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Abstract

Vision models are interpretable when they classify objects
on the basis of features that a person can directly under-
stand. Recently, methods relying on visual feature prototypes
have been developed for this purpose. However, in contrast
to how humans categorize objects, these approaches have not
yet made use of any taxonomical organization of class labels.
With such an approach, for instance, we may see why a chim-
panzee is classified as a chimpanzee, but not why it was con-
sidered to be a primate or even an animal. In this work we in-
troduce a model that uses hierarchically organized prototypes
to classify objects at every level in a predefined taxonomy.
Hence, we may find distinct explanations for the prediction an
image receives at each level of the taxonomy. The hierarchi-
cal prototypes enable the model to perform another important
task: interpretably classifying images from previously unseen
classes at the level of the taxonomy to which they correctly
relate, e.g. classifying a hand gun as a weapon, when the only
weapons in the training data are rifles. With a subset of Im-
ageNet, we test our model against its counterpart black-box
model on two tasks: 1) classification of data from familiar
classes, and 2) classification of data from previously unseen
classes at the appropriate level in the taxonomy. We find that
our model performs approximately as well as its counterpart
black-box model while allowing for each classification to be
interpreted.

1 Introduction

What is clear from the study of human vision is that we or-
ganize the world into “inductively rich” categories that re-
late to each other taxonomically: we glean useful informa-
tion from recognizing that something is an animal, and we
draw even more useful information from seeing that it is a
tiger rather than a cat (Bloom 2001). Further, we can ex-
plain our visual judgments by pointing to prototypical fea-
tures that an object possesses as evidence for its membership
in the class to which those features correspond (Salakhutdi-
nov, Tenenbaum, and Torralba 2012); a certain animal is a
tiger because it is a large cat with black stripes, approxi-
mately orange fur, menacing teeth, etc. Using some internal
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Figure 1: The capuchin shown here is classified at three
levels in a pre-defined taxonomy: animal, primate, and ca-
puchin. The classification is made based on similarities be-
tween the latent representation of the capuchin and learned
prototypes corresponding to each of these three hierarchi-
cally organized classes. Beside each prototype, there is a
heat map showing the localized areas in the test image that
highly activated the prototype. Hence, we see the parts of the
image that led the model to classify it as an animal (rather
than, e.g., a vehicle), a primate (rather than a non-primate),
and finally as a capuchin (rather than an orangutan or gib-
bon). For the full class taxonomy, see Figure 3.

taxonomy, people can explain their visual judgments at mul-
tiple levels of abstraction, and these explanations may differ
across each level. What distinguishes animals from vehicles
is different from what distinguishes lions and tigers, for in-
stance. People can also tell when an object resides within a
coarse class (like animals) but does not belong to any famil-
iar fine class (like deer). That is, we can tell when something
is a kind of animal we have never seen before.

For computer vision models to replace human judgment
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on important image recognition tasks, these models should
fulfill the same functions and exhibit the same transparency
as we do, which is to suggest that vision models should 1)
classify images on the basis of human-interpretable features
such as visual feature prototypes, 2) predict image classes
not just at the level of the dataset labels, but also at each level
of a taxonomy that is known to organize the classes, and 3)
detect when images belong to never-before-seen subclasses
within some coarse class in the known taxonomy.

Why add a hierarchical class structure and novel class de-
tection to an interpretable model? First, such an approach
makes explicit the trade-off between information gain and
accuracy, since it is easier to distinguish among objects at
less informative levels of a taxonomy (Deng et al. 2012).
Users can elect to make their decision using only the more
reliable but more coarse-grained classification. This option
is useful when policy responses to a prediction do not change
after a certain level of specificity, or when they differ be-
tween two “sibling” classes. For example, a decision-maker
who is unsure whether an object is a pistol or an assault rifle
might nonetheless produce an appropriate policy response
simply by virtue of knowing the object is a gun.

Second, explanations for predictions can be tailored to
their corresponding taxonomical level. We may identify the
reasons for an ambulance being an automobile (which could
include the presence of wheels), and then for it being an
ambulance (which could include the presence of sirens, not
simply the presence of wheels). This helps us focus our un-
derstanding of each image’s prediction to the most specific
level at which we wish to distinguish its class from other
classes. Further, when the predictions are wrong, we can see
at what level of specificity they went wrong.

Lastly, this approach enables the interpretation of predic-
tions for images from novel (never-before-seen) classes, as
long as these novel classes fall under other broader classes
in the model’s known taxonomy. Vision models deployed
in live environments will inevitably encounter such images,
and it will be useful for them to recognize both that these
images belong to novel classes and that they are instances of
some familiar but more coarse-grained class.

In this paper, we present an algorithm that performs the
three functions described above. In doing so, we draw upon
work from three frameworks in computer vision: 1) inter-
pretability through feature prototypes, 2) hierarchical class
organization, and 3) novel class detection. Our algorithm
combines and builds upon insights from each framework, al-
lowing for the interpretable classification of images at mul-
tiple levels of taxonomical specificity, even when these im-
ages come from novel classes (that fall under a broader class
in the known taxonomy). With a subset of ImageNet, we test
our model against its counterpart black-box vision model on
two tasks: classification of data from familiar classes and
classification of data from previously unseen classes at the
appropriate level in the model taxonomy. We find that our
model performs approximately as well as its counterpart
black-box model while producing interpretable predictions.

We report several accuracy metrics here, including 1) fine-
grained accuracy on in-distribution data, 2) coarse-grained
accuracy on novel data, and 3) novel class detection accu-

racy. We also give a quantitative evaluation of the quality of
our interpretable model’s learned latent space.1

2 Related Work

Within computer vision, there are long lines of prior research
in each of hierarchical classification, interpretable modeling,
and novel class detection. To date, however, the approaches
have not been successfully combined.

Interpretable Models. There is no shortage of post-hoc
interpretations of CNN-based vision models (Erhan et al.
2009; Lee et al. 2009; Simonyan, Vedaldi, and Zisser-
man 2014; Sundararajan, Taly, and Yan 2017), but there
are fewer methods where an attempt is made to learn ex-
plicitly interpretable features. A few identify subsections
of an image that were important to a classification, e.g.,
the class-attention maps of Pinheiro and Collobert (2015)
and Zhou et al. (2016). Others feed only a localized por-
tion of the image to the model that is selected in a super-
vised manner, with densely labeled data (Huang et al. 2016;
Zhou et al. 2018), or in an unsupervised manner with auxil-
iary networks pre-trained for this purpose (Simon and Rod-
ner 2015). The shortcomings of class attention and saliency-
based approaches in particular are exemplified in Figure 2.

The most interpretable methods include the prototype-
based approaches of Branson et al. (2014), Li et al. (2018),
and Chen et al. (2018). Our approach differs from each along
several important dimensions. Using the prototype-specific
heat map method from Chen et al. (2018), we show that our
prototypes encode for local information (i.e. image parts),
a quality of prototypes that Branson et al. (2014) do not
demonstrate for their model. Li et al. (2018) use a decoder
to visualize prototypes of MNIST classes, which does not
work for complex naturalistic images.

Our approach differs from Chen et al. (2018) by organiz-
ing the prototypes hierarchically rather than in a “flat” man-
ner. Whereas past work involves learning prototypes partic-
ular to each class in the dataset, our method learns both an
analogous set of prototypes, which correspond to the leaf
nodes in the class taxonomy, and additional sets of proto-
types for each related group of classes, which correspond to
parent nodes in the class taxonomy. This enables us to inter-
pret image classifications at each parent node in taxonomy,
e.g., what makes a panda an animal rather than a vehicle as
well as what distinguishes the panda from a lion.

Hierarchical Classification. Hierarchical classification
has been performed with SVMs (Deng et al. 2012), Bayesian
graphical models (Salakhutdinov, Tenenbaum, and Torralba
2012), CNNs, (Ahmed and Torresani 2017; Redmon and
Farhadi 2017; Zhu and Bain 2017; Kuang et al. 2018;
Yan et al. 2015), and the use of a CNN and RNN to-
gether (Guo et al. 2017). Typically the problem is entirely
supervised, but inferring the tree structure of classes has
been done in an unsupervised fashion as well (Zhang et al.
2016). Our work falls into the supervised CNN category.
Within this category, some approaches use a single CNN

1We are making our code publicly available at: https://github.
com/peterbhase/interpretable-image.
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Figure 2: Saliency maps show where the model is looking, but they do not tell why the model classifies an image as it does. Our
prototype-based model provides more localized features, leading to better explanations of model classifications (see Figure 6).

and construct predictions over the class taxonomy from a
single network output (Redmon and Farhadi 2017), while
others branch their networks to produce representations
unique to each sub-classification task (Zhu and Bain 2017;
Yan et al. 2015). Our work is an instance of the latter, as our
network branches at a particular point before any classifica-
tions are made.

Our approach departs from previous work in hierarchi-
cal classification through our introduction of prototypes that
encode for image parts, allowing for model classifications
to be directly interpreted. None of the prior CNN-based ap-
proaches make use of prototypes in the latent space; they
introduce hierarchical class labeling chiefly for purposes of
increasing accuracy or dealing with labels of varying speci-
ficity. There is a Bayesian graphical model that utilizes pro-
totypes (Salakhutdinov, Tenenbaum, and Torralba 2012), but
the prototypes in this model are in pixel space and each rep-
resents an entire class, while our prototypes reside in a latent
space and represent parts of a class.

Novel Class Detection. Lastly, Shafaei, Schmidt, and Lit-
tle (2018) review a variety of novel class detection meth-
ods for vision models, which are known variously as out-
of-distribution detection, outlier detection, or novelty detec-
tion methods. These methods include both unsupervised and
supervised approaches and predominately operate by using
information from the logits that a model outputs. Unsuper-
vised methods here rely on standard statistical outlier detec-
tion techniques (Bendale and Boult 2015), and they perform
consistently worse than supervised techniques. The super-
vised approaches make use of classifiers on a model’s logits,
while of course requiring that some data are withheld from
the modeling process to serve as out-of-distribution data.

We extend this body of work by adapting past methods to
the context of hierarchical class organization. We introduce
a method for solving the problem of detecting when an in-
stance resides within a known coarse class (like animals) but
not within any of the known sub-classes (like panda or lion).

3 Problem Descriptions

We describe the three problems treated by our approach.

Ensuring Interpretability. Interpretable vision models
classify images on the basis of directly interpretable fea-
tures. From the work of Bloom (2001), we identify two paths
toward ensuring that features are interpretable. First, one

Figure 3: Our class taxonomy defined over a subset of 15
ImageNet classes, where each of the fifteen classes is repre-
sented as a leaf node.

could produce features corresponding to object properties
like redness or having legs. Second, one could produce fea-
tures from measures of similarity between new instances and
representative instances of each class. Note that as a point of
terminology, Bloom identifies the first of these approaches
as the prototype approach, while he identifies the second
as the exemplar approach. The model we introduce here is
best considered to follow the prototype approach, since the
model learns features that are image parts rather than en-
tire instances of classes. Our model could also be described
as following case-based reasoning, since even as the model
learns feature prototypes that represent abstract object prop-
erties, the feature prototypes are always drawn from con-
crete instances in the training data.

Can we ensure the model learns meaningful features?
Quantitative metrics for interpretability have been developed
(Bau et al. 2017), but they rely on particular densely labeled
datasets that still may not capture all of the relevant, mean-
ingful features for a distinct setting of deployment. Conse-
quently, domain experts must check that features are mean-
ingful for applications in their domain. For the domains like
those captured in the ImageNet data used in this paper, a
layperson can check if features are meaningful; they are not
forced to trust a black box.

Hierarchical Classification. The task of hierarchical clas-
sification is to predict an image’s class at each level of a tax-
onomy (i.e. tree). Suppose we have sample images from the
data space X and labels from the space Y . The key differ-
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ence with a standard classification framework is that each
label yi has k elements, with y

(k)
i representing an image’s

label at the kth level in the tree.
Here, Y(0) denotes the root, Y(1) will represent the first

set of children below the root, which correspond to the
coarsest classes, and Y(K) will represent the finest level.
We seek to learn a function f : X → Y that approxi-
mates the true distribution P (Y|X ) over paths in the tree;
each path corresponds to an image’s full label, e.g. {animal,
cat}. Physically impossible paths, like {animal, truck} are
known a priori to have 0 probability. Not all branches need
to be the same depth, though for notational convenience we
will always write label sequences through Y(K).

This task is accomplished by learning each of the con-
ditional distributions within a factorization of the full joint
distribution P (Y|X ) = P (Y(1), ...,Y(K)|X ).

Then there are as many distributions to learn as there are
parent nodes, counting one root node corresponding to the
distribution over Y(1). Each distribution P (Y(k+1)|Y(k) =
c(k),X ) represents the multinomial distribution over the
children classes of the parent node c(k) on the kth tree level,
where c(0) is the class of all known entities:

P (Y|X ) = P (Y(1)|X )× ...× P (Y(K)|Y(K−1),X ),

which is a typical objective for multinomial classification.

Novel Class Detection. Novel class and out-of-
distribution detection methods provide a mechanism
for identifying data not from a known distribution. This
can either be considered an unsupervised problem, or a
binary classification problem, if one is willing and able
to set aside some data that is “novel,” while considering
the remaining data to come from the known distribution
(Shafaei, Schmidt, and Little 2018). When combined with a
hierarchical classification approach, we can apply novelty
detection mechanisms to two different kinds of problems:
detecting some entirely new classes (e.g., animals, when the
known distribution contains only vehicles), and detecting
some classes that are novel at a specific level but not at a
broader one, e.g., taxi cabs when the known distribution
contains only pickup trucks and sports cars. We will use
the term “novel class” to refer to both forms of novelty
described above, while we will use “out-of-distribution” to
refer strictly to instances that do not belong to any class in a
known taxonomy, no matter how coarse-grained.

We can formalize these tasks as estimating the probabil-
ity of membership in one set of classes, with the option of
conditioning on membership in another set of classes.

The standard view of out-of-distribution detection is to
estimate the probability that data of fine-grained class Y∗
belongs to the distribution of known fine-grained classes,

P (Y∗ ∈ Y(K)|X ).

Here, we introduce the problem as novel class detection,
where we estimate the probability that the fine-grained label
of data is in the known children of the parent, conditioned
on it being a member of the parent class,

P (Y∗ ∈ c
(k)
children|Y∗ ∈ c(k),X )

where c
(k)
children = {c(k+1)|c(k+1) ∈ c(k)} and child-parent

relationships like {primate} ∈ {animal} hold.
Our description is thus a generalization of the standard

view, which reduces to the standard problem when k = 0
and we consider c(0) to be the class of all known entities.

4 Model

In this section we describe our image recognition model and
the novel class detection method.

Denote the data as D = [X,Y] = {(xi,yi)}ni=1, with
hierarchical labels yi ∈ Y for i ∈ {1, ..., n}.

Image Recognition Model

The architecture of our image recognition model is rep-
resented in Figure 4. We term our model HPnet, for Hi-
erarchical Prototype network. Our recognition model is a
generalization of the model of Chen et al. (2018); with a
pre-defined taxonomy consisting of only one level of fine-
grained classes, our HPnet model reduces to their model,
which we label Pnet. The core components of the Pnet
model, including the design of the prototype layer and loss
terms, are delineated by Chen et al. (2018), and are described
again here for convenience.

First, a CNN f maps images to a latent space. In our ex-
periments, we use the VGG-16 network (Simonyan and Zis-
serman 2014), with the fully connected layers and classifier
removed. We append two 1x1 convolution layers to the end
of the network to reduce the dimensionality of the convo-
lutional output from H × W × D to H × W × D′, where
D′ = 32 < D = 512 and the second activation function is a
sigmoid. Let the convolutional output be z. Here, the convo-
lutional output is considered as a set of HW patch vectors
each of size D′, {z̃i}HW

i=1 . By virtue of the sigmoid activa-
tion, the patch vectors are in the unit hypercube in R

D′
.

For each parent node in the class taxonomy, there is a pro-
totype layer that operates directly on z. At a high level, pro-
totypes in the latent space will be used to compute feature
vectors from the latent representation z. Each element of a
feature vector will be a similarity score for a particular pro-
totype that will be higher when some patch vector z̃ ∈ z is
close to that prototype.

During training, a set of m prototypes is learned for each

prototype layer, denoted as Pc(k)

=
{
pc(k)

j

}m
c(k)

j=1
, where

c(k) gives the parent class. The prototype layer of class c(k)
first transforms z into a set of mc(k) matrices of size H×W ,
where the ith matrix is the activation map corresponding
to prototype pc(k)

i . Then the max of each activation map is
taken to produce a feature vector vc(k)

in R
m

c(k) . Together,
similarity score j of the layer’s final feature vector is com-
puted as

g
pc(k)

j

(z) = max
z̃∈patches(z)

log
(
1 + 1/(‖z̃− pc(k)

j ‖22 + ε)
)
.

Finally, a fully connected layer hc(k)

transforms the feature
vector into a distribution over the classes under that parent
node.
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Figure 4: The HPnet architecture.

There are a few motivations for the design of the pro-
totype layer. By enforcing a constraint that each prototype
pc(k)

j be equal to some patch z̃ obtained from an image in the
training set, we obtain a correspondence between that latent
prototype and a visually inspectable receptive field from the
training set. Then by upsampling the activation map associ-
ated with that prototype to the size of the input image, we
get a heat map that shows the localized portions of the input
image that highly activate the prototype (Chen et al. 2018).
Consequently, we can understand a particular classification
by checking the prototypes that were highly activated and
viewing their corresponding heatmaps overlaid on the input
image.

Further, our prototypes encode for conditional informa-
tion. To give an example, our prototypes for ambulances
are used only to distinguish ambulances from other vehicles
(here, pickups and sports cars). It is the vehicle prototypes
that are used to classify a particular ambulance as a vehicle
rather than an animal.

Note that within each set of prototypes Pc(k)

, we allo-
cate a pre-determined number of prototypes evenly to each
child class, so that every child class will be represented in
the set of prototypes. The mechanism for this allocation op-
erates in such a way that two prototype vectors can be equiv-
alent, in which case the child node can be considered to have
fewer unique prototypes than the pre-determined number. In
the experiments to follow, we allocate 8 prototypes per child
class. We denote the subset of prototypes under this parent

layer that are allocated to child c(k+1) as Pc(k+1) .
Lastly, if needed, a distribution over the most fine-grained

classes in the taxonomy is obtained by computing the prob-
ability of an instance belonging to each class in a path down
the taxonomy, for every path down the taxonomy. That is,
one computes

P (y
(K)
i = c(K)|xi)

K−1∏
k=1

P (y
(k+1)
i = c(k+1)|y(k)

i = c(k),xi),

for each path in the taxonomy, {c(1), ..., c(K)}.

Training Algorithm

Similar to Chen et al. (2018), we train the model by al-
ternating between optimization of the layers and a projec-
tion phase, wherein prototypes are projected onto the closest
patches z̃ in the latent space. This projection phase is nec-
essary since we could not optimize the objective via gradi-
ent descent methods while enforcing the constraint that each
prototype is always equal to some latent patch from the data.

Note that we do not use a VGG-16 model pre-trained on
ImageNet, as this would confound our later novel class de-
tection testing, since our novel class test set also comes from
ImageNet. Rather, our VGG-16 is trained with random ini-
tialization, and the Pnet and HPnet models are trained with
their convolutional layers initialized from the most accurate
of the trained VGG-16 models.
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Objective Function. The objective function that we aim
to minimize is the sum across prototype layers of four terms,
a cross entropy between predictions and labels, a cluster-
ing term, a separation term, and a regularization term. We
use the same clustering and separation terms as Chen et al.
(2018), though we adapt them to be specific to each proto-
type layer. With the set of all parent nodes as C, we mini-
mize

∑
c(k)∈C

[ ∑
i:y

(k)
i =c(k)

CrossEntropy(hc(k) ◦ g
Pc(k) ◦ f(xi),yi)

+ λ1Clust(Pc(k)
,X,Y) + λ2Sep(Pc(k)

,X,Y) + λ3Reg(hc(k)
)

]
.

Each term is explained in turn. The cross entropy encour-
ages accuracy of predictions, and, notably, the sum of the
cross entropies over parent classes is equivalent to a single
cross entropy between the fine-grained labels of the data and
the model’s joint distribution over fine-grained classes, since
the conditional probabilities decouple through the logarithm.

Let us explain the clustering and separation costs. The
clustering cost is designed to encourage the model to map
at least one patch vector of each image close to a prototype
corresponding to its class. For a given layer, the term is the
sum over images of the minimum distance between some
patch vector and some prototype of that input image’s class.

Clust(Pc(k)

,X,Y) =∑

i:y
(k)
i =c(k)

min
j:pj∈P

c
(k+1)
i

min
z̃∈patches(f(xi))

‖z̃− pj‖22.

The separation cost is designed to encourage the model to
avoid mapping any patch vectors of an image close to a pro-
totype corresponding to a different class. For a given layer,
the term is the negative sum over images of the minimum
distance between some patch vector and some prototype not
belonging to that input image’s class.

Sep(Pc(k)

,X,Y) =

−
∑

i:y
(k)
i =c(k)

min
j:pj �∈P

c
(k+1)
i

min
z̃∈patches(f(xi))

‖z̃− pj‖22.

These additional cost terms induce a clustering structure in
the latent space, ensuring that prototypes encode for infor-
mation that is specific to the class they correspond to. We
confirm this empirically by checking which patch vectors
are close to each prototype, as elaborated on in Section 5.

Lastly, Reg is a regularization term on the fully connected
layers of each prototype layer. With respect to a given class,
the term imposes l2 regularization on weights that connect
to similarity scores of prototypes belonging to that class,
while imposing l1 regularization on the weights that con-
nect to similarity scores of prototypes belonging to other
classes. Thus as the model tallies the evidence for an in-
stance belonging to a certain class, the Reg term encourages
the model to rely only on similarity scores of prototypes be-
longing to that class, as the weights connecting to scores of

other class’s prototypes will be sparse. This greatly simpli-
fies model interpretation.

We give an approximate algorithm for minimizing the
objective function. The algorithm proceeds through several
training phases that are described below.

Convolutional Layers and Prototypes. In the first opti-
mization phase, the objective is optimized with respect to
the weights of f and each Pc(k)

via stochastic gradient de-
scent, while each hc(k)

remains fixed.
To initialize the weights of each hc(k)

layer, we adopt the
technique of Chen et al. (2018), which is to set class con-
nections to 1 when they correspond to similarity scores of
prototypes belonging to that class, and −.5 otherwise. That
is, supposing that the logit for a particular class c with parent
c(k) is computed as αT

c v
c(k)

, we set the jth element of αc to
1 if pc(k)

j is a prototype allocated to class c and to −.5 if
the prototype was allocated to another class. Thus evidence
for an image belonging to a certain class accrues as it acti-
vates prototypes belonging to that class and diminishes as it
activates prototypes belonging to other classes.

Optimization of All Layers. In this phase, we optimize
all layers of the network at once, including the fully con-
nected layers in each prototype layer. It is in this training
phase that the weights of each hc(k)

layer become sparse.

Projection of Prototypes. Every five epochs of the above
two phases, we project prototypes onto the patch vectors
from the training data that they are closest to, with the con-
straint that prototypes can only be projected onto patch vec-
tors from instances belonging to the class to which the proto-
types have been pre-allocated. Since we do not restrict dis-
tinct prototypes from being projected onto the same patch
vector, multiple prototype vectors may be equal to each
other after the projection. This phase is necessary to achieve
a direct correspondence between prototypes and latent rep-
resentations from the training data.

Convex Optimization of Fully Connected Layers. Fol-
lowing each projection phase, we perform the same convex
optimization described by Chen et al. (2018), but now we do
so for the fully connected layer in each prototype layer.

Novel Class Detection Model

Since we are treating a problem not considered by Shafaei,
Schmidt, and Little (2018), we must adapt the model-fitting
scheme to the problem at hand. We fit a novel class de-
tector for every parent node to discriminate between chil-
dren of that node from the known distribution and not-yet-
seen children of that node. For instance, a model is fit on a
dataset consisting of vehicles seen during training of the im-
age recognition model, vehicles = {ambulance, sports car,
pickup}, as well as novel vehicles not seen during training
of the recognition model, vehicles∗ = {cab, forklift, tractor,
mountain bike}. The goal is to discriminate between these
sets. We test a number of classifiers from Shafaei, Schmidt,
and Little (2018).
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Figure 5: The 5 nearest neighbors for this vehicle prototype from the test set. From the neighbors, it appears that this prototype
encodes for wheels and wheel wells (the wheel edges). Notice that this prototype encodes for these properties in a vehicle-
general manner. Among the 5 nearest neighbors, the wheels of both pickups and sports cars are activated.

By fitting a probabilistic classifier for each parent node,
we are able to produce nuanced predictions such as “novel
vehicle”, which follows formally from the highest predicted
probability being

P (y∗ /∈ vehicles, c(1) = vehicle|x) =
P (y∗ /∈ vehicles|c(1) = vehicle,x)P (c(1) = vehicle|x)

where the left-hand probability is obtained from the novel
vehicle detector and the right-hand probability is obtained
from the image recognition model.

5 Experiments

For a model trained on a subset of ImageNet data, we in-
terpret a model prototype, show a case study of the model
classifying a novel image, and give image recognition and
novel class detection accuracies.

For training our recognition model, we select a subset of
15 ImageNet classes and define a taxonomy over them as
shown in Figure 3. Note that we hold out 50 images from
the 1300 training images for each class to create a validation
set used for early stopping in training. The test accuracies
we report are calculated only after training is complete.

For later novel class detection, we hold out 15 additional
classes that fall under the same coarse classes in Y(1).

Data Augmentation. We implement the CEDA data aug-
mentation technique of Hein, Andriushchenko, and Bitter-
wolf (2018). This technique involves including with every
training batch an equal number of random noise images. The
only loss term these images are implicated in is a cross en-
tropy between their predicted class distributions and a uni-
form distribution over classes, thus encouraging the model
to be maximally uncertain over random noise. The CEDA
technique may improve the clustering quality of the HPnet
latent space (see Table 1), and it does not lower model accu-
racy (Hein, Andriushchenko, and Bitterwolf 2018).

Besides this technique, we use the standard ImageNet
cropping procedure of, for training, random resized crops
of size 224 by 224 and, for testing, resizing to 256 by 256
then cropping to 224 by 224.

% Correct Neighbors

Model Train Test

HPnet 79.24 76.2
HPnet + CEDA 84.90 79.24

Table 1: (Latent-space clustering quality.) Proportion of the
nearest neighbors to the prototypes that belong to the same
class as their neighboring prototype. Prototypes tend to be
surrounded by patch vectors from images that belong to the
correct classes, indicating a learned clustering quality to the
latent space. Note that these two models are initialized with
VGG-16 base models that achieve differing accuracy, so the
change in clustering quality could result from the differing
initializations rather than the CEDA technique. Results are
averages across five trials.

Interpreting the Recognition Model’s Latent Space

How do we interpret the features learned by the model? We
can inspect each prototype along with the images of patch
vectors that are closest to it in the latent space. In Fig-
ure 5, we show a vehicle prototype, the test images whose
patch vectors are closest to the prototype in the latent space,
and those images with prototype activation maps overlaid
on them. Notice that this prototype encodes for wheels in a
vehicle-general manner. Among the 5 nearest neighbors, the
wheels of both pickups and sports cars are activated.

We would also like to capture a global perspective on the
clustering quality of the latent space in order to check that
prototypes tend to be surrounded by patch vectors from im-
ages of the same class. To do so, for each prototype we com-
pute the percentage of its five nearest neighbors that belong
to the correct class (e.g., a vehicle for one of the vehicle pro-
totypes); we average these percentages to obtain a metric of
clustering quality, which we show in Table 1.

Classifying a Test Image

In this section, we give an example of a forklift being classi-
fied as a novel vehicle. A diagram is shown in Figure 6. By
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Figure 6: A forklift is classified as a novel vehicle. Note that
the strongest evidence for this forklift being a vehicle is its
possession of a wheel, as evidenced by the most activated
prototype. For context, the image recognition model used
here obtained 61% accuracy on classifying the novel fork-
lifts as vehicles, and the logistic model for novel class de-
tection obtained 69% test accuracy on discriminating famil-
iar vehicles from novel vehicles. These top four prototypes
accounted for 74% of the magnitude of the vehicle logit.

relying on learned concepts such as wheels, the model suc-
cessfully classifies the forklift as a vehicle. The novel vehi-
cle detector also successfully classifies it as a novel vehicle,
i.e. not in the set of {ambulance, pickup, sports car}.

Image Classification Accuracy

We give the test accuracies for each model in Table 2. The
models include the VGG-16 network, our HPnet, and a flat
version of our model, Pnet. The coarse predictions for Pnet
are obtained by summing the probabilities over the sub-
classes of each coarse class, then taking the coarse class with
the maximum sum.

Our model attains on average similar accuracy to its
black-box and flat counterparts. However, relative to the pre-
trained VGG-16 model used to initialize HPnet, there is an
average drop in fine-grained accuracy of 2.32%. This drop

Test Accuracies by Model

Model F-ID C-ID C-Novel

VGG-16 + CEDA 82.19 92.83 62.31
Pnet + CEDA 81.60 92.56 60.17
HPnet + CEDA 82.61 93.57 62.16

Table 2: (Test accuracies for each model.) The accuracies
include the fine-grained accuracy on in-distribution data
(F-ID), the coarse-grained accuracy on in-distribution data
(C-ID), and the coarse-grained accuracy on novel data (C-
Novel). Accuracies are averages across five models per
method. Note that the weights of the convolutional layers for
the Pnet and HPnet models are always initialized from the
trained weights of the most accurate VGG-16 model, which
achieves 84.93% F-ID accuracy.

is to be expected given the additional constraints introduced
for purposes of interpretability; it remains to practitioners
to assess if a gain in accuracy of this size is worth sacrific-
ing interpretability for. This gap will also likely narrow as
the space of training approaches for prototype-based models
like HPnet is explored to the extent that it has been for the
VGG class of models.

Finally, we observe that it is possible to correctly classify
novel data at the coarse level at far above the chance rate.
Random performance on the novel data would yield about
17% accuracy.

Novel Class Detection

We test three methods from Shafaei, Schmidt, and Little
(2018), ScoreSVM, PbThreshold, and a logistic regression.
The first of these is an SVM (with linear kernel) on the
model logits, the second is a simple threshold on the max
predicted probability, and the last is a logistic regression
on the model logits. We apply each of these three methods
to two image recognition models, one with CEDA and one
without, for a total of six methods.

The accuracies obtained are in line with those reported by
Shafaei, Schmidt, and Little (2018), and there is no clearly
superior method. The logistic regression for the HPnet +
CEDA model, which is used in Figure 6, obtains 73.72%
accuracy on average over five recognition models.

6 Conclusion

We provide a model that classifies objects at each level in
a semantic taxonomy, identifies when objects are novel at
fine-grained levels of its taxonomy, and uses directly inter-
pretable features that are tailored to each parent node in the
taxonomy. In general, this is the first vision model to accom-
plish all three tasks in a synchronized manner. In particular,
it is the first CNN-based model to organize prototypes hi-
erarchically and the first to perform novel class detection
across levels of the class taxonomy. As a result, the explana-
tions are much richer, leading to dramatically improved in-
terpretability. An application to ImageNet demonstrates the
viability of the method.
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