
The Seventh AAAI Conference on Human
Computation and Crowdsourcing (HCOMP-19)

Fair Work: Crowd Work MinimumWage with One Line of Code

Mark E. Whiting, Grant Hugh, Michael S. Bernstein
Stanford Computer Science

353 Serra Mall
Stanford, California 94305
mwhiting@cs.stanford.edu

Abstract

Accurate task pricing in microtask marketplaces requires sub-
stantial effort via trial and error, contributing to a pattern of
worker underpayment. In response, we introduce Fair Work,
enabling requesters to automatically pay their workers mini-
mum wage by adding a one-line script tag to their task HTML
on Amazon Mechanical Turk. Fair Work automatically sur-
veys workers to find out how long the task takes, then ag-
gregates those self-reports and auto-bonuses workers up to a
minimum wage if needed. Evaluations demonstrate that the
system estimates payments more accurately than requesters
and that worker time surveys are close to behaviorally ob-
served time measurements. With this work, we aim to lower
the threshold for pro-social work practices in microtask mar-
ketplaces.

Microtask crowdsourcing remains a precarious income
source for crowd workers (Gray and Suri 2019; Kittur et al.
2013; McInnis et al. 2016; Martin et al. 2014; Hara et al.
2018). On the most popular platforms, no minimum wage
rate is enforced. Some requesters, or task authors, explic-
itly take advantage of this to underpay workers; others are
well intentioned but still accidentally underpay because ex-
pertise bias leads us to underestimate how challenging our
tasks actually are (Hinds 1999). The platforms’ own time
reports can be notoriously inaccurate in estimating and visu-
alizing the time that workers spend (Rzeszotarski and Kittur
2011). Workers compensate for underpayment by mobiliz-
ing tools that help them identify reasonable requesters (Hara
et al. 2018; Irani and Silberman 2013; Hanrahan et al. 2015).
Requesters, for their part, typically need to put in substan-
tial effort to test their tasks across a variety of possible
workers in order to price effectively (Gaikwad et al. 2017;
Cheng, Teevan, and Bernstein 2015), and there is no accu-
rate straightforward approach.
In this paper, we offer an approach that only requires a

single line of code to help ensure that microtask workers
make at least a minimum wage. Existing approaches retain a
high threshold of effort (Myers, Hudson, and Pausch 2000);
our goal is to drastically lower the effort threshold. If this is
feasible, we hope to expand the set of pro-social researchers

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Fair Work uses a custom script to add a dura-
tion input to the bottom of Amazon Mechanical Turk tasks.
Workers’ durations are used to calculate a fair pay and send
bonuses when needed.

and requesters who opt in to a norm of fair pay.
We introduce Fair Work for Amazon Mechanical Turk

(https://fairwork.stanford.edu), a Javascript script that can be
added as a single <script> tag to any task HTML to help
ensure that workers are paid at least minimum wage (Fig-
ure 1). Requesters register their API keys with Fair Work,
and then add a server-generated Fair Work script tag to any
of their tasks. The script adds a self-report time survey to the
task asking workers to share how long the task took them to
complete, or to click to confirm an automatically detected
active work time. Fair Work then aggregates worker time re-
ports in order to estimate the median time it takes workers
per task. If the task underpaid minimum wage, Fair Work
queues a bonus. Requesters receive a daily summary of the
time reports and any queued bonuses; after a twelve-hour
grace period to correct any errors or malfeasance, Fair Work
uses the requesters’ AWS keys to auto-bonus all workers on
the task to bring them up to the minimum wage rate. For re-

197

questers who do not wish to store encrypted API keys on a
centralized server, Fair Work is also available open source
at https://github.com/StanfordHCI/fairwork and can be de-
ployed privately on Heroku or the requester’s own server.
Fair Work departs from several of the norms of similar

tools and techniques. Most visibly, it makes no guarantees
to protect the requester against malicious workers. Instead,
the tool makes a strong assumption that most workers will
make their estimates in good faith, relying on medians to
filter out any stray false reports. As a last resort, the tool al-
lows requesters to freeze payments for the small minority
of workers who persistently cause issues (e.g., reporting two
hours on tasks that took most workers only two minutes).
The assumption here is that the vast majority of workers
are honest and will report honestly or with only slight infla-
tion (Ariely 2008; Hancock, Toma, and Ellison 2007), and
that even slight inflation could be considered compensation
for the considerable unpaid time that workers spend search-
ing for tasks (Horton and Chilton 2010). In other words, Fair
Work is not strategyproof: instead, it asserts an expectation
of honesty and goodwill on behalf of all parties who use it,
and allows requesters to handle rare deviant behavior rather
than assuming many actors are deviants.
We report both a formative and a summative evaluation

of the tool. In our formative work, we surveyed American
Mechanical Turk Workers about their greatest frustrations
with requester behavior on the platform, identifying under-
payment as the single largest issue, followed by unfair rejec-
tion. A second survey identified a “Fight for Fifteen” $15 per
hour wage rate (Rolf 2016) as the desired wage rate. In our
summative evaluation, we recruited experienced requesters
to provide tasks and attempt to price them at an hourly wage
of $15 per hour. We collected 19 unique tasks, added the
Fair Work script, and posted the tasks on Amazon Mechan-
ical Turk. We found that requesters mispriced their tasks by
$7.80 per hour on average, effectively pricing between 50%
and 150% of the intended wage rate, and that workers mildly
exaggerate their task completion times.
In sum, this paper presents Fair Work as a low-threshold

approach that requesters can use to help encourage fair wage
rates. We further contribute a formative evaluation demon-
strating that underpayment remains a pervasive issue for
workers, and a summative evaluation supporting our claims
that requesters struggle to price effectively and that workers
will generally report honestly.

Related Work
Studies of worker motivation on Mechanical Turk have fo-
cused increasingly on wages. Early surveys reported mul-
tiple overlapping motivators (Ipeirotis 2010; Kaufmann,
Schulze, and Veit 2011) including intrinsic enjoyment, and
detailed variations in motivation across different geographic
regions (Antin and Shaw 2012). However, more recent work
has called out wages more visibly as a central matter of im-
portance for workers (Kaplan et al. 2018; Martin et al. 2014;
Gray and Suri 2019). New participant populations in the
crowd work ecosystem immediately gravitate to extrin-
sic financial motivation as the primary reason to partici-
pate (Brewer, Morris, and Piper 2016).

Worker wages have become a focal point of study and at-
tention. Estimated wages on Amazon Mechanical Turk are
low (Horton and Chilton 2010); data-driven analyses sug-
gest that the mean and median hourly wage are about $2
to $3 (Hara et al. 2018), less than half of the U.S. federal
minimum wage despite 75% of active workers residing in
the United States (Ipeirotis 2010). Rejections and time spent
searching for tasks contribute to this low wage (Chilton et
al. 2010; McInnis et al. 2016). There are now calls pushing
for researchers to pay workers at least minimum wage (Sil-
berman et al. 2018). The platform Prolific Academic (https:
//www.prolific.co/) asks requesters to pay a minimum wage,
though many others such as Amazon Mechanical Turk do
not.
Over time, understandings of the crowd worker experi-

ence have grown to more fully encompass the broad spec-
trum of social and workplace issues that workers face. These
issues are modern instantiations of the historical practice of
piecework (Alkhatib, Bernstein, and Levi 2017). Much of
the modern understanding has been built up through stud-
ies of worker online communities such as Turker Nation,
Reddit’s /r/mturk, and MTurk Crowd. In these communities,
workers share information on how to make money (Martin et
al. 2014) and support each other (Gray et al. 2016). Beyond
this, workers face structural challenges ranging from precar-
ity from work rejections (McInnis et al. 2016) to second-
language issues (Gupta et al. 2014).
Worker communities have taken many steps to improve

their environment. Collective action is one extremely vis-
ible option (Bederson and Quinn 2011). Workers have
sued crowdsourcing platforms (Otey 2015) and engaged in
strikes (Conger, Xiuzhong Xu, and Wichter 2019) in part
to seek higher wages, and have engaged in collective ac-
tion online to call attention to their situation (Salehi et al.
2015). They also adopt tools to help avoid the worst parts
of the marketplace. For example, tools such as Turkopti-
con (Irani and Silberman 2013) allow workers to share in-
formation about low-quality requesters; TurkBench (Hanra-
han et al. 2015), Crowd-workers (Callison-Burch 2014), and
TurkScanner (Saito et al. 2019) all surface information about
tasks and completion times so that workers can plan their
work. Such tools are best co-designed with workers, rather
than “cast[ing] Turkers as dopes in the system” (Irani and
Silberman 2016). Fair Work focuses on tools for requesters,
with the goal of helping fix the wage problem upstream.
Current requester tools are focused on helping requesters

overcome low-quality work or malicious workers. One
set of tools supports recruitment, for example modulating
whether another task is needed to obtain high confidence la-
bels (Sheng, Provost, and Ipeirotis 2008), inserting known
answers into the question stream to test workers, recruiting
workers quickly (Bernstein et al. 2011; Lasecki et al. 2011),
or classifying likely inattentive workers (Rzeszotarski and
Kittur 2011). A smaller set of techniques have been devel-
oped for helping requesters design tasks (Gaikwad et al.
2017; Bragg, Weld, and others 2018) and price tasks (Cheng,
Teevan, and Bernstein 2015). While these tasks do attempt
to lower the threshold for requesters to author effective tasks,
they all require the requester to launch the task, gather feed-

198

back and data, and iterate. We hypothesize that many re-
questers want to pay fairly, but are put off by the require-
ment to iterate and prefer a solution that they do not need
to babysit. So, unlike prior work, we designed Fair Work to
not require any intervention by paying a post-hoc bonus to
workers. Workers can see the Fair Work interface on their
tasks, and understand that the effective pay rate may be
higher than advertised.
This prior work together paints a picture where wages

are a primary motivator for workers on platforms such as
Amazon Mechanical Turk, but where wages are disappoint-
ingly meager. Workers have tools to navigate the situation,
but often underpayment is due to requester error; many re-
questers wish to pay fairly, but payment is not their prior-
ity when rushing to push out their work. Fair Work con-
tributes beyond this prior by introducing the first tool for
no-intervention payment for requesters, and by communi-
cating a clear promise of minimum wage payment based on
worker reports.

Formative Surveys
While wage issues have been detailed carefully by prior
work, several questions remained unanswered:

1. How do wage issues compare, in workers’ eyes, to other
requester behaviors?

2. What wage rate do workers feel is a fair compensation?

3. How do workers feel about the accuracy of self-reporting
their time spent on a task?

4. How do workers feel that differences of opinion should
be resolved if requesters feel that workers are not report-
ing time honestly?

We performed a series of two surveys on Amazon Me-
chanical Turk to answer these questions. Our first survey was
launched to 112 workers in the United States — the vast ma-
jority of workers are in the U.S. (Ipeirotis 2010).1 The sur-
vey paid $0.90 per response, which based on our estimates
would target the minimum wage in our location. After fil-
tering out incomplete or unusable data, we were left with
N=101 responses.
By aggregating freetext responses from pilot surveys and

by drawing on prior work (Irani and Silberman 2013), we
identified a list of requester behaviors that workers found
frustrating: (i) Approving work too slowly, (ii) Blocking
workers, (iii) Broken HITs, (iv) Not being responsive to
questions and emails, (v) Rejecting work unfairly, (vi) Un-
derpayment, (vii) ViolatingMechanical Turk’s Terms of Ser-
vice, and (viii) Violating worker privacy. In our survey, we
asked workers to first select up to three behaviors from the
list above that they felt were the most common errors, and
then to select up to three behaviors that they felt were the
most frustrating errors. Reports of frustrating and common
requestor behaviors were highly correlated (R >= 0.9),
so we only report on the results for most frustrating in this
paper, as those capture workers’ affective experiences. The

1We also replicated these results with the additional restriction
that workers had completed at least 10,000 tasks on the platform.

0

20

40

60

80

Approving work

too slowly

Blocking worke
rs

Broken HITs

Not being responsive

to questions and emails

Rejecting work unfairly

Underpaying

Violating Mechanical Turk's

 Terms of Service

Violating worke
r priva

cy

R
es

po
nd

en
ts

 in
di

ca
tin

g
th

at
th

e
is

su
e

is
 in

 th
e

to
p

th
re

e
m

os
t f

ru
st

at
in

g
(N

=1
01

)

Figure 2: Workers report that underpayment is the single
most frustrating requester behavior they experience on Ama-
zon Mechanical Turk.

survey also asked workers to choose what they felt would
be the fairest minimum wage for tasks out of the follow-
ing options: (i) No Minimum Wage, (ii) Fight for Fifteen
(Rolf 2016): $15/hr, (iii) Washington DC Minimum Wage:
$13.25/hr, (iv) Highest State Minimum Wage: $11.50/hr,
(v) Federal Minimum Wage: $7.25/hr, (vi) Requester Lo-
cation Minimum Wage, (vii) Worker Location Minimum
Wage, and (viii) Other. We also asked workers to explain
why they felt that the minimum wage they picked was fair
in their view.
The second block of survey questions asked workers

about honest reporting. We first asked whether workers feel
that they themselves might exaggerate how long a task takes
in order to increase their wage. Then, drawing inspiration
from the Bayesian Truth Serum (Prelec 2004), we asked
them what percentage of other workers they felt might ex-
aggerate their time on task to increase their wages.
Across all surveyed requester behaviors, workers reported

underpayment as the single most frustrating issue (Figure 2),
with 79% of workers including it in their top three most frus-
trating requester behaviors. Unfair rejection trailed it with
69% of workers reporting it in their top three, and broken
HITs with 42%. All other issues were at or below one quar-
ter of workers reporting them. The dominance of the under-
payment issue is a striking evolution of workers’ points of
view over the past half decade since Irani and Silberman
found that fewer than a third of Mechanical Turk workers
even mentioned underpayment as an issue (2013).
Prior work a half decade ago suggested that workers ori-

ented around a fair pay rate of the federal minimum wage,
$7.25 per hour (Martin et al. 2014). Our data suggest that
this norm has also shifted drastically, with the “Fight for
Fifteen” (Rolf 2016) $15 per hour (36% of responses) as
the most popular response as to what constitutes a fair wage.
Federal minimum wage (15%) and no minimum wage (6%)
were far less popular options.
In qualitative responses, workers focused on both ethi-

cal imperatives and practical requirements in justifying their
choice:

“The push for fifteen dollars an hour minimum wage

199

0

10

20

30

No Minimum Wage

Fight fo
r Fifte

en

$15/hr

Washington DC Minimum Wage

$13.25/hr

Highest State Minimum Wage

$11.50/hr

Federal M
inimum Wage

$7.25/hr

Requester Location

Minimum Wage

Worke
r Location

Minimum Wage Other

W
or

ke
rs

 s
el

ec
tin

g
th

e
w

ag
e

as
th

e
fa

ire
st

 m
in

im
um

 w
ag

e
(N

=1
01

)

Figure 3: The “fight for fifteen” (Rolf 2016) wage of $15 per
hour was perceived by workers as the fairest wage for their
labor.

is a push to make work and wages livable; if people
are working on Mechanical Turk and taking it seriously
like a professional skill (which I do) they should be
compensated a fair living wage.”

“It’s ludicrous to think that anything under $15 is a re-
motely livable wage. You can’t live off of that. Skip-
ping meals, forgoing doctor visits, living in awful con-
ditions, working insanely long hours are all part of the
current wage scheme. Working online is still working!
It’s right in the name. Why should they be exempt from
labor laws?”

“If you factor in self-employment taxes, 13.25/hr goes
from good pay to fair.”

The minority of workers who disagreed felt that minimum
wages should not be enforced, or that it should not be uni-
veralized:

“I don’t think it’s fair to force someone to pay someone
else. Workers and Requesters are free to work together
or not. If Requesters price the work too low, no one will
do it. Then they can raise the rate they’re paying. But if
the work is getting done, it’s clearly worth someone’s
time to do it. Low pay is frustrating but that’s life.”

“Because minimum wage is not the same across the
country and should not be treated as so.”

30% of workers reported that they might stretch their own
time reports occasionally. They felt on average that 50% of
workers would do so (σ = 25%). Prior work suggests that,
when given a chance to cheat, many people do cheat, but
only by slightly fudging the truth rather than engaging in big
lies (Ariely 2008). In the Evaluation section, we will directly
measure the extent of this time exaggeration.
From this first survey, we took a clear design imperative

that addressing low wages was the most important first goal
for a requester tool, and that $15 per hour was the appropri-
ate fair wage standard around which to anchor our system.
However, there still remained questions of how to handle
situations where requesters and workers disagreed about the
veracity of time reports. So, we launched a second survey

(N=31) to the same population as the first survey. This sec-
ond survey asked workers to rank three options for how to
manage situations when a requester believes that a worker
has not reported honestly: (i) Requesters freeze bonus pay-
ments, worker is notified that they have been flagged for
suspected falsification of time via email, and then workers
can reply in certain period of time to discuss the situation;
(ii) When a requester flags worker for suspected falsification
of time, all other workers who have previously used Fair-
work are notified via email and can weigh in on what action
should be taken; and (iii) If a worker is flagged three times
for suspected falsification of time, bonus payments are auto-
matically stopped for the worker. We also surveyed workers
using Likert scales to rate the importance of possible fea-
tures of an arbitration system.
64% of respondents selected the first option — a freeze

followed by an email discussion — as their top choice. The
other options were far less popular: 26% selected the peer
jury, and 10% selected the three-strikes approach. In ex-
plaining their decisions, the workers made clear that conver-
sation is the right way for workers and requesters to engage:

“I prefer the option that allows the worker to discuss
the situation because there are many reasons that could
lead to a faulty completion time including an adblocker,
broken script, or a mistake.”

As seen in prior work (Whiting et al. 2017), a minority of
“lone wolf” workers wanted the system to avoid any reliance
on other workers’ reports or judgments:

“involving other workers is always a terrible idea. Have
you met some of us??!”

Of the set of characteristics for an arbitration system,
the highly-rated ones involved having an opportunity for
workers to explain themselves (μ = 6.10/7, σ = 1.74)
and a well-outlined procedure (μ = 5.93, σ = 1.61); the
least popular characteristic was consulting other workers
(μ = 1.52, σ = 2.01).
Based on the results of this survey, we designed Fair Work

to allow requesters to temporarily freeze payment and then
engage in communication with requesters before unfreezing
payments.

Fair Work
Fair Work is a Javascript tool that requesters can insert into
their Amazon Mechanical Turk tasks in order to ensure that
their workers are paid at least a minimum wage. Its main
goal is to provide a low-threshold (low-effort) solution for
requesters who wish to be pro-social in their payment strate-
gies but find traditional payment approaches challenging and
error-prone. In naming this platform, we drew on the lan-
guage of advocacy around fair wages. We acknowledge that
what constitutes a “fair wage” is and will always be con-
tested, and we hope that the wage that Fair Work offers will
likewise update over time.
At a high-level, Fair Work provides a HTML <script>

element that requesters add to the HTML of their HIT. Once
the page loads, Fair Work inserts an iframe into the task,
which workers can use to self-report the time it takes them

200

to complete the task. Daily, the Fair Work server aggregates
the median time report per task across workers, compares
that median rate to the minimum wage rate, and bonuses all
workers who completed the task if necessary to ensure that
their earnings are at least minimum wage.
Requesters who want to use Fair Work must first regis-

ter, which allows Fair Work to issue bonuses on their behalf.
To do so, they must agree to the Fair Work IRB and up-
load their AWS keys. The AWS keys, which Fair Work uses
to track HIT completion and send bonuses, are encrypted
and stored on the server. After registration, the requester re-
ceives a unique <script> tag that they can copy and paste
into the HTML of their tasks either in the Mechanical Turk
web interface or in any self-hosted tasks on their own server.
Upon inserting the Fair Work <script> tag, the requester
will see a Fair Work iframe containing a description of Fair
Work and the worker IRB agreement appended to the bottom
of their task.
Once the task is published, workers previewing the task

will also be able to see the same Fair Work iframe. Workers
who accept the task will see a checkbox to agree to the Fair
Work IRB. The workers who agree to the IRB will be pre-
sented with an input box where they can record the amount
of time it took them to complete the task. We opt for a self-
report time rather than automatically tracked duration be-
cause many tasks occur in other windows (e.g., Qualtrics
surveys) or otherwise interfere with efforts to automatically
track time. Fair Work prompts the time report by asking:

Get paid fairly: This requester is using the Fair Work
script to bring pay rates up to the minimum wage of
$15/hr. Fair Work does this by measuring completion
times and then auto-bonusing workers to meet the de-
sired hourly wage if needed.
Please report how much active work time this task took
you, rounded to the nearest half minute. If you are far
off from the median time report across all workers for
this task, indicating a lack of good-faith estimation,
you may be removed from Fair Work bonus eligibil-
ity. Bonuses are sent out daily. By participating, you
acknowledge and consent to the Fair Work IRB.

Workers can then enter the number of minutes it took
them to complete the task into the Fair Work textbox. Fair
Work also provides two accelerator options: (i) estimated
time, a time updated to reflect the length of active time the
user has been active on the tab (Zissman 2019); (ii) last time,
the time that the worker reported on the last HIT they com-
pleted of this task type.
Once per day, for each task type, Fair Work will aggre-

gate all the reported times per worker, take the median per
worker to calculate an estimated time per worker for that
task, then take the median of those estimated times across
workers to estimate the effective time required to complete
the task. Given the effective time and the actual payment for
the task, Fair Work calculates the bonus necessary to bring
payment up to $15/hr. For example, if the requester origi-
nally set the payment for the task at $1 but the median re-
ported time across workers was 20 minutes, then the correct
payment should have been $5, and Fair Work would bonus

each worker who did the task $4 per task.
Once per day, Fair Work sends an email to the requester

summarizing its calculations and the total bonus amount that
it will be sending to workers. To help the requester audit
how the bonuses were calculated, the email breaks down the
median time that each worker reported on the task. If the
requester does nothing, Fair Work sends the bonus to each
worker — including those who completed the task but never
reported times on the task— twelve hours after the summary
email is sent.
Fair Work pays the bonuses to the workers through the

Mechanical Turk API using the requester’s AWS keys. The
message attached to the bonus contains similar information
as the requester received, summarizing the estimated time
per task and why they are receiving the funds. If the re-
quester does not have enough funds in their account to pay
the bonus, both the worker and requester receive an email
that the requester is short funds, and the system tries again
later to re-send the bonus.
If the requester notices a worker who has reported egre-

giously long times, they may freeze payment to that worker
while they resolve the situation. Freezing has the effect of
removing that worker’s reports from the pending estimates,
and blocking the worker from future Fair Work reports for
that requester, until the requester removes the freeze. The
Fair Work interface stresses that freezing should only be
done if it is necessary. During the twelve hour grace period
after receiving the summary email, requesters may place a
freeze by clicking a freeze link next to that worker’s reports
in the summary email. Requesters write an explanation of
the freeze, which is sent to the worker in an email notifying
them that they have been frozen. The email contains the re-
quester’s email address, allowing the worker to contact the
requester to manage any disputes. When a requester issues
a freeze, Fair Work recalculates the estimated time for all
pending tasks excluding the frozen worker’s time reports and
sends a new email with revised pending bonus payments.

Implementation
Fair Work is implemented as a Django application that runs
on Heroku. Requesters’ AWS keys are stored using Fernet
symmetric encryption on the server, and unencrypted when
needed using a private key. When signing up for Fair Work,
the system uses the AWS keys to generate a script embed
that uses that requester’s AWS account ID (e.g., <scrip
t src="https://fairwork.stanford.edu/fa
irwork.js?aws account=12345"></script>).
If an AWS account ID is used on tasks that are not created
by that account, the script errors. The script, on page load,
appends an iframe to the end of the DOM. This iframe,
which loads on the Fair Work server, contains the worker
IRB agreement and time report interface. Time reports are
sent asynchronously as workers type them. Iframes are nec-
essary in this environment to manage modern browsers’ re-
strictions on cross-site scripting.
The code is available under the MIT open-source license

at https://github.com/StanfordHCI/fairwork, and can be de-
ployed by any requester to a private server (Heroku or other-
wise) if they do not want the Fair Work server to hold their

201

encrypted AWS keys. The system alerts workers if the task
they are looking at does not use the Fair Work server. We
ask requesters who use the open-source code to not disable
this warning or lower the minimum wage.

Design space and tradeoffs
In creating Fair Work, we faced a number of value-laden de-
cisions and tradeoffs. In this section, we briefly review these
decisions to support future researchers and practitioners in
the space.

Minimum Wage Our survey indicated that workers felt it
was fairest to pay $15 per hour today; however, requesters
might find this rate high. How do we adjudicate this?
We experimented with local minimum wage based on re-

quester location and worker location. Ultimately, we felt that
a requester-based minimum wage would be confusing for
workers, since they would not be able to get a simple guar-
antee from the presence of the Fair Work script: requesters
living in the city of Chicago, for example, would be paying
$12.00/hr, but those just a mile outside of Chicago would
only be paying the Illinois state minimum wage of $8.25/hr.
The same goes for workers: paying each worker based on
their local minimumwage, e.g. with the Min-Wage Retrieval
API (Mankar, Shah, and Lease 2017), could be confusing to
requesters, and might lead to geographic bias in recruitment.
So, we sought a single approach that could be applied

consistently. We experimented with an expected value na-
tional wage by weighing local minimumwages in the United
States by the proportion of the population that lived in each
locality, but this resulted in an $8.78 wage, far below work-
ers’ fair wage feedback in the survey. Ultimately, we decided
(1) that a single minimum wage provided the clearest mental
model to workers and requesters, and that (2) requesters us-
ing the tool were doing so with the goal of being pro-social,
and so many would either already be in $15/hr localities or
be aligned with the $15/hr efforts in their locality. So, we
decided that a $15/hr minimum wage was the clearest and
fairest option for Fair Work.

Scheduling How quickly should Fair Work bonus work-
ers? How much time should requesters have to audit the
results before the bonuses are sent? The answers to these
two questions are in tension: workers need prompt pay-
ment (Irani and Silberman 2013) and requesters need time
to ensure that Fair Work’s estimates are reasonable. In ad-
dition, because requesters may change tasks over time with-
out updating the HITGroup (the ID that the platform uses to
group tasks), Fair Work needs some short period of hystere-
sis over which to aggregate time self-reports: this allows the
estimated wage to update as the task changes.
In this case, we started with a constraint on how long

workers feasibly wait for approval and payment. Based on
interactions with workers, we set this limit at about one day
after work is approved. Then, we worked backward to iden-
tify a feasible window for requesters to vet the results. Typ-
ically, there is nothing for requesters to do, so we chose
to give requesters a twelve-hour window. In other words:
every twenty-four hours, Fair Work calculates bonuses for

any tasks that have been completed in the previous twenty-
four hours. After that, requesters have twelve hours to inter-
vene if needed before the bonuses are sent out. Lengthening
this schedule might stress workers but would give requesters
more flexibility; shortening it would stress requesters but
give workers more certainty.

Freezing Fair Work defaults to trusting that workers will
submit honest time reports and thus the earliest version of
the system had no capacity for freezing bonuses. However,
testing this early prototype reminded us that some workers
would misunderstand or abuse the system. Therefore, we
added the freeze system as a way to give requesters a grace
period to ensure nothing looks wrong, and to control any bad
actors.
We examined several alternatives. The first was worker

adjudication: if a requester feels that a worker is lying, they
flag the report, and both the worker and requester’s expla-
nations go to a panel of impartial workers to adjudicate
and decide. The second was a three-strikes rule: if several
requesters independently flagged the worker, that worker
would be excluded from all Fair Work bonuses going for-
ward. Surveyed workers far preferred the approach that en-
couraged individual conversation between the worker and
requester, which is why we developed the freeze framework
to start an email conversation. For now, our team adjudicates
any arguments that cannot be worked out interpersonally;
however, we have not yet been asked by any worker or re-
quester to intervene in this way.

Effective wage calculation Fair Work calculates the ef-
fective wage rate for a task by taking the median time report
per worker, then taking the median across workers. Why is
this approach fair, if a median means that half of workers
will be earning below this rate?
An alternative architecture might bonus workers individ-

ually based on their own self-reported time. This would be
a reasonable approach and a viable future work direction for
the project, should requesters prefer it. The computed me-
dian could then be used for any workers who do not report
their time.We chose a unified estimate per task for FairWork
because it would be a familiar mental model for workers and
requesters: each task has an estimated wage rate and is paid
based on that.
A second alternative might be to use a statistic rather than

the median, such as 25th percentile or the mean. The me-
dian has the important advantage of being more resilient to
outliers. When there are many reports, individual strategic
behavior has no practical effect and requesters do not need
to worry about freezing. When there are a small number
of reports, the median could be skewed, but in this case it
is easy for requesters to identify and freeze the few prob-
lematic outliers. This prevents the requester from needing to
be burdened with freezing a large number of reports. More
complex methods could have flagged outliers automatically,
but we felt that it would make the methodology less inter-
pretable to the requester; if requesters do not understand
how bonuses are calculated, it will be difficult for them to
trust our system and gauge whether or not the bonuses are
equitable. Furthermore, freezing would be much harder for

202

requesters because they would not know how freezing one
extraneous time report will affect the bonus recalculation.

Evaluation
To evaluate Fair Work, we sought to answer two questions.
First, does Fair Work support requesters in avoiding task un-
derpayment? Second, how accurate are workers in their time
estimates they provide to Fair Work?
We recruited Amazon Mechanical Turk requesters who

had posted at least 2 different tasks in the past, and collected
19 unique tasks types that they had previously created. We
relaunched them on Amazon Mechanical Turk while using
the Fair Work script.
We launched at least 10 assignments (tasks for different

workers) for each of up to 10 different HITs (specific tasks)
per task type. We made the tasks available to Amazon Me-
chanical Turk workers with any relevant qualifications used
by the requesters on the tasks they provided. When no qual-
ifications were specified by the requester, we used workers
with a minimum of 1000 accepted tasks on the platform. We
restricted tasks to workers based in the USA. This method
resulted in a total of 736 completed tasks for the experi-
ment. We additionally asked each requester to estimate a
piecework rate for their task if they were intending the task’s
hourly wage to be $15 per hour, in alignment with the pay
rate goal in Fair Work. A total of 259 unique workers con-
tributed to this experiment.
Extending the initial design of Fair Work, the system we

used for our experimentation also included a timer script that
measured the number of seconds the task was a focused win-
dow and the worker was interacting with the window (Ziss-
man 2019) to provide baseline comparison between reported
and actual work times. We instrumented the system to mea-
sure the actual time on the task, independent of whether the
workers self reported their work times in Fair Work, allow-
ing us to also consider how selection effects may impact
workers’ actual median work times. For our analyses, we
filtered out two task types that required completion off-tab
or in other ways that the automatic time tracking would be
inaccurate.

How accurately do requesters price?
We compared the target pay rate of $15 per hour to the me-
dian observed completion times on the tasks. Requesters
mispriced their tasks by $7.80 (σ = $3.50) on average
across all the unique tasks we evaluated. In other words, the
average task had an error on the order of paying roughly
50% of the target wage ($7.20) or 150% of the target wage
($22.80). Requester inaccuracies in setting the correct price
for their tasks both over and undershot the Fair Work rates
(Figure 4). More tasks underpaid than overpaid, with 68%
underpaid.
This result reinforces that even when trying to target a

specific wage, requesters often underestimate how long the
task takes and thus underpay. Some requesters were able to
price effectively, and some overpaid, but the plurality would
feature Fair Work price adjustments.

0

2

4

6

8

10 0 10

Dollars away from intended pay rate ($15 per hour)

N
um

be
r o

f u
ni

qu
e

ta
sk

 ty
pe

s

Figure 4: When targeting a $15 per hour wage, requesters
tend to assume they are paying more than they actually are.

How accurately do workers report durations?
259 of the workers on the task opted in to data collection
via our IRB agreement. Of the 736 tasks these workers com-
pleted, 50% had at least one self-reported work duration for
the worker on that task. Workers reported 1 duration per task
type on average (σ = 1.5).
Comparing workers’ median self reported work times

(μ = 180, σ = 360) to their median observed timer times
(μ = 100, σ = 110) per task via a paired t-test was signif-
icant, t(186) = −6.02, p < .001. The median difference
for an individual worker between their observed and self-
reported times is 38% of the observed time (Figure 5). This
would mean, for example, a 60 second reported duration
and an 43 second recorded duration. This result is consistent
with prior work (Ariely 2008), a “generous rounding up” of
timing rather than outright exploitation. The effect of this
inflation is to shift the percentage of workers that achieve
the Fair Work minimum wage. If workers’ self-reports were
exactly the same as their observed times, then using the me-
dian would suggest that 50% of workers would make more
than the minimum wage and 50% would make less. By com-
paring workers’ individual recorded times to the aggregate
self-report estimates, we find that this inflation means that,
in practice, 78% of workers are making at least the minimum
wage.
Comparing average observed times between workers who

did (μ = 132.74, σ = 132.33) and did not (μ = 99.15, σ =
107.28) self-report Fair Work times, we do not observe a
significant difference with an unpaired t-test (t(22.647) =
0.69963, p = 0.4913). So, the workers who self-report times
do not appear to be different in task completion times than
those who do not report, indicating that using those who
do report times to generalize appears to be a reasonable as-
sumption.

Responses to Fair Work
We aggregate three sources of qualitative insight about Fair
Work: responses from community outreach, responses from
requesters when eliciting tasks for experiments, and re-
sponses from workers as they utilized the platform.

203

0

500

1000

0 500 1000 1500

Median reported time

M
ed

ia
n

m
ea

su
re

d
tim

e

Figure 5: Workers report slightly longer task completion
times, on average, than observed.

Workers appear interested by the idea of Fair Work, but
some remain skeptical about the degree to which it will be
used by requesters if not enforced by the platform. For ex-
ample, a small number of worker responses on Twitter after
our announcement of Fair Work represented a critical per-
spective that Fair Work would have to be implemented by
Amazon Mechanical Turk to hold value. On the other hand,
workers who interacted with Fair Work through our exper-
iment responded very pragmatically, indicating interest, but
also caution, since many of the experimental tasks were un-
derpaid by their requesters:

“I read with interest your Fair Work document; how-
ever, I am finding that your hits on mturk generally pay
much less.”

Requesters on the other hand in general reflected posi-
tively on the potential for Fair Work to help them price their
tasks more accurately. One requester exclaimed reflected
this when being providing tasks for our experiment:

“When I make new tasks, I’m always afraid that I’m
either going to annoy workers by paying too little, or
be wasting money by paying way too much.”

Some requesters reflected that the price rate was substan-
tially higher than their usual hourly wage goal, but also
noted that they had little insight as to the effective hourly
wage workers on their tasks actually earn. One requester re-
ported the following pricing methodology:

“I usually ask a friend to do my task and see how long
they take.”

However, they later mentioned that they had no idea if this
method would give workers suitable wages.

Overall our qualitative results suggest that workers and
requesters stand to benefit from using Fair Work but that
buy-in is a two sided problem. The challenges of earning a
fair wage on Amazon Mechanical Turk and of pricing tasks
fairly is reflected in the responses of both groups. This sug-
gests that the intention of the Fair Work system is desired
by the community, but also that finding ways to ensure it is
implemented and widely adopted will remain a challenge.

Discussion
One limitation of Fair Work is that, if only a few workers
report times for a task, the estimate can easily become inac-
curate. In this sense, it is in workers’ best interest to report,
and in requesters’ best interest to request that workers fill in
the report.
One way to view our data is that requesters often under-

price their tasks, and that workers often over-estimate their
time on task. This equilibrium, if it generalizes, could cer-
tainly help explain some of the friction that exists on the
marketplace. Clearly there are a myriad of different individ-
ual experiences. However, finding a process that both parties
agree is fair may help ameliorate the situation.
Our results suggest that Fair Work can aid requesters in

ensuring that they meet a target wage, and support work-
ers in achieving a minimum wage. However, it is important
to consider ecosystem-level impacts. We must consider the
possibilities that Fair Work might not achieve its goals, or
that Fair Work will be adopted at a rate sufficient to see such
effects.
For example, requesters might reduce the price on their

tasks to make sure they don’t overpay, and rely on Fair
Work to compensate. This would complicate the usefulness
of pricing signals for workers on the marketplace. In addi-
tion, for tools like Fair Work to achieve wide-scale change, it
would require a focused group, such as researchers, to com-
mit to using it in their work, essentially agreeing to enforc-
ing a minimum wage for research conducted on Mechanical
Turk in their work or in their peer review process. On the
worker side, we cannot assess the extent to which Fair Work
might encourage collusion within the worker community to
systematically over report working times or to encourage
slower work in general.
Future work must also investigate and iterate on how

workers and requesters navigate disputes. Currently, if work-
ers and requesters cannot reach agreement, the system en-
courages them to raise it to the tool administrators for an
additional opinion. However, models based on peer juries
may offer a more neutral and just system.

Conclusion
This paper introduces Fair Work, a tool that enables Amazon
Mechanical Turk requesters to pay consistent hourly wages
by adding only a single line of code to their tasks. Through a
survey of workers, we validated the claim that underpayment
is still a widespread issue, motivating the creation of Fair
Work. We showed that the system prices more accurately
than requesters, and that it leverages a signal, self reported
work durations, that serves as a reasonable measure of actual

204

work rates. Though Fair Work remains in its infancy, our
hope is that other requesters will broadly adopt Fair Work,
and that the worker community will come to expect fair pay
on all tasks in online labor markets.

Acknowledgments
We thank the workers and requesters who participated in this
project, as well as those whose experiences influenced its
creation. This project was supported by a National Science
Foundation award IIS-1351131 and a Sloan Research Fel-
lowship.

References
Alkhatib, A.; Bernstein, M. S.; and Levi, M. 2017. Examin-
ing crowd work and gig work through the historical lens of
piecework. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, 4599–4616. ACM.
Antin, J., and Shaw, A. 2012. Social desirability bias and
self-reports of motivation: a study of amazon mechanical
turk in the us and india. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, 2925–
2934. ACM.
Ariely, D. 2008. Predictably irrational. Harper Collins.
Bederson, B. B., and Quinn, A. J. 2011. Web workers unite!
addressing challenges of online laborers. In CHI’11 Ex-
tended Abstracts on Human Factors in Computing Systems,
97–106. ACM.
Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger, D. R.
2011. Crowds in two seconds: Enabling realtime crowd-
powered interfaces. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, 33–
42. ACM.
Bragg, J.; Weld, D. S.; et al. 2018. Sprout: Crowd-powered
task design for crowdsourcing. In The 31st Annual ACM
Symposium on User Interface Software and Technology,
165–176. ACM.
Brewer, R.; Morris, M. R.; and Piper, A. M. 2016. Why
would anybody do this?: Understanding older adults’ moti-
vations and challenges in crowd work. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing
Systems, 2246–2257. ACM.
Callison-Burch, C. 2014. Crowd-workers: Aggregating in-
formation across turkers to help them find higher paying
work. In Second AAAI Conference on Human Computation
and Crowdsourcing.
Cheng, J.; Teevan, J.; and Bernstein, M. S. 2015. Measuring
crowdsourcing effort with error-time curves. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, 1365–1374. ACM.
Chilton, L. B.; Horton, J. J.; Miller, R. C.; and Azenkot, S.
2010. Task search in a human computation market. In Pro-
ceedings of the ACM SIGKDD workshop on human compu-
tation, 1–9. ACM.
Conger, K.; Xiuzhong Xu, V.; and Wichter, Z. 2019. Uber
drivers’ day of strikes circles the globe before the company’s
i.p.o. New York Times.

Gaikwad, S.; Chhibber, N.; Sehgal, V.; Ballav, A.; Mullings,
C.; Nasser, A.; Richmond-Fuller, A.; Gilbee, A.; Gamage,
D.; Whiting, M.; et al. 2017. Prototype tasks: improving
crowdsourcing results through rapid, iterative task design.
arXiv preprint arXiv:1707.05645.
Gray, M. L., and Suri, S. 2019. Ghost Work: How to Stop
Silicon Valley from Building a New Global Underclass. Ea-
mon Dolan Books.
Gray, M. L.; Suri, S.; Ali, S. S.; and Kulkarni, D. 2016. The
crowd is a collaborative network. In Proceedings of the 19th
ACM conference on computer-supported cooperative work
& social computing, 134–147. ACM.
Gupta, N.; Martin, D.; Hanrahan, B. V.; and O’Neill, J. 2014.
Turk-life in india. In Proceedings of the 18th International
Conference on Supporting Group Work, 1–11. ACM.
Hancock, J. T.; Toma, C.; and Ellison, N. 2007. The truth
about lying in online dating profiles. In Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, 449–452. ACM.
Hanrahan, B. V.; Willamowski, J. K.; Swaminathan, S.; and
Martin, D. B. 2015. Turkbench: Rendering the market for
turkers. In Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems, 1613–1616.
ACM.
Hara, K.; Adams, A.; Milland, K.; Savage, S.; Callison-
Burch, C.; and Bigham, J. P. 2018. A data-driven analysis
of workers’ earnings on amazon mechanical turk. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, 449. ACM.
Hinds, P. J. 1999. The curse of expertise: The effects of
expertise and debiasing methods on prediction of novice
performance. Journal of experimental psychology: applied
5(2):205.
Horton, J. J., and Chilton, L. B. 2010. The labor economics
of paid crowdsourcing. In Proceedings of the 11th ACM
conference on Electronic commerce, 209–218. ACM.
Ipeirotis, P. G. 2010. Demographics of mechanical turk.
Irani, L. C., and Silberman, M. 2013. Turkopticon: Inter-
rupting worker invisibility in amazon mechanical turk. In
Proceedings of the SIGCHI conference on human factors in
computing systems, 611–620. ACM.
Irani, L. C., and Silberman, M. 2016. Stories we tell about
labor: Turkopticon and the trouble with design. In Proceed-
ings of the 2016 CHI conference on human factors in com-
puting systems, 4573–4586. ACM.
Kaplan, T.; Saito, S.; Hara, K.; and Bigham, J. P. 2018. Striv-
ing to earn more: a survey of work strategies and tool use
among crowd workers. In Sixth AAAI Conference on Hu-
man Computation and Crowdsourcing.
Kaufmann, N.; Schulze, T.; and Veit, D. 2011. More than
fun and money. worker motivation in crowdsourcing-a study
on mechanical turk. In AMCIS, volume 11, 1–11. Detroit,
Michigan, USA.
Kittur, A.; Nickerson, J. V.; Bernstein, M.; Gerber, E.; Shaw,
A.; Zimmerman, J.; Lease, M.; and Horton, J. 2013. The

205

future of crowd work. In Proceedings of the 2013 confer-
ence on Computer supported cooperative work, 1301–1318.
ACM.
Lasecki, W. S.; Murray, K. I.; White, S.; Miller, R. C.; and
Bigham, J. P. 2011. Real-time crowd control of existing in-
terfaces. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, 23–32. ACM.
Mankar, A.; Shah, R. J.; and Lease, M. 2017. Design
activism for minimum wage crowd work. arXiv preprint
arXiv:1706.10097.
Martin, D.; Hanrahan, B. V.; O’Neill, J.; and Gupta, N. 2014.
Being a turker. In Proceedings of the 17th ACM conference
on Computer supported cooperative work & social comput-
ing, 224–235. ACM.
McInnis, B.; Cosley, D.; Nam, C.; and Leshed, G. 2016.
Taking a hit: Designing around rejection, mistrust, risk, and
workers’ experiences in amazon mechanical turk. In Pro-
ceedings of the 2016 CHI conference on human factors in
computing systems, 2271–2282. ACM.
Myers, B.; Hudson, S. E.; and Pausch, R. 2000. Past,
present, and future of user interface software tools. ACM
Transactions on Computer-Human Interaction (TOCHI)
7(1):3–28.
Otey. 2015. Otey v. crowdflower, inc. et al.
https://dockets.justia.com/docket/california/candce/4:
2012cv05524/260287/.
Prelec, D. 2004. A bayesian truth serum for subjective data.
science 306(5695):462–466.
Rolf, D. 2016. The fight for fifteen: The right wage for a
working America. New Press, The.
Rzeszotarski, J. M., and Kittur, A. 2011. Instrumenting
the crowd: using implicit behavioral measures to predict task
performance. In Proceedings of the 24th annual ACM sym-
posium on User interface software and technology, 13–22.
ACM.
Saito, S.; Chiang, C.-W.; Savage, S.; Nakano, T.; Kobayashi,
T.; and Bigham, J. 2019. Turkscanner: Predicting the hourly
wage of microtasks. arXiv preprint arXiv:1903.07032.
Salehi, N.; Irani, L. C.; Bernstein, M. S.; Alkhatib, A.; Ogbe,
E.; Milland, K.; et al. 2015. We are dynamo: Overcoming
stalling and friction in collective action for crowd workers.
In Proceedings of the 33rd annual ACM conference on hu-
man factors in computing systems, 1621–1630. ACM.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 614–622. ACM.
Silberman, M. S.; Tomlinson, B.; LaPlante, R.; Ross, J.;
Irani, L.; and Zaldivar, A. 2018. Responsible research with
crowds: pay crowdworkers at least minimum wage. Com-
mun. ACM 61(3):39–41.
Whiting, M. E.; Gamage, D.; Gaikwad, S. N. S.; Gilbee, A.;
Goyal, S.; Ballav, A.; Majeti, D.; Chhibber, N.; Richmond-
Fuller, A.; Vargus, F.; et al. 2017. Crowd guilds: Worker-
led reputation and feedback on crowdsourcing platforms.

In Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing, 1902–
1913. ACM.
Zissman, J. 2019. Timeme.js. https://github.com/
jasonzissman/TimeMe.js/. Accessed: 2019-05-27.

206

