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Abstract

The verification of Extended Entity Relationship (EER) dia-
grams and other conceptual models that capture the design
of information systems is crucial to ensure reliable systems.
To scale up verification processes to larger groups of experts,
Human Computation techniques were used focusing primar-
ily on closed tasks, which constrain the number and variety of
reported defects in favor of easy aggregation of derived judge-
ments. To address this limitation of closed tasks, in this paper,
we investigate EER verification (as instance of a broader fam-
ily of model verification problems) with open tasks to extend
the range of collected results. We also address the challenge
of aggregating results of open tasks by proposing a follow-
up HC task for defect validation. We evaluate our approach
for HC-based EER Verification with open tasks in a set of
experiments conducted with junior developers and show that
(1) open tasks allow collecting a variety of insights that go
beyond a manually built gold standard while still leading to
good performance (F1=60%) and (2) HC-based validation
can be reliably used for validating the results of open tasks
(F1=84% compared to expert validation).

1 Introduction

As online, distributed work becomes the new normality,
understanding how cognitively complex problems can be
solved with human computation (HC) approaches as an al-
ternative to on-site activities becomes important. A fam-
ily of such complex problems that are currently primar-
ily performed on-site is the verification of conceptual mod-
els which are key both in designing information systems
(e.g., various system diagrams) and in representing relevant
knowledge (e.g., domain models such as ontologies). Ensur-
ing the quality of these models is of major importance as it
has a direct effect on the enabled information system.

We hereby focus on the concrete problem of Extended
Entity Relationship (EER) diagram verification. An EER
(Fig. 2b) is a high-level model that describes entities, at-
tributes and relations between entities for database de-
sign (Thalheim 2009). The correctness of an EER model is
success-critical for information systems because defects can
have a major impact on derived models, database structures,
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queries and code. Defects detected late in the (software) en-
gineering project can result in high rework effort, cost and
project delays (Boehm and Basili 2005). Therefore, the ver-
ification of (EER) models is key to mitigate the risk of high
rework. Yet, current EER verification processes performed
on-site by expert groups suffer from limited expert avail-
ability, low scalability and lack of tool support for advanced
process control (Winkler et al. 2017). HC techniques could
address these issues by scaling up the process through distri-
bution to a larger base of junior software developers working
off-site through online, distributed work.

A number of works have investigated the use of HC
methods for the verification of EER diagrams (Sabou et al.
2018b) and more broadly of conceptual domain models such
as ontologies (Acosta et al. 2016; Mortensen et al. 2016).
These works typically adopt a HC task design based on
closed tasks, which constrain workers to choose between a
limited number of categories related to the quality of model
elements. While this approach facilitates the easy aggrega-
tion of results, by design, it limits the ability to capture in-
sights from workers that go beyond what task owners expect
to elicit. As an alternative, open tasks, in which contribu-
tors can provide their observations in (nearly) free text, are
better suited to collect a broader set of answers and subtle
insights (Eickhoff and de Vries 2013), yet the aggregation
of their results is challenging. In this paper, we investigate a
HC design based on open tasks and aim to answer the fol-
lowing research questions:

• RQ1. Model analysis. To what extent can open tasks cap-
ture expert insight while eliciting high quality contribu-
tions for defect detection and reporting?

• RQ2. Defect report validation. To what extent can HC
tasks validate and support the aggregation of defect re-
ports obtained with open tasks?

To answer these research questions, we propose an open
task based HC approach for EER model verification and
make use of it in an expert-sourcing setting to collect free-
text defects about an EER model. To foster the interpreta-
tion of the collected output as well as follow-up aggregation
steps, an expert (1) evaluates the quality of proposed defects
and (2) aligns correct defects to known True Defects in the

132



model. Based on the expert evaluation we derive insights re-
lated to RQ1 in terms of the correctness of the proposed de-
fects (both individually and after aggregation) and the level
to which these go beyond a known set of defects. Secondly,
to answer RQ2, we introduce a further HC task in which
expert-sourcing is used to evaluate the quality of the defects
collected with open tasks and then compare this quality to
the validation results of the expert. Accordingly, the paper
makes the following contributions:
• We report on an approach to collect defect reports using

open tasks and find that such an approach leads to high
quality results while eliciting also defects beyond those
known by the task owners;

• We present an approach to evaluate the defect reports ob-
tained with open tasks through a follow-up HC task and
show that this leads to comparable performance (preci-
sion/recall) with those obtained by an expert evaluator.
After discussing related work (Sect. 2), we provide details

of the EER diagram verification problem (Sect. 3) and our
proposed approach to collect and verify defects (Sect. 4).
Sections 5 and 6 report on the experiment setup and discuss
the obtained results. Sect. 7 concludes the paper.

2 Related Work

The use of crowdsourcing techniques is widely spread to
support tasks in all phases of the Software Engineering Life-
Cycle (Mao et al. 2017). Yet, EER diagram verification has
received little attention beyond our earlier work where it was
addressed by using closed tasks (Sabou et al. 2018b).

The situation is similar in Knowledge Engineering where
an increasing number of approaches focus on solving a
similar problem of verifying domain models (Sabou et al.
2018a). Domain (as opposed to system) models such as on-
tologies, taxonomies or knowledge graphs need to be veri-
fied for their correctness, as the following works exemplify.

With the goal of evaluating the quality of triples from
Linked Data Knowledge Graphs, namely DBpedia (Auer et
al. 2007), Acosta et al. (2016) enlist both experts and lay-
man crowds. A two-stage Find-Verify workflow is used: first,
workers select one of three possible quality issues that could
apply for a given triple (i.e., value, link, datatype); second,
they solve tasks in jobs focused to individual quality issues
and provide a binary judgement of the triples’ correctness
with respect to that issue. The goal of Mortensen et al. (2015;
2016) is verifying the correctness of subsumption relations
in large medical ontologies.The verification tasks contain the
relation to be evaluated described in natural language and
the definition of concepts connected by that relation. Work-
ers make a binary choice on the correctness of the relation
and provide an explanation. Wohlgenannt et al. (2016) pro-
pose a plugin for a popular ontology development tool that
allows ontology engineers to easily create HC tasks for veri-
fying various aspects of the ontology such as the domain rel-
evance of terms or relation correctness. All generated tasks
are closed tasks that collect binary decisions.

To conclude, both in Software and Knowledge Engineer-
ing, HC approaches that verify some aspect of a conceptual

models (EERs, ontologies) use closed tasks to collect (bi-
nary) decisions about the correctness of a model element.

While closed task types are widespread in crowdsourcing
projects (Jain et al. 2017) thanks to the ease of aggregating
their results, open task designs that provide higher worker
autonomy for performing the task have been shown to (i)
lead to higher intrinsic worker motivation as workers can
satisfy needs of self-expression and experience feelings of
free choice and commitment (Moussawi and Koufaris 2013)
and (ii) foster creativity while deterring cheaters (Eickhoff
and de Vries 2013). Therefore, based on the works above, in
this paper, we go beyond the current practice of using closed
tasks for solving model verification problems and investigate
open tasks instead, with a focus on the concrete problem of
EER model verification.

3 EER Diagram Verification

EER diagram verification focuses on checking how an
EER diagram confirms to a reference document, e.g., a tex-
tual system specification, which describes a target software
system. As a result of this verification process, a number of
defects are identified pinpointing modeling errors in the di-
agram. For example, for our experiments we verify the EER
diagram of a restaurant ordering system in terms of a corre-
sponding system specification (see snapshots in Fig. 2a,b).
Formally, the EER diagram verification refers to checking
whether an EER model M covers completely and correctly
a frame of reference (FR), such as a specification document.
It is a function γ that given M and FR returns a list D of
defects in M : γ(M,FR) → D.

Given its importance, the EER verification task is per-
formed in practice by following a number of established
methods and processes. In particular, Software Reviews and
Software Inspections are well-established approaches for de-
tecting defects in (Software Engineering) artifacts efficiently
and effectively (Aurum, Petersson, and Wohlin 2002). In the
context of Software Inspection, important process steps con-
sist of an individual defect detection process step, executed
by a team of experts and a team meeting to validate and
aggregate individual candidate defect lists with the goal to
converge to an agreed set of (true) defects (Laitenberger and
DeBaud 2000). Reading techniques support individual in-
spectors in their defect detection tasks by providing guide-
lines for defect detection, e.g., checklist-based, perspective-
based, usage-based reading techniques (Kollanus and Kosk-
inen 2009). Several authors report the use of inspections and
reading techniques for EER-diagram verification (Hunger-
ford, Hevner, and Collins 2004; Wohlin and Aurum 2004).

Although traditional software inspection has many bene-
fits for defect detection, it also faces limitations such as: (i)
lack of experts, which are expensive and scarce resources,
to conduct defect detection and validation; (ii) limited scal-
ability of inspection processes typically scheduled for two
hours thus constraining the scope of the inspection artifacts;
(iii) challenging inspection control and coordination, due to
lack of suitable tool support which leads to inspection pro-
cesses being planned and executed without in-process feed-
back, e.g., for clarifications or coordination (Winkler et al.
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2017). HC techniques could help to overcome these limi-
tations by involving groups of junior software developers
working off-site, scaling up the process by distributing the
tasks over a larger expert base and by providing tooling for
in-process control and improved coordination.

4 HC Approach to EER Verification

Based on traditional software inspection (Aurum, Peters-
son, and Wohlin 2002), we propose the Crowdsourced Soft-
ware Inspection (CSI) process to the problem of EER dia-
gram verification (Fig. 1) including four steps: (1) CSI Plan-
ning, where a moderator plans an inspection task and selects
the corresponding artifacts for defect detection (M ,FR); (2)
Model Analysis for individual defect detection to collect can-
didate defects reported by individual workers (Sect. 4.1);
(3) Defect Validation, where a group of workers validates
reported candidate defects (Sect. 4.2); and (4) Follow Up
where the moderator uses the inspection result for initiat-
ing defect repair and decision making, typical activities of
software inspections (Aurum, Petersson, and Wohlin 2002).

CSI 
Planning

Model 
Analysis

Defect 
Validation

Follow-
Up

1 2 3 4

Moderator CSI 
Management

CSI worker CSI 
Management

CSI worker
Moderator

Inspection 
Artifacts, 

Scope

Individual 
Defect 
Reports

Validated &
Aggregated

Defects

Figure 1: Crowdsourced Software Inspection (CSI) Process.

4.1 Model Analysis Tasks

In order to break up the EER verification problem into
smaller tasks that are amenable to HC, we see an EER model
as a collection of model elements (me) and focus the inspec-
tion of the model M on the inspection of its elements. For-
mally, M = ME ∪MR ∪MEA ∪MRA ∪MRM , where:

• ME is the set of all entities, e.g., customer, order, invoice;
• MR is the set of relations declared between entities, e.g.,

(customer, orders, order);
• MEA is the set of all entity attributes, e.g., name in cus-

tomer.name;
• MRA is the set of all relation attributes, e.g., date in

(customer, orders, order).date;
• MRM is the set of all relation multiplicities, e.g., 1, 0..n

in customer(1), orders, order(0..n)).

Task Input. According to this approach of splitting the
EER diagram verification task, we implement a Model Anal-
ysis Task. We prepare individual HC tasks that focus on a
combination of a model element me and a corresponding
snippet from the reference document FR. To that end, the
identification of mes was performed manually by extract-
ing model elements that are mentioned in the specification
document. Spurious mes from M were not part of the input
thus curtailing the identification of Spurious type defects.
Subsequently, mes are mapped to suitable evidence. In our
case, we assign to each me a paragraph (corresponding to

a scenario sc) in the specification document, where the me
is described. Therefore, the input to the task are (me, sc)
pairs and the model M . Please refer to Fig. 3 (explained in
Sect. 6) for an overview of the data processing workflow of
the data items introduced in this section.

Task Design & Output. A HC-task focuses on an me that
is judged, showing the model M as well as the scenario in
which the me appears (Fig. 2a-c). Workers are first asked
to identify if a specific me is modeled in M and whether
there are defects related to that me. In this case, the de-
fect(s) should be specified in a textual format using a pro-
posed structure that includes the following fields:

• expected modeling, i.e., the expected correct me, e.g.
skiingT icket.timeStamp is expected to be a key;

• defect description in the current modeling of the me, e.g.,
skiingT icket.timeStamp is not a valid key;

• defect severity, which can be critical, important or minor.

As output of this task, for each (me, sc) pair, the analy-
sis workers (wa ⊂ Wa) either identify that (i) no defect has
been found in the model, leading to an individual no-defect
report INDR(me, sc, wa) or (ii) one (or more) defect can-
didate(s) have been found, leading to an individual defect
report IDR(me, sc, wa, Dtext), where Dtext should com-
ply to the defect description template (see Fig. 2d).

4.2 Defect Validation Tasks

While open tasks foster collecting unbounded worker in-
sight, the aggregation of the collected textual defect reports
(IDRs) cannot be performed automatically. Therefore, an ad-
ditional validation stage is introduced, in which collected
IDRs are (i) validated for their correctness (i.e., that they
indeed represent defects) and (ii) aligned to a corresponding
True Defect (TD) from a known gold standard for that me in
order to enable aggregation of the collected judgements. We
experiment with two approaches for defect report validation:

• expert-based approach (Fig. 3/step 2), in which a domain
expert manually inspects IDRs and assigns them a cor-
rectness value and possibly a corresponding TD;

• crowd-based approach (Fig. 3/step 7), in which workers
(Wv) validate and assign an IDR to a TD. In the following,
we discuss the design of the Defect Validation task.

Task Input are the IDRs collected during Model Analy-
sis. Additionally, as preparation for the TD assignment task,
for each IDR, we select a TD that is declared at that me. Al-
ternatively, if there is no TD declared at the me, we identify
a TD declared at an mes in immediate vicinity (e.g., enti-
ties and their attributes; relations, their attributes and mul-
tiplicities) based on observations that several IDRs declare
defects at neighbouring entities (see Sect. 6.1). Therefore,
one IDR may be sent for validation with several TDs. In
these cases, as many tasks are created as corresponding TDs
found. For example, there are a number of IDRs declared
for the relation (order, orderFoodItem, FoodItem), yet
no TD refers to this me in the True Defect Catalogue. At the
same time, there are three TDs declared in the vicinity of the
relation (see Table 1) referring to its multiplicity (D23), to
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(a) (c)

(b) (d)

Figure 2: (a) An evidence scenario; (b) the EER model with defects; (c) Model Analysis focus entity and questions; (d) Model
Validation focus entity, defect report at this element to be validated and questions for guiding the validation process.

the missing relation attribute number (D25) and the super-
fluous date attribute (D24). Therefore, each IDR declared at
the relation level might refer to one of the TDs D23, D24
or D25. Accordingly, each such IDR is verified as part of
3 different tasks, one for each TD. IDRs for which no TD
is declared at the me or neighbouring mes are not sent for
crowd-validation, as they are deemed potentially incorrect.

Task Design & Output. We design a task (see
Fig. 2a,b,d), which depicts the evidence scenario, the EER
diagram, the model element that is validated and a Dtext

that was collected as part of a model analysis task. Through
question Q1 (Fig. 2d) workers assess the truth value of the
IDR. If the IDR is considered correct, a follow up question
Q2 is displayed which depicts a potential TD description that
the IDR might capture, allowing workers to specify whether
the IDR refers to the TD or not. Alternatively, if a decision
cannot be taken, a justification is given. By interpreting the
responses to these questions, the output of this task is an in-
dividual defect validation IDV (IDRme, wv, C, [TDid]) of
an IDR reported at a me by a validation worker (wv), with
labels assigned that indicate the correctness of the IDR (C),
and, if a suitable TD was found, the identifier of the TD
(TDid).

5 Experimental Setup

To assess the quality of judgements collected with open
tasks (RQ1) and to investigate the feasibility of crowd-based

validation (RQ2), we set up a large-scale controlled experi-
ment in an academic environment following guidelines pro-
posed by (Wohlin et al. 2012). We collected data in three
experiment runs at an academic course on Software Quality
Assurance: a first Model Analysis experiment involved 54
participants and provided the input for two Defect Valida-
tion experiments with 54 and 75 participants respectively.

Experiment Process All experiment runs followed a simi-
lar process: (a) a preparation phase, focuses on setting up the
controlled experiments including material preparation and
tooling, tested in pilot runs to ensure the correctness and the
feasibility of the experiment; (b) execution and data collec-
tion phases focus on model analysis (first experiment) or de-
fect validation (second and third experiment); and (c) data
analysis and interpretation include evaluation steps for in-
vestigating RQ1 and RQ2 (see Fig. 3). Participants received
30 minutes training on model analysis and defect valida-
tion tasks and the CrowdFlower application, which provided
the corresponding HC tasks. For training, we used a similar
setup but focused on a different example from a known ap-
plication domain (i.e., processes in a parking garage). Both
model analysis and defect validation tasks were scheduled
for 60 minutes working time.

Experiment Participants All experiments were executed
in an academic environment at TU Wien, involving a total
number of 183 participants. The authors are aware of is-
sues with student experiments (Runeson 2003). However,
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Table 1: Example defects from the True Defect Catalogue.
ID Model Element (me) Defect Description

D23 Relationship multiplicity should be
Order-food item fooditem(0..n)

not fooditem(1..n))
D24 Relationship.attribute attribute is superfluous

Order-food item.date and misleading
D25 Relationship.attribute attribute is missing

Order-food item.number

we applied an experience questionnaire prior to all experi-
ment runs to capture background knowledge with focus on
(a) industrial project experience in years and (b) software
development experience based on a Likert-scale from 0 (no
experience) to 5 (professional experience). Analysing indus-
trial project experience, 7 participants (4%) did not report
any project experience, 134 participants (73%) reported 1-5
years of industrial project experience, 31 participants (17%)
reported 5-10 years of industrial project experience, and 11
participants (6%) were involved in industry projects since
more than 10 years. With focus on software development
experience, 16 participants (9%) assessed themselves as less
experienced, 122 participants (66%) reported a medium ex-
perience level, and 45 participants (25%) assessed them-
selves as highly experienced. These analysis results show
that most of the participants had several years of experience
based on individual (part-time) working practices and, there-
fore, can be considered as junior software developers.

Experiment Material We applied a study package that
has been intensively reviewed by experts and used in sev-
eral experiment runs containing the following material.

Questionnaires. To capture background knowledge of
participants, we applied an experience questionnaire prior
to the study. After completing the model analysis and de-
fect validation tasks, we applied feedback questionnaires to
capture subjective experiences from participants.

Textual requirements. Study material was a textual refer-
ence document, i.e., a system requirements specification in-
cluding 3 pages in English language, consisting of 7 scenar-
ios and approximately 120 mes, where scenarios were used
as frame of reference in both task types.

EER model. We used a medium-scale EER Diagram con-
sisting of 9 entities, 13 relationships and 32 attributes.

True Defect Catalogue is a manually collected set of True
Defects (TDs) in the EER model (see examples in Table 1).
Note that the textual requirements are considered to be cor-
rect. These defects were introduced by the experiment team
(including some of the authors) based on pilot trials and
complemented with typical defects that occurred in context
of such applications during a software engineering process.
For each TD we specify: (1) a unique identifier id, e.g., D11;
(2) the me it refers to, e.g., customer.name; (3) a defect
type, which can be one of Missing (the me is not modeled),
Wrong Key (an entity attribute is not unique and should
not be a key), Superfluous (an entity is modeled although
it is not relevant), Wrong RelM (wrong relation multiplic-
ity declared) or Wrong (a general defect); and (4) a descrip-

tion, e.g., “Entity.Attribute Customer.Name: Customer name
is not a valid key, not unique”. The EER model contains 35
seeded defects, of types Missing (13), Wrong Key (5),
Wrong RelM (7), Wrong (1) and Superfluous (9). In
the experiments, these defects represent the gold standard
and serve for assessing the quality of the collected data.

Data Collection, Analysis and Variables Experiment
data has been organized and collected via the CrowdFlower
crowdsourcing platform. Independent variables are the set
of defects seeded in the EER model, defect types (i.e., such
as missing, wrong, and superfluous information), tool con-
figuration (i.e., configuration of tasks and jobs in Crowd-
flower and the assignment to participants) and the study
treatment (i.e., the application of the HC-based EER Ver-
ification approach). Dependent variables are the effort for
task execution (not evaluated in this paper), the number of
reported and validated defects and true defects. We compute
the precision, recall and F-measure metrics.

6 Experimental Results

Fig. 3 depicts the main processing steps taken to interpret
the experimental data. Steps 1 to 6 focus on the evaluation of
the model analysis task as per RQ1 (Sect. 6.1), while steps 7
to 10 cover the evaluation of defect report validation (RQ2).

6.1 Model Analysis Results

1. Model Analysis was performed for 120 mes. The out-
put consisted of 1,549 judgements that could be classified
either as IDRs (849) or INDRs (700), which were processed
separately in Step2 and Step3 as discussed next. Several
IDRs provided more than a defect, so these were split prior
to the next step, resulting in 963 atomic IDRs.

2. Expert-Based Defect Validation during which an ex-
pert evaluated the 963 atomic IDRs. Firstly, he assigned a
correctness value (C) of True Positive (TP) to 408 IDRs de-
scribing a true defect and False Positive (FP) to 516 IDRs
that did not identify a true defect. 39 IDRs were correct de-
fects that were not identified in the TD catalog (considered
as TPs for our analysis). These IDRs are particularly inter-
esting as they show that open tasks allowed to elicit results
that went beyond an expert-group created gold standard.

Secondly, the expert assigned to 408 TPs a corresponding
True Defect id from the TD catalogue. In line with software
quality assurance goals of maximizing the number of defects
detected, the expert took a lenient approach when assigning
TDs to IDRs: he assigned a TD to any IDR that correctly
identified that TD even if parts of the IDR might have been
incorrect (e.g., the explanation was incorrect or the TD did
not strictly refer to the focus me).

The TD assignment revealed a recurring phenomenon of
workers tending to declare defects not strictly at the focus
me, but also at neighbouring mes and randomly (in 264
cases). For example, when asked to judge an me of type
entity, workers reported defects related to the entity’s at-
tributes (which in our conceptualisation are different mes):
during the inspection of the FoodItem entity, defects were
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Figure 3: Data collection and processing steps for answering the research questions of the paper.

declared related to the entity attributes foodItem.price and
foodItem.designation. The same phenomenon emerges
for relations and relation-attributes. IDRs referring to neigh-
bouring mes were also considered a correct TP.

Inter-expert agreement of 92% was reached on a number
of 25 randomly selected judgements evaluated by a second
expert. Due to this high agreement, most of the validation
was performed by a single expert.

3. Automatic INDR Evaluation compares those judge-
ments that did not highlight a defect against the TD cata-
logue and assigns a correctness value (C) as follows: INDRs
declared for a me for which no TD is available, are consid-
ered True Negative (TN), i.e., the worker correctly identi-
fied no modeling error; otherwise, if a TD is known at the
me, then the INDR is a False Negative (FN), i.e., the worker
failed to identify a known defect.

From 700 INDRs, 622 (89%) were classified as correct
TNs and 78 (11%) were assigned to me’s where there is
a known defect (FN). An analysis of the “ignored defects”
(FN) showed that they affected 20 of the 120 input mes.
In some cases, such FNs are due to low-worker perfor-
mance. However, in a number of cases our analysis re-
vealed that these FNs occur when there are ambiguities in
the specification or the labels of the me’s. A good example
is storage.date, at which a Wrong Key defect is expected.
Although 8 workers have identified this defect, 12 workers
did not. Some of these explained their decision due to lack of
clarify of the specification, e.g., “not knowing the exact pur-
pose of the storage entity, I cannot tell whether the primary
key on the date field is correct or not”. This shows another
benefit of open tasks: enabling workers to pinpoint potential
issues with the quality of the input data.

4. Evaluation of Individual Judgements is performed
based on judgement correctness values (TP, FP, TN, FN) as-
signed by the expert (step 2) and through automatic INDR
analysis (step 3). We compute a Precision (TP/(TP+FP))
of 46%, showing that about half of the identified defects
are correct (see Table 2). Recall (TP/(TP+FN)) is 85%,

P R F1 Acc

IDRs (step 4) 46% 85% 60% 64%
ADRs (step 6) 44% 87% 59% 66%
IDVs C (step 8) 82% 66% 73% 65%
IDVs TD (step 8) 88% 38% 53% 53%
ADVs C (step 10) 87% 81% 84% 77%
ADVs TD (step 10) 97% 53% 69% 63%

Table 2: Overview of performance evaluation metrics.

thus workers identified a high number of the defects that
could be found. F1 measure (2PR/*P+R)) is 60%. Accuracy
((TP+TN)/(TP+TN+FP+FN)) is 64%, which shows that the
workers provide a correct judgement in more than half of the
judged IDRs. The analysis of worker performance in terms
of F1 (Fig. 5a) shows a tendency to perform with F1 above
0.5, however, there are several low performers as well.

We also investigate the extent to which 35 TDs of the
gold standard were identified, by displaying how often each
TD appears in the set of IDRs (Fig. 4, blue bars). The
TDs are also grouped by their type. We find a high cov-
erage of the TD Catalogue, with 31 TDs (out of 35) be-
ing identified as follows. All defects of type Wrong Key
and Wrong RelM have been identified with a high fre-
quency (each defect identified at least 10 times), indicating
that these are the defect types that are easier to find. For
Missing defects, 10 (out of 13) defects were identified.

Interestingly, 8 out of the 9 Spurious defects were also
identified (although with lower frequencies of < 10), even if
the HC task was conceived such that workers were not ex-
plicitly asked to consider the spurious elements in M . Ad-
ditionally, 39 TP defects were found that indicate defects
beyond those in the GS. These two defect categories (TP,
Superfluous) indicate that open tasks lead to results be-
yond the gold standard. This is particularly useful in soft-
ware inspection, where identifying as many defects as pos-
sible is important.
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Figure 4: Frequency of identified IDRs (blue/lower bars) and ADRs (orange/upper bars) per defect type Missing (D32-D22),
Superfluous (D54-D81), Wrong (D91), Wrong Key (D92-D53), Wrong RelM (D43-D73) and TruePositives (TP).

5. Aggregation of Individual Judgements is performed
to identify aggregated defect reports (ADR). Through this,
we aim to assign to each (me, sc) pair a final defect
type based on majority agreement across workers, that is
ADR(me, sc,Dtype). A Dtype can be (i) a TD id; (ii)
NoDefect (if no defect was reported by the majority of work-
ers) or (iii) Undecided (in case of a tie). Currently, we apply
a majority voting approach, taking the label with the high-
est number of votes. For the 120 mes, we converge to 27
correct defects reported, 23 overlapping with the TD cata-
logue and 4 TPs “emerging” from the crowd. Also, for 52
eme a NoDefect label could be converged to, which in 48
cases was correct (TN) and only in 4 cases incorrect (FN),
thus showing a very good performance in identifying what is
not a defect. Furthermore, the 4 FNs result from the 39 FNs
we identified at step 3 and all refer actually to mes where
the specification was ambiguous and could be an important
information to consider in order to revise not only the model
but also the specification. For 34 mes, incorrect defects were
reported (FP). For 7 mes, no decision could be reached.

6. Evaluation of Model Analysis With the final set of
aggregated defect reports which constitutes the crowd-
response to the model analysis task, we can evaluate the
quality of the model analysis by contrasting the obtained re-
sults with the True Defect Catalogue. We reach P=44.3%;
R=87.1%; Acc=66.4%; F1=58.7%.

In terms of the coverage of the TDs, Fig. 4 (orange bars)
shows which defects appear in the aggregated set (also in
comparison with the IDR set discussed at Step4). We iden-
tified 17 out of 35 defects in the TD catalogue. Some defect
types were easier to identify than others. Namely, we identi-
fied: all Wrong RelM defects; 8 (out of 13) Missing de-
fects; 2 (out of 5) Wrong Key defects. The only Wrong
defect was not identified nor were the 9 Spurious defects.
While 11 defects were only found once, 6 defects were iden-
tified on two mes by virtue of reporting defects at neighbour-
ing mes. Additionally, 4 new defects (TPs) emerged in the
final set as possible extensions to the TD Catalogue.

6.2 Defect Validation Results

7. Crowd-Based Defect Report Validation focused on a
subset of 310 individual defect reports (IDR). These IDRs
were matched to the ids of TDs (declared at the me and
neighbouring mes) thus resulting in 438 tasks. 125 workers
participated and derived 2565 individual defect validation
(IDV) judgements, from which 781 IDVs also assigned a
potential corresponding TD to 233 of the validated IDRs.

8. Evaluation of Individual Validations aims to find out
how individual workers perform, when assessing the IDRs.
To that end, we compare their judgements with the expert
based evaluation of IDRs in two separate analysis.

First, we investigate the performance of identifying the
correctness value of an IDR (i.e., agreement between work-
ers and expert as of whether an IDR is a correct defect or
not) and reach P = 82%, R = 66%, F1 = 73%, Acc= 65%, for
the overall judgement set. Per worker performance as F1 in
Fig. 5b shows that workers perform better at defect verifica-
tion rather than defect identification tasks (shown in Fig. 5a).
In terms of factors that might have an influence on worker
performance, we found that: (i) for the judged me types, de-
fects related to entity attributes lead to highest performance
(ii) for the judged defect type, performance is highest for
Wrong Key type defects while the performance is compa-
rable for defects of type for Missing and Wrong RelM .
Fig. 5c shows variations of F1 across individual defects, in-
dicating that, in an industrial setting, certain defect type re-
ports should be judged by a senior expert, while other defect
types might be solved in a distributed setting with junior de-
velopers (in our case Wrong Key and Wrong RelM ).

Second, we assess the performance in assigning the
correct TD ids and obtain P=88%, R=38%, F1=53% and
Acc=53%, thus showing that the assignment of the correct
defect id can be achieved with a high precision but at the
expense of recall.

9. Aggregation of Individual Defect Validations leads to
an aggregated defect report validation (ADV ), assigning to
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(a) (b) (c)

Figure 5: Worker F1 performance for (a) model analysis; (b) defect validation and (c) the validation of concrete TDs grouped
per type: black=Missing; red=Superfluous; green=Wrong; blue=Wrong Key; cyan=Wrong RelM .

each IDR a correctness value (whether it is a defect or not)
and potentially a defect type. Currently, we apply a major-
ity voting approach where each IDR is assigned to the most
frequent opinion. From the 438 tasks, we reached a decision
for 365 tasks while 73 tasks remain undecided.

10. Evaluation of Aggregated Validations in comparison
with the expert validation was split on (i) the task of as-
signing the correctness values, leading to P=87%, R= 81%,
F1=84%, Acc=77%, showing a high quality of the aggre-
gated results with respect to the expert; (ii) the task of also
assigning equivalent TDs, which lead to P=96.7%, R= 53%,
F1=68.7%, Acc=63%. These results indicate that it would be
feasible to replace expert based validation by the follow-up
HC task, especially for deciding the IRD’s correctness.

7 Conclusion and Future Work

In this paper, we focused on addressing the problem of
EER diagram verification with open task-based HC. RQ1
referred to the model analysis performance obtainable with
such task types. Through quantitative and qualitative anal-
ysis of data gathered from a controlled experiment we con-
clude that open tasks support collecting a broad range of in-
sights from participants: (i) we collected new defects which
appeared both at individual judgement (IDR) level and per-
sisted after aggregation (ADR level); (ii) workers identified
Superfluous defects even if they were not explicitly asked
to verify these model elements - however, this phenomena is
observed only at the individual level and is excluded through
aggregation. The performance was acceptable, with F1 mea-
sures at 60% (both for individual and aggregated results).
High recall values (85%-87%) are important for EER verifi-
cation to allow identifying as many defects as possible.

We also observed that open tasks lead to collecting IDRs
not only at the focus me but also in its neighbourhood, tend-
ing to place defects at the level of entities and relations
(rather than more fine-grained mes such as attributes and
multiplicities) or even randomly. This finding could have an

implication on the design of HC tasks to solve other similar
model verification problems.

While they elicit broader insights from workers, the out-
put of the open tasks is challenging to validate and aggre-
gate automatically. In RQ2, we investigated to what extent
a follow-up HC task could check IDR correctness and also
assign these to predefined defect codes. Here we obtained
good results for validation (F1 73%, 84%). As expected, the
assignment of TD-ids is more difficult leading to lower per-
formance results (F1 53%, 68%). In real-life settings, a TD
Catalog might not be available and new approaches will be
needed for aggregation (e.g., voting the best defect report).

Limitations and Threats to Validity. Internal validity fo-
cuses on descriptive statistics regarding the overall data sam-
ple. The authors introduced 35 defects in the EER diagram
based on typical defects that occur in software development
complemented with defects that have been identified dur-
ing pilot runs. We applied a well-known application domain
to avoid limitations caused by lack of domain knowledge.
The experiment package was intensively reviewed by ex-
perts and tested in several pilot runs. External validity refers
to the generalization of results. Participants were students
from an academic course. Individual background experience
has been collected in an experience questionnaire. As most
participants work at least part-time in a professional soft-
ware development environment, we consider them to be ju-
nior software developers. The main goal is to investigate
HC-based EER verification with open tasks using a medium
engineering model. However, the applied concepts are ap-
plicable for different domains and engineering models but
might require considerable effort for setting up the defect
verification and validation process with tool support. Con-
struct validity focuses on the relationship between theory
and observations (Wohlin et al. 2012). Applied measure-
ments, such as defects reported, effort, P, R, and F1-score are
well accepted in empirical studies. We applied a gold stan-
dard for seeded defects that has been extensively reviewed
and used for evaluating reported defects. The study has been
executed in class-room settings that hinders communication
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and interaction between participants.
Future Work in the area of EER verification will focus on

(i) in-depth analyses of the data sets with focus on a sta-
tistical analyses and hypotheses definition and testing, (ii)
extending our analysis by taking into account worker skills
from pre-experiment questionnaires; (iii) comparing results
with those obtained with closed-task designs (Sabou et al.
2018b); (iv) investigating alternative task designs (e.g., gran-
ularity of focus entity, aggregation of IDRs); (v) working
with larger models.On a longer term, research will focus
on three areas. First, we see the need of further studies for
other problem types and domains that would bring more in-
sights in the benefits and draw-backs of open and closed HC
tasks. Second, we are interested in extending our research to
similar problem types, such as the verification of knowledge
models (e.g., ontologies), to investigate how lessons learned
can be generalized over problem types and domains. In par-
ticular, the verification of knowledge models such as ontolo-
gies is a promising application area where lessons learned in
this work could be applied. Third, we aim at extending en-
gineering tool chains with Model Quality Assurance (MQA)
concepts for efficient and effective defect detection with HC.
In a long term, we hope that our findings will contribute to
making distributed, online work of information technology
experts more efficient and effective.
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