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Abstract

As machine learning (ML) plays an ever increasing role in
commerce, government, and daily life, reports of bias in
ML systems against groups traditionally underrepresented in
computing technologies have also increased. The problem ap-
pears to be extensive, yet it remains challenging even to fully
assess the scope, let alone fix it. A fundamental reason is that
ML systems are typically trained to predict one correct an-
swer or set of answers; disagreements between the annota-
tors who provide the training labels are resolved by either
discarding minority opinions (which may correspond to de-
mographic minorities or not) or presenting all opinions flatly,
with no attempt to quantify how different answers might be
distributed in society. Label distribution learning associates
for each data item a probability distribution over the labels
for that item. While such distributions may be representa-
tive of minority beliefs or not, they at least preserve diver-
sities of opinion that conventional learning hides or ignores
and represent a fundamental first step toward ML systems
that can model diversity. We introduce a strategy for learn-
ing label distributions with only five-to-ten labels per item—
a range that is typical of supervised learning datasets—by
aggregating human-annotated labels over multiple, similarly
rated data items. Our results suggest that specific label ag-
gregation methods can help provide reliable, representative
predictions at the population level.

1 Introduction

The goal of many supervised learning problems is to map
each given data item to a single (or set of, but in any case,
deterministic) label(s) according to some standard of ground
truth. However, many real-world problems—such as those
related to color, pain, taste, level of danger, or qualitative
analysis—have different answers depending on whom is
asked, even when the domain of answers is fixed (i.e., closed
domain) or more than one answer is allowed (i.e., multil-
abel). In such cases, a single (set of) label(s) does not mean-
ingfully solve the problem, or may hide important dissenting
beliefs or opinions. Yet the impact of AI agents that fail to
recognize diversity in a representative fashion ranges from
banal to harmful on a societal level.
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Label distribution learning (LDL) is a recent approach
that replaces the goal of predicting, for each data item, a
single (set of) label(s) with the more challenging and com-
plex task of predicting a probability distribution (known as
a label distribution) over the label choices (Geng 2016).
A growing body of work has used this approach, e.g., to
predict beauty in images (Ren and Geng 2017) and rate
movies (Geng and Hou 2015). Until now, prior work has fo-
cused broadly on the problems that distinguish LDL from
other forms of probabilistic learning. We focus here on
population-based LDL (PLDL), the special case of when the
goal is to predict the distribution of beliefs in a population of
human annotators about the best label to associate with each
data item.

A major resource bottleneck in PLDL is the quantity of
human annotations needed. For any large population of la-
belers, any lone data item x, and any question posed of x to
the labelers, the number m of labels needed to estimate (i.e.,
taken as a sample of) the underlying population’s true dis-
tribution of beliefs about x is rather large, depending on the
size of the label space and desired confidence/significance
level. Meanwhile, the number of data items n needed for
supervised learning normally runs into the thousands. Thus,
taken independently, the total number m × n of human la-
bels needed for training on label distributions grows quadrat-
ically, and can easily run into the millions.

Our main contribution is a new algorithmic framework for
reducing the total number of human labels needed per data
item, by pooling together the labels of data items determined
by clustering in the space of label distributions to be sim-
ilarly rated. Figure 1 illustrates the main idea behind this
algorithm.

Specifically, we:

1. Establish the premise for our proposed approach through
a real-world example where there is substantial disagree-
ment over the annotators’ interpretations of 50 data items
in a common social domain, but where the label distribu-
tions appear visually in histogram to cluster into a limited
number of distinct classes.

2. Introduce an algorithmic framework for label distribution
learning on as few as five-to-ten labels per data item that
involves an unsupervised learning phase to yield hidden
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Figure 1: The main algorithmic idea this paper explores. The
black dots represent data items. (Left:) Five labelers anno-
tate each data item, where the color of the person indicates
the label that person chose. If we view these five labels as
a sample of the underlying population’s beliefs, the sam-
ple size is probably too small for there to be much confi-
dence in the sample. (Right:) We cluster together (indicated
by the circles) similar rater response items, and then pool to-
gether all the labels in each cluster into a single, larger sam-
ple which, according to our strategy, is a good representation
of—and thus label distribution for—the population-level be-
liefs about each item in the cluster.

classes of similarly-rated data items and assigns to each
class an aggregated label distribution, followed by a su-
pervised learning phase based on the labels the unsuper-
vised phase produces.

3. Show that, for larger label spaces, predictions based on
unsupervised learning models that use our clustering
strategy outperform those that do not, thus providing su-
pervised learning validation for our approach.

4. Perform our analysis on natural language data. This is the
first explorations of LDL on linguistic data from social
media (Shirani et al. (Shirani et al. 2019) also use LDL
for language processing).

2 Related Work

Disagreement in human labeling tasks for supervised
learning is widely studied as a common problem in its own
right (e.g., (Dawid and Skene 1979)). Snow et al. (2008), in a
study on using multiple crowdsourced annotators to approx-
imate the performance of experts, noted that individuals (in-
cluding experts) tend to have personal biases, but that mul-
tiple annotators may contribute to diversity, thus reducing
individual annotator bias (see also (Callison-Burch 2009)).
However, there is still an underlying assumption that a cor-
rect answer exists, even if it can never be directly confirmed.

Recent work has recognized the value of preserving sub-
jectivity and ambiguity in data collection from human anno-
tators. Aroyo and Welty show in a semantic parsing task that
crowdworkers, when they agree with each other, can per-
form at a level comparable to domain experts, and when they
disagree it is often for good reason, and in fact usually more
desirable than collapsing to a single label (Aroyo and Welty
2014). Schaekermann et al. (2016) describe a framework for
identifying unresolvable annotator disagreement.

Chen et al. (2018) argue persuasively that to a wide spec-
trum of social scientists the volume of unstructured data
available for qualitative analysis generated by social media

is so great that automated methods like machine learning are
needed to keep up. They also argue that preserving annotator
disagreement is essential to applying qualitative methodolo-
gies like grounded theory at scale.

Learning over probability distributions has a long history
(e.g., (Sheng, Provost, and Ipeirotis 2008)). While label dis-
tribution learning (LDL) adopts many of the same algorith-
mic approaches from this body of work it differs from con-
ventional learning (a) in conventional probabilistic learning
probability is used to model uncertainty; in LDL probabili-
ties model ground truth. Thus (b) while conventional prob-
abilistic learning evaluates performance in terms of accu-
racy, precision, and recall (even though probabilistic mea-
sures may be used as loss functions during training) etc., in
LDL performance is measured in terms of functions, such
as Kullback-Leibler (KL) divergence, that operate directly
on probabilities.

Geng pioneered the systematic study of label distribu-
tion learning (Geng 2016), where the objects to be predicted
are probability distributions over labels/classes. He and col-
leagues studied applications of LDL in many settings, some
of which are related to predicting population-level distribu-
tions (Geng and Hou 2015; Geng, Wang, and Xia 2014),
while others are not (Gao et al. 2017). Nearly contemporary
work to ours has extended the maximum entropy models in
(Geng 2016) to account for covariance in the label distribu-
tion space (Jia et al. 2018).

Several of these studies acknowledge the difficulty of ob-
taining valid label distributions that represent the underly-
ing beliefs of human annotators; in fact, most of them were
based on data and labels originally collected for the pur-
pose of conventional (i.e., non-probabilistic labels) super-
vised learning problems. However, this line of research has
thus far assumed that the label distributions obtained are
equal to ground truth, i.e., without questioning the statisti-
cal validity of the data, even though the sample size of the
labels for each item is small.

Figure 2: Each histogram above represents the label distri-
bution of a lone data item in the jobQ3MT+ data set (Sec-
tion 4.1). The X-axis ranges from 1 to 12, matching the Q3
choices in Figure 3. The Y-axis denotes the label counts.
Similar distributions are grouped by color: 1-8 red, 9-11
cyan, 12-18 brown, 19-21 green, 22-32 blue, 33-41 orange,
and 42-50 purple.

.
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A number of research areas are related to LDL. In mul-
tilabel learning (Zhang and Zhou 2014), each data item is
associated with multiple labels. However, it does not typi-
cally distinguish between multiplicity due to disagreement
(where different annotators might believe that only one la-
bel is correct, but disagree on which one), ambiguity (where
an annotator might believe multiple labels are valid), or
uncertainty. Such distinctions may have significant social
impacts, especially when disagreements fall along crucial
demographic boundaries or indicate important but oppos-
ing perspectives that should just be preserved in the ma-
chine learning predictive models. Moreover, there are set-
tings where label distributions are important but multilabel
approaches do not naturally apply, such as when the pre-
diction is ordinal (e.g., Likert-scaled) or real-valued. We are
interested in capturing the diversity of beliefs across a pop-
ulation, where each member of the population may only as-
sociate a data item with one (set of) label(s), but different
people may disagree on which ones. Label propagation is
a class of semi-supervised learning algorithms that propa-
gate labels from labeled to unlabeled data points and exploit
correlations and interactions between data items in terms of
feature neighborhoods (Zhu and Ghahramani 2002). Though
label propagation would appear to be a reasonable approach
to our problem, in our case we are using clusters—rather
than neighborhoods—over the label space—not the feature
space—and all of our items have (noisy) labels. This is
partly due to observations about how label sets we have col-
lected appear to cluster in space (Figure 2).

A number of researchers have used clustering among re-
lated data items to improve the quality of ground-truth la-
bels. For instance, Zhang et al. (2016) show that the latent
classes determined by their clustering models are, compared
to plurality-based labels, better estimates of the semantics of
the data items they study, thus providing support for this ap-
proach in the context of supervised learning (which they do
not study). McCallum (1999) studies clustering in a semisu-
pervised learning context. In both cases, however, the clus-
tering is in feature space, not label distribution space, and
is considered part of the learning process. We, on the other
hand, use clustering to establish better estimates of ground
truth to a secondary, supervised learning step, and we per-
form cluster in the space of label distributions, not the fea-
ture space.

3 Label Distribution Learning on

Populations

The population label distribution learning problem is to
learn to predict the distribution of labels y among a pop-
ulation of annotators for each test set data item x, given a
collection of training data items (xi)i∈{1,...,n} and a cor-
responding collection of label distribution raw estimates
(ŷi)i∈{1,...,n}, based on the normalized empirical label dis-
tributions, i.e., the distributions of the annotations received
for each data item. Note that, here, we assume these distribu-
tions are multinomial samples of the underlying population
of annotator’s true label distribution (yi)i∈{1,...,n}, and that
the each raw estimate was obtained by randomly choosing

an annotator and then asking that annotator to choose a label,
then repeating this process m times, where m is a parameter
of the sampling process.

One example of a label set that supports this problem def-
inition came from an effort to model Twitter discourse on
life trajectories. When inspecting annotators’ answers to a
question which identifies employment transition events, we
observed that when there was disagreement it was often for
good reason.

Figure 2 shows the label distributions over the the
jobQ3MT+ label set (see more details in Section 4.1). These
histograms of labels (one histogram per data item) appear to
cluster into approximately eight categories, where the tweets
in each seemed to be similarly rated. Group 1 (red) distribu-
tions have most of their mass on Getting hired/job seeking
and None of the above, but job-related, with tweets talking
about plans to get a job (e.g., really want a job, dont put
that on ur resume for a minimum wage job) or the process of
getting a job. Group 2 (cyan) has almost all the mass ex-
clusively on Getting hired/job seeking (e.g., got the job).
Group 3 (brown) clusters around Complaining about work
and Going to work, suggesting a topic about complaining
about having to go to work. Group 4 (green) are a set of
tweets complaining about work while at work. Groups 5 and
6 (blue and orange) have their peaks on None of the above,
but job-related and Not job-related. Group 6 (where Not job-
related was more frequent than None of the above) were
mostly about road work. Group 7 seemed to contain cases
where work was mentioned, but not central (e.g., Today at
work I learned about...) or used “work” or “job” metaphor-
ically, though there exist some clear None of the above, but
job-related tweets, like Perks of working overnight: donuts
fresh out of the fryer.

As to why such clustering happens, Zhang et al. (2016),
on a different dataset, noticed similar clustering patterns. We
note that any k-choice annotation task effectively reduces
the full breadth of interpretations encoded in each data item
x to one of only k choices; We theorize that the act of anno-
tation reduces not only the interpretive domain of the each
data item, but also the social, experiential and cognitive fac-
tors, such as disparities in experience and knowledge, that
drive annotator disagreement. Thus, the number p of dis-
tinct ground truth label distributions resulting from any an-
notation task are also limited, and the set of all annotations
for any given data item is (assuming annotators are selected
i.i.d. from the population of annotators) a sample from one
of the p distinct ground truth distributions. For the sake of
brevity we subsequently refer to this tentative explanation
as the clustering theory.

3.1 Algorithmic Approach

Our approach to label distribution learning on populations
consists of two stages. First, we use unsupervised learning
to convert the raw label distribution estimates (ŷi)i∈{1,...,n},
into refined estimates (ŷ′

i)i∈{1,...,n}, by aggregating over
similarly related data items. Next, we perform supervised
learning on the refined label distributions with unstructured
text features and conduct comparative experiments. We dis-
cuss each stage below.
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3.2 Clustering Algorithms for Estimating Ground
Truth

The unsupervised learning algorithms we consider here are
consistent, to varying degrees, with the clustering theory.
The (finite) multinomial mixture model F most directly sim-
ulates the sampling process according to the cluster theory.
It assumes that the empirical label distributions are gener-
ated by, (1) drawing a multinomial distribution π accord-
ing to a Dirichlet prior over p elements (i.e., correspond-
ing to the hypothesized number of true label distributions)
π ∼ Dir(p, γ = 75), where γ is the prior’s (symmetric) hy-
perparameter (and higher numbers tend to produce lower en-
tropy multinomials); (2) drawing multinomial distributions
φ1, . . . φp ∼ Dir(d, γ = 0.1); (3) for each data item, we
(3a) choose i ∼ π and (3b) m labels according to φi. Thus,
according to the clustering theory the most likely cluster dis-
tribution φj for each data item should be a good estimate of
the true label distribution: φj ≈ yi. We use a variational
Bayes algorithm1 to learn the model.

Next come two variants of F. The Dirichlet process multi-
nomial mixture model (DP) is a non-parametric version of
F. Instead of choosing p multinomial models from a Dirich-
let prior before generating the data, it starts with two multi-
nomial models φ1, φ2 ∼ Dir(d, 0.1). Then, for each new
data item it draws from the current set of multinomial mod-
els in approximate proportion to the number of times each
has been previously drawn OR draws a new multinomial
model (with weight proportional to γ = 50). We use a vari-
ational Bayes algorithm to learn this model. The main pur-
pose for including it here is to test whether in this setting
nonparametric methods outperform parametric ones using
standard model-selection criteria.

M is a multinomial mixture model without Dirichlet pri-
ors. This rather simple model can be learned using EM,
however it lacks the regularization and adaptability that the
Dirichlet priors provide. We expect this model to underper-
form the others.

In contrast to the previous models, we chose the Gaussian
mixture model G as a weak alternate hypothesis of sorts.
Rather than simulate the sampling process, as the multino-
mial distributions do, these distributions capture the variance
in a population of samples. Additionally, it captures covari-
ance between the labels; these should be close to zero in
single label settings (or settings where the vast majority of
annotators provide only one label per item). We use EM2 to
learn this model.

Finally, L is latent Dirichlet allocation3 (Blei, Ng, and Jor-
dan 2003). Though LDA is not a proper clustering model,
we can obtain cluster-like latent classes from it. In terms of
F, rather than choosing a single class selection distribution π
for all data items, it chooses a new one πi for each item i and
for each label chooses a new distribution in {φ1, . . . , φp} ac-
cording to πi. Thus, each instance of the labels for each item
i from LDA represent a true mixture of all of the generating
distributions, and is therefore not a proper clustering model

1Adapted from https://github.com/bnpy/bnpy.
2http://scikit-learn.org/stable/modules/mixture.html
3Based on https://radimrehurek.com/gensim/

(in contrast to the other models, where each instance of la-
bels comes from one generating distribution only, although
different instances may use different generators). Nonethe-
less, we can “assign” to i the most likely φj according to
πi.

3.3 Supervised Learning for Predicting Label
Distributions

We train supervised-learning-based classifiers using refined
label distributions obtained from the various unsupervised
learning algorithms described above. We retain the most
common 20,000 words in the test set and pad the sentence
with up to 1,000 tokens in the text pre-processing step, then
embed each word into a 100-dimension vector using the
GloVe 2B-tweet corpus (Pennington, Socher, and Manning
2014).

We consider two neural network models. One (“CNN”)
is based on a 1D convolutional neural network, designed
for sentence or tweet classification (Kim 2014), with three
max pool/convolution layers, followed by a dropout and a
softmax layer. The other (“LSTM”) is an encoder-decoder
sequence-to-sequence model using recurrent neural net-
works . The encoder outputs a fixed-length encoding of the
input text, and the decoder predicts the output sequence.

For both types of models, we use softmax: exp(zi)
Σtexp(zt)

,
to transform the output of the penultimate layer z into a
probability distribution. We use Kullback-Leibler (KL) di-
vergence, a standard measure of the difference between the
“true” (in our case the refined estimate) probability dis-
tribution ŷ′ and a predicted estimator ỹ: DKL(ŷ

′, ỹ) =
∑

i P (ŷ′ = i) logP (ŷ′=i)
logP (ỹ=i) , as the loss function for backprop-

agation for this is a principled choice which would approx-
imate the full probability distributions (Vieira 2014), with
the Adam optimizer (Kingma and Ba 2014). We train with a
batch size of 32 and 25 epochs.

4 Experiments

4.1 Data and Labels

We consider two corpora, each consisting of 2,000 tweets,
one related to work (mentioned in Section 3), the other to
suicide. Our institutional review board determined that this
research fell into the exempt class. To privatize the data we
replaced all mentions of usernames with “@SOMEONE”
and URLs with “http://URL,” and adhered to Twitter’s de-
veloper policy (Twitter 2018). Table 1 gives basic properties
of the labels we collected for these two corpora.

Job-related We introduced the job dataset in Section 3. It
contains 2,000 tweets about work that were extracted by a
publicly available library (Liu et al. 2016). We asked five
crowdworkers each from Figure Eight (FE, 2019) and Ama-
zon Mechanical Turk (MT, 2019) to answer three questions
about each tweet. Figure 3 shows the three questions we
asked and their corresponding selections of labels. We de-
note these label sets jobQ1/2/3. To provide some insight
into how performance might change with more labels from a
more diverse population of labelers and labeling platforms,
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we first consider FE and MT as two separate label sets, then
combine them into a single label set (denoted BOTH).

For each question, we then run experiments on two dif-
ferent train/dev/test splits. We first consider a 1000/500/500
split on each of the label sets: Q1, Q2, and Q3 (which we
call the Broad split). Next, to get a more accurate ground-
truth estimate for testing we randomly selected 50 tweets
from our dataset and asked 50 additional MT crowdworkers
to label them. We denote these label sets jobQ1/2/3MT+ and
create 1500/450/50 splits (called the Deep splits), where the
training and development sets are from the BOTH label sets
(minus the jobQ1/Q2/Q3MT+ label set items) and the test
sets are from jobQ1/Q2/Q3MT+, respectively.

Q1. Which of the following items
could best describe the point of view
of job /employment-related infor-
mation in the target tweet?

◦ 1st person
◦ 2nd person
◦ 3rd person
◦ Unclear
◦ Not job-related

Q2. Which of the following items could
best describe the employment status of
the subject in the tweet?

◦ Employed
◦ Not Employed
◦ Not in Labor Force
◦ Unclear
◦ Not job-related

Q3. Does the subject specifically mention any job/employment transition event in the
tweet? (Choose all that apply)

�01 Getting hired/job seeking �02 Getting Fired
�03 Quitting a job �04 Losing job some other way
�05 Getting promoted/raised �06 Getting cut in hours
�07 Complaining about work �08 Offering support
�09 Going to work �10 Coming home from work
�11 None of the above, but job-related �12 Not job-related

Figure 3: The job-related annotation tasks contain these
three questions and corresponding choices. The answers for
Q3 are the columns in each of the histograms in Figure 2.

Suicide-related The Suicide tweet label set was obtained
directly from (Liu et al. 2017). It contains for each data
item labels from five Figure Eight crowdworkers and up to
two experts in suicide prevention. Each tweet was labeled
as one of the following: A© Suicidal thoughts, B© Support-
ive messages or helpful information, C© Reaction to suicide
news/movie/music and D© Others. We use a 1000/500/500
train/dev/test split.

4.2 Clustering Experiments for Ground Truth
Estimation

Model Selection For those clustering models requiring p
as a hyperparameter, we test values for p ∈ [d/2, 2d], where
d is the number of label choices. As the estimators for these
models are stochastic and/or sensitive to initial conditions,
for every model and every set of hyperparameters we ran
100 trials on the training/dev set and picked the model with
the highest estimated likelihood. Table 2 shows the number
of clusters selected on each of the two training splits on each
label set and for DP the number of clusters the algorithm
generated.

#Choices
Label Set #Items /item #Workers #Labels Density MVTD RMSD
jobQ1FE 2,000 5 171 10,000 5.00 0.37 0.21
jobQ1MT 2,000 5 1,014 12,202 6.10 0.17 0.10
jobQ1BOTH 2,000 5 1,185 22,202 11.10 0.29 0.16
jobQ1MT+ 50 5 249 2,969 59.38 0.43 0.22
jobQ2FE 2,000 5 171 10,000 5.00 0.28 0.16
jobQ2MT 2,000 5 1,014 12,202 6.10 0.15 0.09
jobQ2BOTH 2,000 5 1,185 22,202 11.10 0.23 0.13
jobQ2MT+ 50 5 249 2,969 59.38 0.34 0.19
jobQ3FE 2,000 12 171 10,967 5.48 0.45 0.16
jobQ3MT 2,000 12 1,014 12,900 6.45 0.28 0.10
jobQ3BOTH 2,000 12 1,185 23,867 11.93 0.40 0.14
jobQ3MT+ 50 12 249 3,196 63.92 0.41 0.14
Suicide 2,000 4 124 13,175 6.59 0.27 0.17

Table 1: Basic properties of our label sets. For the job-
related data set with three questions jobQ1/2/3, FE and
MT represent the labels from the platforms Figure Eight
and Amazon Mechanical Turk respectively. BOTH com-
bines both FE and MT labels. Density is the average num-
ber of labels per data item. MVTD (majority-voted-true-
class deviation) and RMSD (root-mean-square deviation)
describe inter-rater reliability across all the tasks and es-
timate the variety and divergence of different label sets,
motivated by the literature on scale and outlier descrip-
tion (Hyndman and Koehler 2006; Pontius, Thontteh, and
Chen 2008; Willmott and Matsuura 2006). MVTD is the
average deviation of the majority-voted label over all data
items: MVTD = 1 − ∑n

i=1 maxj{ŷij}/n. RMSD is the
L2 deviation from the average label distribution: RMSD =∑n

i=1

√
(ŷi − y)T (ŷi − y)/n, where y is the average label

distribution over all data.

Broad split Deep split
Dataset M G L F DP M G L F DP

jobQ1FE 10 4 9 3 4 11 11 9 3 4
jobQ1MT 11 4 11 8 10 2 2 11 9 11
jobQ1BOTH 11 2 2 6 8 2 2 11 7 8
jobQ2FE 11 3 10 3 4 11 2 10 3 4
jobQ2MT 2 4 11 7 9 2 2 11 7 10
jobQ2BOTH 2 2 11 5 7 2 2 8 5 7
jobQ3FE 19 5 18 6 7 19 10 19 7 7
jobQ3MT 5 5 14 17 20 5 19 15 17 26
jobQ3BOTH 5 15 18 13 16 5 17 11 17 17
Suicide 8 2 7 4 5 - - - - -

Table 2: The optimal label aggregation models on each label
set using two splits (Broad and Deep) are achieved with the
presented number of clusters (p).

Evaluation For the model M produced by each unsuper-
vised learning algorithm and each data item i in the test set,
we determine the most likely cluster j for i’s empirical label
distribution φj : argmaxj P (ŷi ∼ φj | M). We then com-
pute the KL divergence between the empirical label distri-
bution ŷi and the cluster distribution φj .

Table 3 shows that the multinomial mixture models
(M/F/DP) generally outperformed G, as we expected. The
crowdsourced sample sizes of 5–10 labels we used for each
training item are typical of crowdsourced supervised learn-
ing label sets, and the differences between G and the other
cluster models appear to be substantial at this scale. The suc-
cess of L on a number of label sets surprised us, considering
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that we only use the mostly likely cluster for each data item
which was trained on a mixture of clusters. Finally, F out-
performs the other models on all of the sets having at least
ten annotations per item, and shows the most improvement
from the FE/MT (which had five annotations per item) to the
BOTH (with ten annotations per item) label sets.

Broad split Deep split
KL M G L F DP M G L F DP

jobQ1FE 0.35 0.53 0.23 0.39 0.39 0.30 0.57 0.24 0.37 0.39
jobQ1MT 0.19 0.68 0.18 0.13 0.15 0.20 0.39 0.07 0.09 0.10
jobQ1BOTH 0.20 0.46 0.40 0.19 0.19 0.21 0.38 0.06 0.06 0.07
jobQ2FE 0.26 0.54 0.19 0.32 0.32 0.24 0.65 0.20 0.28 0.28
jobQ2MT 0.36 0.74 0.15 0.10 0.10 0.26 0.50 0.09 0.11 0.13
jobQ2BOTH 0.28 0.51 0.17 0.16 0.16 0.25 0.48 0.09 0.08 0.08
jobQ3FE 0.51 1.00 0.52 0.59 0.64 0.29 0.97 0.27 0.41 0.41
jobQ3MT 0.50 1.15 0.33 0.26 0.29 0.20 0.51 0.17 0.28 0.21
jobQ3BOTH 0.45 0.82 0.35 0.32 0.33 0.18 0.64 0.18 0.12 0.13
Suicide 0.22 0.57 0.20 0.22 0.22 - - - - -
Average 0.29 0.59 0.28 0.22 0.23 0.21 0.50 0.11 0.09 0.09
Std dev 0.10 0.14 0.10 0.06 0.06 0.03 0.11 0.05 0.02 0.03

Table 3: KL divergence based on the chosen label clus-
tering models in Table 2. Average and standard deviation
are based on the KL divergence scores of the dark gray-
highlighted rows (jobQ1BOTH, jobQ2BOTH, jobQ3BOTH
and Suicide). The lowest KL is highlighted in light gray for
each split.

Table 3 also shows the average and standard deviation
of the KL divergence scores on the four independent la-
bel sets (i.e., BOTH comprises FE and MT) jobQ1BOTH,
jobQ2BOTH, jobQ3BOTH and Suicide (highlighted in
gray). These statistics indicate that F outperforms the other
models across different thematic label sets in its capability
and stability, DP is second, and, as we expected, G comes
last.

Q3 differs from Q1 and Q2 in allowing annotators to
choose multiple labels. Ideally, then the ideal representa-
tion for the annotations (where each annotation is the set
of labels provided by one annotator for one data item) of Q3
would be over the power set of possible labels. However,
Table 4 shows that fewer than 10% of the annotations we
received had selected more than one label. To simplify our
analysis, we thus treat multiple labels from the same annota-
tor as if each came from its own, independent annotator (for
example, an annotation with three labels provided is treated
as three separate annotations.).

#labels/worker/item

Label Set 1 2 3 4 5+

jobQ3FE 10,000 722 176 53 16
jobQ3MT 12,202 628 58 11 1
jobQ3MT+ 2,969 193 32 2 0

Table 4: Counts of worker-item pairs, grouped by #labels per
worker per item.

4.3 Supervised Learning Experiments

We then trained the two supervised learning algorithms de-
scribed in Section 3.3 on our training datasets’ texts, us-
ing in turn each of the unsupervised learning methods de-

scribed previously to provide refined label distribution es-
timates (ŷ′

i) as the learning goal. We compared their per-
formances to those of three common baseline strategies for
resolving (or not) label disagreement.

• Majority (Maj) takes the final label to be ŷ′i =
argmax
j∈{1,...,d}

{ŷij}.

• Repeated (Rept) duplicates each data instance once for ev-
ery annotation it receives and pairs the replicated instance
with that label.

• Probability (Prob) is the raw label distribution estimates
(ŷ′

i) = (ŷi). (This is the baseline LDL approach.)

Evaluation We measure the KL divergence between the
classifier (ỹi) and cluster-or-baseline-method (ŷ′

i) -based la-
bel distributions. (Note that Maj and Rept both associate
each data item, by eliminating labels or creating copies of
the data items, exactly one label. For the purpose of com-
puting KL divergence we regard this as a distribution where
the entire probability mass is on one label.) We also mea-
sure Accuracy, i.e., the percentage of times argmaxj ỹij
matches argmaxj ŷ

′
ij in the test set. Accuracy is often used

in nondistributional classification problems. We use it here
to shed further light into the differences between distri-
butional and nondistributional problems. In particular, we
might expect that nondistributional models might outper-
form label distribution models with respect to accuracy, even
as they underperform with respect to KL divergence.

Results Tables 5 and 6 show the KL divergence and accu-
racy metrics for CNN/LSTM text classifiers built with dif-
ferent label aggregation strategies in two split modes.

Starting with the KL divergence results, on the Broad split
tests, CNNs trained and tested on L outperform other clus-
tering and non-clustering approaches most of the time for
both job and suicide discourse themes. For LSTMs, we can
also observe that clustering approaches achieved better re-
sults more often on different label sets than non-clustering
methods. Almost none of CNNs or LSTMs trained on any
baseline label reduction strategy can compete.

By contrast, the results of the Deep split KL divergence
tests (Table 6) are not as conclusive, and this could be due
to there being fewer data items in the Deep split test set. But
even so, clustering strategies again perform better in more
cases than the baselines.

Tables 5 and 6 show that, for both the CNN and LSTM
classifiers and both split modes, the highest accuracies often
come from the clustering methods. They outperform non-
clustering methods by more than 10% on average, which ap-
pears substantial. For those label sets whose accuracy based
on clustering strategies do not rank 1st, non-clustering meth-
ods win only by a slim or zero margins.

Together, the results for different label sets and split
modes reveal several interesting patterns. First, the cluster-
based models tend to outperform the baseline methods in
terms of either KL divergence or accuracy as reported. This
supports the feasibility of our clustering strategy for label
distribution learning on subjective problems with annotator
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CNN
KL divergence Accuracy

Maj Rept Prob M G L F DP Maj Rept Prob M G L F DP
jobQ1FE 2.98 0.79 0.91 0.12 0.74 0.47 0.18 0.19 0.73 0.53 0.72 0.78 0.95 0.58 0.64 0.58
jobQ1MT 2.03 0.80 0.72 0.65 1.05 0.52 1.02 1.00 0.80 0.72 0.79 0.56 0.67 0.76 0.54 0.56
jobQ1BOTH 2.38 0.45 0.48 0.36 0.38 0.27 0.40 0.38 0.82 0.64 0.81 0.57 0.76 0.76 0.65 0.64
jobQ2FE 2.29 0.91 0.79 0.21 0.78 0.13 0.31 0.28 0.73 0.63 0.79 0.71 0.62 0.94 0.59 0.64
jobQ2MT 2.10 0.80 0.78 0.81 0.98 0.67 1.04 0.96 0.73 0.68 0.73 0.48 0.55 0.71 0.53 0.52
jobQ2BOTH 2.12 0.49 0.47 0.48 0.48 0.37 0.51 0.52 0.76 0.65 0.76 0.63 0.58 0.71 0.54 0.56
jobQ3FE 4.20 1.66 1.14 0.31 0.68 0.66 0.42 0.36 0.36 0.31 0.41 0.47 0.32 0.45 0.42 0.46
jobQ3MT 3.18 2.24 1.05 1.04 1.32 0.54 1.12 1.12 0.53 0.45 0.51 0.26 0.28 0.49 0.28 0.28
jobQ3BOTH 3.38 1.40 0.77 0.62 0.49 0.62 0.71 0.70 0.48 0.42 0.53 0.31 0.62 0.46 0.25 0.21
Suicide 2.16 1.40 0.45 0.69 13.62 0.33 0.53 0.49 0.81 0.65 0.78 0.18 1.00 0.76 0.37 0.39

Average 2.51 0.94 0.54 0.54 3.74 0.40 0.54 0.52 0.72 0.59 0.72 0.42 0.74 0.67 0.45 0.45
Std dev 0.51 0.47 0.13 0.13 5.70 0.13 0.11 0.11 0.14 0.10 0.11 0.18 0.16 0.12 0.15 0.17

LSTM
Broad - KL Broad - ACC

Maj Rept Prob M G L F DP Maj Rept Prob M G L F DP
jobQ1FE 0.80 0.91 1.12 0.49 0.66 0.63 0.33 0.53 0.84 0.75 0.87 0.89 0.99 0.76 0.83 0.84
jobQ1MT 1.09 1.16 1.15 1.37 1.49 1.40 1.07 0.62 0.86 0.82 0.85 0.81 0.87 0.83 0.80 0.81
jobQ1BOTH 0.75 0.80 0.54 1.12 0.45 0.83 0.52 1.09 0.88 0.79 0.86 0.81 0.89 0.82 0.82 0.82
jobQ2FE 1.25 1.12 1.20 0.79 0.94 1.14 1.14 0.54 0.85 0.78 0.87 0.85 0.82 0.97 0.84 0.82
jobQ2MT 1.88 1.07 1.48 0.92 1.52 1.24 1.71 1.25 0.84 0.81 0.82 0.78 0.83 0.81 0.79 0.80
jobQ2BOTH 0.86 0.78 1.68 1.50 0.67 0.93 0.89 0.73 0.86 0.80 0.84 0.86 0.81 0.81 0.80 0.83
jobQ3FE 1.79 1.68 1.54 0.93 1.13 1.14 1.01 0.92 0.64 0.64 0.62 0.65 0.72 0.71 0.65 0.62
jobQ3MT 2.08 1.65 1.86 1.81 1.73 1.18 1.88 1.58 0.69 0.70 0.63 0.63 0.59 0.50 0.66 0.67
jobQ3BOTH 1.26 1.46 1.99 1.46 1.10 1.38 1.42 1.40 0.70 0.68 0.63 0.63 0.86 0.61 0.61 0.66
Suicide 1.14 0.74 0.85 0.67 13.97 0.91 0.68 0.85 0.74 0.72 0.74 0.73 0.50 0.72 0.71 0.71

Average 1.00 0.95 1.27 1.19 4.05 1.01 0.88 1.02 0.80 0.75 0.77 0.76 0.77 0.74 0.74 0.76
Std dev 0.21 0.30 0.59 0.33 5.73 0.22 0.34 0.26 0.08 0.05 0.09 0.09 0.16 0.08 0.08 0.07

Table 5: KL divergence and accuracy of the Broad split. Average and standard deviation are based on the dark gray-highlighted
rows (jobQ1BOTH, jobQ2BOTH, jobQ3BOTH and Suicide). The lowest KL and highest accuracy are highlighted in light gray.

CNN
KL divergence Accuracy

Maj Rept Prob M G L F DP Maj Rept Prob M G L F DP
jobQ1FE 3.09 0.77 0.90 0.13 0.69 0.39 0.09 0.16 0.62 0.47 0.58 0.78 0.80 0.54 0.82 0.72
jobQ1MT 2.94 0.47 0.54 0.64 1.08 0.47 1.22 1.05 0.72 0.53 0.70 0.58 0.66 0.72 0.56 0.58
jobQ1BOTH 2.90 0.34 0.24 0.39 0.43 0.38 0.33 0.35 0.72 0.51 0.70 0.62 0.90 0.60 0.62 0.60
jobQ2FE 3.07 0.57 0.65 0.18 0.56 0.49 0.21 0.31 0.60 0.53 0.52 0.76 0.82 0.48 0.50 0.60
jobQ2MT 1.90 0.50 0.58 0.77 0.68 0.76 0.74 1.07 0.72 0.57 0.70 0.58 0.64 0.66 0.64 0.44
jobQ2BOTH 2.90 0.27 0.28 0.52 0.37 0.35 0.50 0.58 0.72 0.54 0.76 0.54 0.56 0.68 0.64 0.54
jobQ3FE 3.71 1.45 1.00 0.34 0.63 0.65 0.53 0.43 0.46 0.40 0.48 0.16 0.30 0.50 0.14 0.40
jobQ3MT 3.95 1.98 0.77 1.13 1.21 1.20 1.26 1.24 0.54 0.43 0.54 0.14 0.24 0.48 0.30 0.18
jobQ3BOTH 3.33 1.13 0.63 0.76 0.67 0.49 0.71 0.73 0.62 0.46 0.48 0.20 0.40 0.56 0.16 0.24

Average 3.04 0.58 0.38 0.56 0.49 0.41 0.51 0.55 0.69 0.50 0.65 0.45 0.62 0.61 0.47 0.46
Std dev 0.20 0.39 0.18 0.15 0.13 0.06 0.16 0.16 0.05 0.03 0.12 0.18 0.21 0.05 0.22 0.16

LSTM
Deep - KL Deep - ACC

Maj Rept Prob M G L F DP Maj Rept Prob M G L F DP
jobQ1FE 0.94 0.85 0.76 0.52 0.89 0.61 0.79 0.65 0.74 0.70 0.74 0.92 0.93 0.67 0.92 0.91
jobQ1MT 0.78 0.53 0.52 0.88 1.08 1.10 1.80 1.38 0.71 0.71 0.71 0.79 0.87 0.70 0.82 0.82
jobQ1BOTH 0.39 0.65 0.70 0.63 0.72 0.54 0.86 0.64 0.70 0.71 0.70 0.81 0.98 0.69 0.84 0.85
jobQ2FE 0.99 1.16 1.04 1.37 0.57 0.90 0.98 0.88 0.77 0.72 0.77 0.87 0.91 0.75 0.85 0.86
jobQ2MT 0.83 0.94 0.77 0.96 1.44 1.32 1.15 1.13 0.69 0.69 0.69 0.76 0.83 0.66 0.81 0.81
jobQ2BOTH 0.88 0.63 0.73 0.67 1.30 0.94 1.31 1.15 0.69 0.69 0.69 0.86 0.85 0.64 0.80 0.83
jobQ3FE 1.97 1.55 1.40 0.84 0.90 1.71 0.92 1.04 0.62 0.65 0.67 0.66 0.83 0.70 0.64 0.59
jobQ3MT 1.51 1.38 1.44 1.65 2.01 1.99 1.63 1.67 0.68 0.61 0.62 0.64 0.59 0.62 0.67 0.60
jobQ3BOTH 1.41 1.28 1.26 1.43 1.06 1.54 1.29 1.46 0.62 0.61 0.68 0.64 0.71 0.67 0.68 0.58

Average 0.89 0.85 0.90 0.91 1.03 1.01 1.15 1.08 0.67 0.67 0.69 0.77 0.85 0.67 0.77 0.75
Std dev 0.42 0.30 0.26 0.37 0.24 0.41 0.21 0.34 0.04 0.04 0.01 0.09 0.11 0.02 0.07 0.12

Table 6: KL divergence and accuracy of the Deep split. Average and standard deviation are based on the dark gray-highlighted
rows (jobQ1BOTH, jobQ2BOTH, and jobQ3BOTH). The lowest KL and highest accuracy are highlighted in light gray.
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disagreement. On the other hand, for conventional (i.e., non-
distributional) classification problems, baseline methods can
be sufficient, as shown in our experiment results. The advan-
tages of clustering, in terms of KL divergence, is less stark
in the Deep compared to the Broad splits, but clustering still
seems to outperform baselines on the jobQ3 label set, which
has the largest label space and is where pooling and other
label conservation methods are most needed.

5 Discussion
Our results provides evidence—both for and against—that
clustering is a feasible strategy to improve performance
of label distribution learning in certain settings, such as
when each label distribution represents a population esti-
mate based on a (micro) sample, and the data falls into a
small number of semantic equivalence classes (relative to
the learning task). Yet, why this is so is still not clear; our
results shed little light on the validity of the clustering the-
ory.

They also raise methodological issues. We expect that the
methods introduced here for testing performance will pro-
vide helpful baselines for the development of newer meth-
ods tailored specifically toward settings where ground truth
depends on a small number of samples per data item.

One methodological issue we grappled with was whether
to measure the performances of the supervised models
against the empirical (ŷ) or refined (ŷ′) label distributions.
Standard practice is to test supervised learning on the pat-
terns they are fed (i.e., the refined labels in our case). But in
our case the conventional machine learning algorithms are
only the last half of a larger pipeline that has essentially an
unsupervised front end, and which takes the empirical labels
as input. We tried both approaches, but here, for space pur-
poses and because we found our results more interesting in
this direction, we report on only the predictions against ŷ′.
The biggest worry in doing so is that, because pooling labels
via a small number of clusters greatly reduces diversity in
the label distributions, there is less likelihood of error, which
would seem to make predictions artificially easier against ŷ′
than the empirical distributions ŷ. On the other hand, since
these clusters are based on labels, the larger the clusters the
greater the likelihood that items with inconsistent features
are assigned to the same cluster, and this would lead to less
accurate predictions from the supervised models.

We have been deliberately vague about what “population
of labelers” means. This study was motivated by our work
with microtask crowdsourcing sites like Amazon Mechani-
cal Turk and Figure Eight, in which case our labels can be
taken as collection of (micro) samples of the population of
workers on whichever sites are used for whatever interval
of time the requested labeling task is posted. Studies exist
on the demographics of these sites. Some sites (like Figure
Eight in our study) provide some demographic information
on the responders to each microtask request.

We have not yet modeled user behavior, though this is a
well-established approach for aggregating labels from multi-
ple annotators. We did, in fact, run experiments using Dawid
and Skene’s class annotator-based model (Dawid and Skene
1979), which is largely based on using behavior. However,

as it is designed for conventional, non-distributional super-
vised learning and did not perform well, we did not report
those results here. Another complication is that most of our
annotators labeled only ten data items each, so we would be
tempted to used clustering to group users in much the same
way we used it here to group data items.

Another limitation was that we did not investigate in-
depth the causes of inter-annotator disagreement, such as
data encoding errors and communication ambiguities (Zhu
and Wu 2004; Angluin and Laird 1988; Brodley and Friedl
1999), lack of sufficient information (Hickey 1996; Brodley
and Friedl 1999; Brazdil and Clark 1990), and unreliable an-
notators and their bias (Hickey 1996), nor did we attempt to
resolve disagreement through follow-up discussions with the
annotators, as is common in many grounded theory studies.

6 Conclusion

We study the important problem of predicting the distri-
butions of population beliefs using both unsupervised and
supervised learning methods. We test different strategies
for clustering data items to obtain aggregated label distri-
butions. We then build supervised CNN/LSTM classifiers
using the predicted distributions and compared the perfor-
mance with common baseline label reduction strategies. Our
results from both unsupervised and supervised experiments
show that it is feasible to predict probability distributions
over labels at the population level. Clustering labels, in gen-
eral, boosts the label distribution learning by aggregating
data items with similar semantics and population beliefs. We
believe our study is an pioneering exploration of disagree-
ment on linguistic data from social media and further helps
future intelligent agents understand the diversity of beliefs
in society.
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