any two dif-
ferent operator (instances) o1, o2 ∈ A such that o1 �S′

SI o2,
for some S′ ∈ state(π, S, o1), either o1 ≺ o2 or o2 ≺ o1. �

Thus, when considering the strong independence seman-
tics of concurrency, a plan is valid for a planning problem
when it solves the planning problem and satisfies the con-
currency constraints.
Definition 5. Let P = 〈V, S0, O, G〉 be a planning prob-
lem. A parallel plan π is P-valid iff π is a solution plan for
P and π is strongly independent in S0. �
Observe that it could happen that every linearisation of a
plan may legally execute in the domain (and solve the plan-
ning problem), while the plan does not meet the concurrency
semantics. The fact that a plan π is P-valid means all possi-
ble executions of π respect the strong independence notion
of concurrency. Notice also that, in solving P , we restrict
our attention to plans that are strongly independent in state
S0, the initial state of P .

Let us next prove that the unfolding of pnet+(P) actually
captures exactly the above notion of concurrency, namely,
strong independence. We start by relating the notions of
strong independence (defined at the planning problem level)
and forward conflict (defined for the unfolding).
Lemma 1. Let eo1 and eo2 be two events in Unf(pnet+(P)),
representing operators o1 and o2 in P , respectively. If
o1 ∼S

SI o2, where S = Mark([eo1] \ {eo1}), then eo1 and
eo2 are not in forward conflict.
Proof (Sketch). This is proved by showing that, considering
that these events capture particular transformations of the
original domain operators o1 and o2, if eo1 and eo2 are in
forward conflict, then either o1 and o2 were not strongly in-
dependent or the persistent precondition transformation was
not carried out. �
In words, two events in the PT-net unfolding representing
operators which are strongly independent in any state they
could be executed, will not be in forward conflict with each
other. This result is important in that it guarantees that the

events corresponding to two strongly independent operators
will not be in direct conflict in the unfolding, which im-
plies that, in principle, they may be performed concurrently.
Of course, they may end up ordered due to additional con-
straints with other events (i.e., operators).

The following two results characterise the concurrency
supported by the planning via unfolding approach, as that
of strong independence. Informally, we prove that all so-
lutions constructed by the unfolding technique are in fact
strongly independent plans and that every strongly indepen-
dent plan that solves the problem is accounted for by some
plan induced in the unfolding.

Theorem 1. Let P = 〈V, S0, O, G〉 be a planning problem.
If there exists configuration C ∈ Unf(pnet+(P)) such that
G ⊆ Mark(C), then plan πC is P-valid.

Proof (Sketch). Plan πC solves P due to Theorem 1 in
(Hickmott et al. 2007) and the soundness of the persistent-
precondition transformation. The second part involves prov-
ing that if πC were not strongly independent in S0 then ei-
ther (i) there are two events in C that are in forward conflict;
or (ii) there exists an (inconsistent) reachable marking M
and a proposition a such that M(a) ≥ 1 and M(â) ≥ 1,
implying then that there is a reachable state in which both a
and ¬a hold. �
Theorem 2. Let P = 〈V, S0, O, G〉 be a planning problem.
If plan π is P-valid, then there exists a configuration C ∈
Unf(pnet+(P)) such that G ⊆ Mark(C) and such that all
linearisations of π are linearisations of πC .

The fact that a solution may not show up itself as a plan
in the unfolding, but only implicitly within another plan, is
due to some optimality properties of the technique that are
the focus of the next section. (Theorem 2 actually follows
almost directly from Theorem 5 below.)

We close this section by noting an interesting observation
that will come handy later on. Namely, the notions of in-
dependence and strong independence coincide when at least
one of the operators is toggling. Recall that a toggling oper-
ator requires all its effects to be false before its execution.

Theorem 3. Let o1 and o2 be two operators such that o2 is
toggling. Then, o1 ∼S

SI o2 for some state S iff o1 ∼I o2.

174

Proof. (⇒) Holds trivially as strong independence implies
independence. (⇐) On the contrary, suppose that l ∈ Effo1

∩
Effo2

. Since o2 is toggling, ¬l ∈ Preo2 . Therefore, ¬l ∈
Effo1

∩Preo2 and operators o1 and o2 are not independent.�

Plan Quality: Deordering and Reordering

In this section, we discuss optimality criteria for evaluat-
ing the quality of parallel plans. Consider a parallel plan
π = 〈A,≺〉. A critical question is, are all of the ordering
constraints necessary? A less constrained plan may offer
more flexibility to the executor. Moreover, if we change the
partial order relation ≺ to allow different actions to tempo-
rally overlap, can the plan then be executed more quickly?

Bäckström (1998) studies the computational aspects of
modifying the partial order relation of a plan, via opera-
tions referred to as deordering and reordering, in order to
make the plan less constrained or to minimise its execution
time. Deordering a plan involves lifting (i.e., deleting) exist-
ing ordering constraints from the plan; whereas reordering
a plan—a stronger operation—involves the arbitrary mod-
ification of the partial order relation. Formally, consider
two plans with the same operator set: π′ = 〈A,≺′〉 and
π = 〈A,≺〉. Then, π′ is a parallel reordering of π (and
vice versa). Furthermore, π′ is a parallel deordering of π iff
≺′⊆≺. Consider, for instance, the following three plans that
are legally executable in the planning problem underlying
the PT-net encoding in Figure 1(b):

π = 〈{o1, o2, o3, o5}, {o1 ≺ o2 ≺ o3 ≺ o5}〉;
πd = 〈{o1, o2, o3, o5}, {o1 ≺ o3, o2 ≺ o3, o3 ≺ o5}〉;
πr = 〈{o1, o2, o3, o5}, {o5 ≺ o1, o5 ≺ o2, o3 ≺ o5}〉.

Here, plan πd is a parallel deordering of plan π, whereas
plan πr is a parallel reordering of plan π (and also of πd).

It is not difficult to see that that the above two operations
on plans could be used to improve their degree of flexibil-
ity as well as to make them faster. It may be possible to
deorder or reorder a plan to make it less committed, thus
increasing its flexibility and allowing more scheduling and
execution options. In the above example, plan πd is less con-
strained than π, as the former (but not the latter) allows the
concurrent execution of operators o1 and o2. In turn, this
additional “scheduling” option may yield faster overall plan
execution. For example, if operators o1, o2, o3 and o5 each
have a duration of 1 time unit, then the minimum execution
time for plan π is 4 units, whereas plan πd can be executed
in only 3 units of time. Similarly, plan πr has better proper-
ties than the original π; it has fewer operator ordering con-
straints and can be executed in 3 time units. Note that all
three plans are strongly independent in the initial state, and
all possible linearisations are executable (relative to the ini-
tial state implied by Figure 1). Conversely, the deordering
π′

d = 〈{o1, o2, o3, o5}, {o1 ≺ o3, o2 ≺ o3}〉 would allow o5

to be interleaved at any point in the plan, or executed con-
currently with any other operator; however, not all such lin-
earisations are executable and furthermore the plan is not
strongly independent in S0.

So, the idea then is to look for the optimal limits of the de-
ordering and reordering operations, in a similar way as done

in (Bäckström 1998).5 Recall from the previous section that
a plan is P-valid in our context when it is a solution for
P and respects the strong independence notion of concur-
rency. Consider then a planning problem P and a parallel
plan π = 〈A,≺〉 that is P-valid:

DF Plan π is a minimal parallel deordering w.r.t. flexibility iff
there exists no parallel deordering π′ = 〈A,≺′〉 of π that
is P-valid and such that |≺′| < |≺|.

DT Plan π is a minimal parallel deordering w.r.t. execution
time iff there exists no parallel deordering π′ of π that is
P-valid and has a shorter execution time than π.

RF Plan π is a minimum parallel reordering w.r.t. flexibility
iff there exists no parallel reordering π′ = 〈A,≺′〉 of π′
that is P-valid and such that |≺′| < |≺|.

RT Plan π is a minimum parallel reordering w.r.t. execution
time iff there exists no parallel reordering π′ of π that is
P-valid and has a shorter execution time than π.

We observe that, when considering parallel plans,
Bäckström (1998) restricts the attention to execution time
only. We, in contrast, consider both execution time and
“flexibility” in the sense of the level of operator ordering
commitments. The point is that one may not be able to ma-
nipulate the ordering constraints to get a faster plan, but it
may be possible to get one with less ordering constraints,
providing thus greater flexibility to the executor/scheduler.
Indeed it is not hard to see that DF implies DT—one cannot
make a plan faster if it is not possible to lift any constraints
at all. The converse, though, does not apply; one may be
able to lift an ordering constraint to make a new plan that is
more flexible but has the same execution time. On the the
other hand, no relation exists between RF and RT. Finally,
as reorderings are also deorderings, it is not difficult to see
that RF (RT) trivially implies DF (DT).

Optimality Guarantees

Using the above criteria, we next provide optimality guaran-
tees for the PT-net unfolding approach to planning. Specif-
ically, we show that this technique can synthesise plans
which are optimal in terms of DF, DT, and RT, but not RF.

On the Flexibility Properties of Solutions

We first concentrate on characterising the space of plans ex-
plored by the unfolding process. The following theorem pro-
vides necessary conditions for a solution plan to be repre-
sented in the unfolding, namely, it has to amount to a mini-
mal parallel deordering w.r.t. flexibility.

Theorem 4. Let P = 〈V, S0, O, G〉 be a planning problem.
If C is a configuration in Unf(pnet+(P)) such that G ⊆
Mark(C), then the plan πC is a minimal parallel deordering
w.r.t. flexibility.

5Bäckström (1998) defines notions of optimality which assess
one plan relative to another. Since we are interested here in the
assessment of single plans, we slightly adapt such notions for our
purposes. Nonetheless, it should be clear that our notions are al-
ready implicitly accounted in Bäckström’s ones.

175

Proof (Sketch). We prove that if πC = 〈A,≺〉 and π′ =
〈A,≺′〉, such that ≺′⊂≺, then π′ is not P-valid (and thus
πC is a minimal parallel deordering w.r.t. flexibility). By
Theorem 1, πC is P-valid. Remove a set of tuples from ≺
to obtain plan π′ = 〈A,≺′〉 where ≺′⊂≺. It must be that
there exists e1, e2 ∈ C, where e1, e2 correspond to instances
of operators o1, o2, such that e1

•∪ •e2
= ∅, and o1 ≺ o2 but
o1 ⊀′ o2. It must also be that X = ϕ(•e1) ∈ S where S is
some state the system could be in when the plan preceding
these instances of o1 and o2 has been executed. So, when the
system is in state S, according to π it is possible to execute
o1 and according to π′ it is possible to execute either o1 or
o2 or both concurrently. For π′ to be P-valid, it must at least
be true that any linearisation of o1, o2 is valid in S, and, that
o1 ∼S

SI o2 (since, by definition, S ∈ state(π′, S0, o2)). The
proof continues by showing that any combination of opera-
tors that could cause the construct e1

• ∩ •e2
= ∅ to appear
in C, would break one of the above conditions. �

Note that this result entails that πC is also a minimal par-
allel deordering w.r.t. execution time. Furthermore, one can
prove that all minimal parallel deorderings w.r.t flexibility
are indeed represented in the unfolding.

Theorem 5. Let P be a planning problem and plan π be
P-valid. If π is a minimal parallel deordering w.r.t. flex-
ibility, then π will be represented by a configuration in
Unf(pnet+(P)).

Proof (Sketch). This is shown by constructing a legal con-
figuration C in Unf (pnet+(P)) by induction on the maxi-
mum rank of π such that π = πC . Any plan π = 〈A,≺〉
induces a rank order on A, such that rank(o) = n iff there
exist o1, . . . , on ∈ A such that o1 ≺ . . . ≺ on ≺ o, i.e.,
operator o comes after n consecutive operators. The idea is
that operators at the same rank level may be executed con-
currently, which implies that they are strongly independent.
Lemma 1 is then applied to conclude that the corresponding
events cannot be in forward conflict. �

Theorems 4 and 5 together characterise the solution space
explored by the unfolding technique as the set of all parallel
plans that are minimal deorderings w.r.t flexibility under a
strong independence notion of concurrency.

We observe that it is straightforward to generalise these
results to all plans enumerated in the unfolding when
only executability is considered (i.e, when the goal is just
“true”). More concretely, it is possible to prove that no or-
dering constraint can be lifted from a plan induced by any
configuration in Unf (pnet+(P)) without invalidating it.

On the Execution Time of Solutions

An important feature of the planning via unfolding tech-
nique is that it can be directed to prefer plans which optimise
a specified cost function. Here, we concentrate on analysing
the case when this cost function captures execution time.
First, though, we need to provide more information on this
“directed” technique.

The reader may have observed that the unfolding pro-
cess described earlier could actually be infinite. However,
Esparza, Römer, and Vogler (1996) and McMillan (1992)

developed a way to “cut-off” the unfolding at appropri-
ate events, thus allowing us to either construct a solution
plan on-the-fly or deem the problem unsolvable. We re-
fer to this as the ERV-Fly algorithm. The algorithm works
as follows. When an event is identified for possible addi-
tion to the unfolding space, it is added to a queue of “po-
tential extensions,” according to some partial order prefer-
ence ≺[] on local configurations. Then, when event e is
actually removed from the front of the queue, if the (cur-
rent) unfolding space already contains an event e′ such that
Mark([e′]) = Mark([e]) and [e′] ≺[] [e], then e is not added
to the unfolding space—event e is deemed a “cut-off” event
as everything possible from e will be possible from e′. Hick-
mott et al. (2007) noted that since preference ≺[] essen-
tially directs the unfolding, one could improve efficiency
and find minimum-cost solutions by basing ≺[] on a cost
function consisting of the additive cost of operators con-
tained in the local configuration [e] of an event e, and an ad-
missible estimation of the cost from Mark([e]) to a goal state.
In this way, directed unfolding operates similarly to heuris-
tic search. Bonet et al. (2008) then showed that ≺[] could
alternatively incorporate an inadmissible heuristic function.
More recently, Hickmott (2008), proved that the preference
orders used to queue events and the determine cut-off events
do not need to be the same. The requirements on the queue
order were thus weakened, and this opened the door for di-
recting the unfolding to prefer configurations (i.e., plans)
with minimal the parallel cost (i.e., execution time). Let
us refer to the ERV-Fly algorithm, instantiated with appro-
priate preference relations for directing the unfolding w.r.t.
execution time, as ERV-Flymin. (Detailed descriptions of
both ERV-Fly and ERV-Flymin algorithms can be found in
the aforementioned references.)

The main result here is that by suitably directing the un-
folding process, one is guaranteed that the solutions ob-
tained are optimal parallel reorderings w.r.t. execution time.

Theorem 6. LetP be a planning problem and C be the con-
figuration identified by ERV-Flymin(pnet+(P)). Then, plan
πC is a minimum parallel reordering w.r.t execution time.

Proof. On the contrary, suppose that πC = 〈A,≺〉 can in-
deed be reordered to a plan π′ = 〈A,≺′〉 that is P-valid and
faster. Then, one could always further deorder π′ to obtain a
plan π′′ (possibly π′ itself) that is a minimal deordering for
P . Clearly, plan π′′ would have an execution time smaller
or equal to that of π′. In addition, due to Theorem 5, π′′
ought to be represented by some configuration in the unfold-
ing of pnet+(P). This, however, would contradict Corollary
4.3.5 in (Hickmott 2008), which states that the solution iden-
tified by the ERV-Flymin algorithm is minimal w.r.t. execu-
tion time over all solutions represented by configurations in
the unfolding of the PT-net translation of P . �

As a matter of fact, one could show a much stronger
result: procedure ERV-Flymin(pnet+(P)) always outputs a
parallel plan solution π that is strongly independent in S0

and such that π has minimum execution time over all P-
valid plans. In other words, one cannot produce a faster plan
even by using a different set of operators.

One may argue that the above result is not signifi-

176

cant if plans can be optimally reordered in a tractable
way. Bäckström proved that deciding whether a plan is
a minimum parallel reordering is, in fact, NP-complete
(Bäckström 1998, Theorem 6.7). However, that result was
based on an independence notion of concurrency (referred
as simple concurrency). By appealing to the special case of
toggling actions, we show next that the problem does remain
hard when strong independence is considered.

Theorem 7. The problem of deciding whether a plan π is a
minimum parallel reordering w.r.t. strong independence for
a planning problem P is (still) NP-hard.

Proof (Sketch). It follows from Theorem 3 above and Theo-
rem 7.10 in (Bäckström 1998) which states that the decision
problem remains NP-hard even when restricting to toggling
operators under the independence notion of concurrency. �

Conclusion

The technical contributions of this paper are threefold.
Firstly, under a suitable transformation of operators with
persistent preconditions, we characterised the type of op-
erator concurrency captured by the unfolding technique by
defining the so-called notion of strong independence. We
proved that the plans captured in the unfolding space are
exactly those that respect strong independence (Theorems
1 and 2). Secondly, we characterised the space of solu-
tions explored by the unfolding technique, as the set of plans
that are optimal deorderings w.r.t flexibility (Theorems 4 and
5). This result gives insight to the form and size of the
search space explored, which is currently understood infor-
mally. Finally, and most importantly, we showed that di-
recting the unfolding appropriately guarantees that the solu-
tion obtained is an optimal reordering w.r.t. execution time
(Theorem 6). This result is significant because it can be
proved that reordering a plan to achieve time optimality is
not tractable (Theorem 7, by means of Theorem 3).

The results of this paper are applicable to temporal plan-
ning, if we consider it to be classical planning extended to
actions with (arbitrary) durations that may temporarily over-
lap. Meanwhile, plan flexibility is still relevant to (strict)
classical planning in situations where increasing the num-
ber of possible linearisations is of value, for example, at
scheduling time. It is worth noting also that we have re-
stricted the analysis to what Bäckström (1998) refers to as
definite parallel plans. In such plans, all un-ordered op-
erators may temporally overlap; there is no notion of un-
ordered operators which can be arbitrarily interleaved, but
can not be executed concurrently. Going beyond definite
plans is, as far as we know, currently not supported by cur-
rent PT-net unfolding technique, and would require meta-
reasoning about multiple configurations.

Further research is needed to more deeply understand the
practical difference between independence and strong in-
dependence, as well as the complexity implications of the
place replication technique. A starting point for the latter is
the work of (Vogler, Semenov, and Yakovlev 1998), which
gives some insights on the effect of using transition loops
and place replications. In fact, their results (page 3) tell
us that, without place replication of a common persistent

precondition, there is a combinatorial explosion in the un-
folding caused by the interleaving of the “apparently” non-
concurrent actions which share this common persistent pre-
condition. So, place replication can result in a substantially
smaller unfolding search space. Said so, the initial PT-net
encoding would be larger when places are replicated.

Unfortunately, the planning literature reveals few attempts
to evaluate and compare the flexibility properties of parallel
planning approaches. Two notable exceptions are Nguyen
and Kambhampati (2001)’s empirical comparison of the
“flexibility” of plans returned by various planners, as mea-
sured by the number of constraints between operators, and
the solid formal framework developed by Bäckström (1998),
on which the work presented here is based.

We believe that a formal understanding of the flexibility
properties of partial-order approaches to automated planning
is necessary to develop and exploit the full potential of the
area, and that this work provides such understanding for one
of the latest techniques in the field.

Acknowledgements
We would like to thank Patrik Haslum and Lawrence Cavedon for
providing us with detailed feedback that helped improve the paper.
We also thank the anonymous reviewers for their good suggestions.
The current work has been supported by Agent Oriented Software
and the Australian Research Council (under grants LP0882234 &
LP0560702), and the National Science and Engineering Research
Council of Canada (under a PDF fellowship).

References
Bäckström, C. 1998. Computational aspects of reordering plans.
Journal of Artificial Intelligence Research 9:99–137.
Bonet, B.; Haslum, P.; Hickmott, S.; and Thiébaux, S. 2008.
Directed unfolding of Petri nets. In Transactions on Petri Nets and
Other Models of Concurrency I, volume 5100 of LNCS. 172–198.
Christensen, S., and Hansen, N. D. 1993. Coloured Petri nets
extended with place capacities, test arcs and inhibitor arcs. In
Proc. of Petri Nets’93, 186–205.
Esparza, J.; Römer, S.; and Vogler, W. 1996. An improvement of
McMillan’s unfolding algorithm. In Proc. of TACAS’06, 87–106.
Hickmott, S.; Rintanen, J.; Thiébaux, S.; and White, L. 2007.
Planning via Petri net unfolding. In Proc. of IJCAI, 1904–1911.
Hickmott, S. 2008. Directed Unfolding: Reachability Analysis
of Concurrent Systems and Applications to Automated Planning.
Ph.D. Dissertation, University of Adelaide, Adelaide, Australia.
Hoare, C. A. 1974. Monitors: an operating system structuring
concept. Communications of the ACM 17(10):549–557.
McMillan, K. L. 1992. Using unfoldings to avoid the state ex-
plosion problem in the verification of asynchronous circuits. In
Proc. of CAV’92, 164–177.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial order
planning. In Proc of IJCAI’01, 459–466.
Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. of IJCAI’99, 326–333.
Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000. Bridging the
gap between planning and scheduling. Knowledge Engineering
Review 15(1).
Vogler, W.; Semenov, A. L.; and Yakovlev, A. 1998. Unfolding
and finite prefix for nets with read arcs. In Proc. of CONCUR’98,
501–516.

177

	ICAPS09
	Contents
	Index
	Help
	Terms
	ICAPS Conferences

