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Abstract

Obtaining personalized models of the crowd is an important
issue in various applications, such as preference acquisition
and user interaction customization. However, the crowd set-
ting, in which we assume we have little knowledge about
the person, brings the cold start problem, which may cause
avoidable unpreferable interactions with the people. This pa-
per proposes a cluster-aware transfer learning method for the
Bayesian optimization of personalized models. The proposed
method, called Cluster-aware Bayesian Optimization, is de-
signed based on a known feature: user preferences are not
completely independent but can be divided into clusters. It ex-
ploits the clustering information to efficiently find the prefer-
ence of the crowds while avoiding unpreferable interactions.
The results of our extensive experiments with different data
sets show that the method is efficient for finding the most
preferable items and effective in reducing the number of un-
preferable interactions.

Introduction
Obtaining personalized models of people is indispensable
in today’s society to increase company sales and customer
satisfaction and yield better user experience (Anshari et al.
2019; Tyrväinen, Karjaluoto, and Saarijärvi 2020; Adaji
2017). Today, we see more and more applications that re-
quire personalized preference models of people in online
crowd settings; the obtained preference models are used for
the creation of avatars for online games (preferred attributes
of components) and individual optimization of UIs (pre-
ferred shapes and colors, etc.), and better task assignment
(preferred condition of the tasks) (Yao, Yang, and Xu 2022;
Gajos, Weld, and Wobbrock 2010).

However, in the crowd setting, we often have little knowl-
edge about the person in the beginning. Bayesian opti-
mization using Gaussian process regression, a technique for
black-box function optimization, can be used to obtain per-
sonalized models (Brochu 2010; Korzepa et al. 2020) to deal
with the situation, by regarding an individual’s preference as
a black-box function. Bayesian optimization is an efficient
algorithm compared to conventional optimization methods
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such as grid search and random search (Bergstra and Bengio
2012; Liashchynskyi and Liashchynskyi 2019), as it contin-
uously searches for the next point to be evaluated while con-
sidering both exploration and exploitation.

A general problem of Bayesian optimization is the cold
start (Wang et al. 2022), i.e., the inference does not work
well until we gather sufficient information. In addition, the
cold start can be harmful, particularly for human prefer-
ence models, because it can show unpreferable items to peo-
ple during the optimization process, which may cause an
unpleasant experience. For example, when estimating pre-
ferred images and sounds, the respondent may be presented
with images and sounds that he or she does not like, which
may cause discomfort to the respondent.

To deal with the cold start, several methods based on the
transfer learning approach have been proposed (Bardenet
et al. 2013; Marco et al. 2017). In our context, transfer
learning addresses the cold start for a personalized prefer-
ence model by referencing others’ models. Existing transfer
learning methods, however, cannot apply to the problem of
obtaining personalized preference models in the crowd set-
ting due to their assumptions that are not compatible with
the problem. For example, they are too computationally ex-
pensive (Bardenet et al. 2013; Swersky, Snoek, and Adams
2013; Schilling, Wistuba, and Schmidt-Thieme 2016; Papež
and Quinn 2022) for real-time interactions with people or re-
quire free anytime access to any of source tasks (other peo-
ple in our setting) during the optimization process (Marco
et al. 2017; Wistuba, Schilling, and Schmidt-Thieme 2018),
and they do not consider exploiting the transfer learning to
avoid showing unpreferred items to people, which is an im-
portant issue for interactions to obtain personalized prefer-
ence models.

This paper proposes a cluster-aware transfer learning
method for the Bayesian optimization of personalized mod-
els. The proposed method, called Cluster-aware Bayesian
Optimization (CBO), is designed based on a known feature
that is specific to humans’ preference models; user prefer-
ences are not nesessary independent but can be divided into
clusters (Rentfrow and Gosling 2003; Silva et al. 2019; Ohn-
Bar et al. 2018). CBO exploits the clustering information to
efficiently find the preference of the crowds while avoiding
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Figure 1: Proposed method: Cluster-aware Bayesian optimization (CBO). CBO estimates the user’s preference distribution with
reference to the distributions of clusters. CBO approach can efficiently find the most preferable items while avoiding the less-
preferred items by utilizing the information of what cluster the human belongs to.

unpreferable interactions.
Contributions and Findings. To summarize, our re-

search question is whether cluster-aware transfer learning is
effective for the cold start problem of Bayesian optimiza-
tion of personalized preference models in the crowd setting.
Our contributions are as follows: (1) We formally define
cluster-based transfer learning for Bayesian optimization for
quickly finding the most preferable items while reducing the
number of unpreferable interactions. (2) We conducted ex-
tensive experiments with synthesized and three real-world
data sets we collected through crowdsourcing and revealed
the detailed behavior of the cluster-aware Bayesian opti-
mization.

We found the followings: (1) Transfer learning in CBO
works well in that it efficiently identifies the preference
models while avoiding presenting solutions with low prefer-
ence, especially at the beginning of the process (2) There is
a good hyper-parameter setting strategy for CBO that works
with a variety of data sets. (3) Since our transfer learning
technique changes the optimization problem into the prob-
lem of identifying the appropriate cluster, it becomes su-
perior to the optimization without transfer learning, as the
number of dimensions of the search space increases.

Related Work
Bayesian Optimization Using Transfer Learning
Various transfer learning methods have been developed
within the framework of Bayesian optimization to further
improve the data efficiency of optimization by utilizing al-
ready optimized data (source task) when optimizing some
new data (target task). For example, initializing the ex-
ploration, transferring information to a Gaussian process,
transferring information to an acquisition function, and so
on (Feurer, Springenberg, and Hutter 2015; Bardenet et al.
2013; Wistuba, Schilling, and Schmidt-Thieme 2018).

Feurer et al. proposed a technique that queries the points
with good results in the source task in the early stages of
optimization of the target task (Feurer, Springenberg, and
Hutter 2015). However, their method is not applicable to
the cold start problem considered in this study because they
need a known set of tasks (clusters in our context). Even if
they knew it, they would not avoid low-preference items.

Some transfer learning methods have been proposed to
transfer information to Gaussian processes, but they gener-
ally require O(n3) as the computational complexity, where
n is the number of all data in the source and target tasks (Bar-
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denet et al. 2013; Swersky, Snoek, and Adams 2013;
Schilling, Wistuba, and Schmidt-Thieme 2016; Papež and
Quinn 2022), or require free access to the source task (Marco
et al. 2017). Therefore, these methods are not applicable in
our setting, which aims to optimize the preferences of in-
dividual respondents through interactions with them alone
while utilizing a large amount of source data.

Wistuba et al. proposed a method that transfers informa-
tion to the acquisition function to freely control the impor-
tance of the transferred information (Wistuba, Schilling, and
Schmidt-Thieme 2018). However, the method is unsuitable
for this study because they require free access to the source
task.

Bayesian Optimization for Safe Exploration
Sui et al. proposed a method called SafeOpt that performs
optimization while avoiding exploration that returns values
below a certain threshold with high probability by utilizing
the Lipschitz continuity of the Gaussian process (Sui et al.
2015). The assumption of SafeOpt is that there is at least one
point above the threshold in everyone’s preference model. In
our setting, not only do we not know where such a point is,
it generally does not exist at all. In addition, this method
requires a lot of interaction with the target user and may
need repeated evaluations of similar points since it carefully
moves through the exploration space so as not to explore
points with low ratings. SafeOpt intends to be safe while
sacrificing the efficiency, which does not fit our goal of find-
ing the preferences of humans efficiently.

Prerequisite Knowledge
Gaussian Process Regression
In this section, we describe the Gaussian process regression
used within CBO. It is a model that estimates the function
y = f(x) from the input variable x to the output variable
y (Rasmussen and Williams 2004). Unlike ordinary regres-
sion, the variance at each point x is also obtained so that the
uncertainty at every point of the estimated function can also
be estimated simultaneously.

The definition of a Gaussian process is as follows. For any
natural number N , f follows a Gaussian process when the
output vector f = (f(x1), f(x2), ..., f(xN )) corresponding
to the input x1,x2, ...,xN ∈ X follows a Gaussian distri-
butionN (µ,K) with µ = (µ(x1), µ(x2), ..., µ(xN )) as the
mean and K with Knn′ = k(xn,xn′) as elements as the
covariance matrix. This is expressed by the following equa-
tion.

f ∼ GP (µ(x), k(x,x′)) (1)

Then, given N observations, that is, N pairs D =
{(x1, y1), (x2, y2), · · · , (xN , yN )} of inputs x ∈ X and
outputs y ∈ R (the mean of y is µ). When the relationship
y = f(x) exists between x and y, and this function f is
regarded as being generated from a Gaussian process

f ∼ GP (µ(x), k(x,x′))

the relationship between x and y can be treated by a Gaus-
sian process regression model.

Given an observation D, the predictive distribution
p(y∗|x∗,D) of y∗ corresponding to the unknown data x∗

is expressed by the following equation.

p(y∗|x∗,D) = N (kT
∗ K

−1y, k∗∗ − kT
∗ K

−1k∗) (2)

k∗ and k∗∗ are as follows.

k∗ = (k(x∗,x1), k(x∗,x2), · · · , k(x∗,xN ))T (3)

k∗∗ = k(x∗,x∗) (4)
In this case, the expected value and variance of the predic-

tive distribution are expressed by the following equations,
respectively.

E[y∗|x∗,D] = kT
∗ K

−1y (5)

V[y∗|x∗,D] = k∗∗ − kT
∗ K

−1k∗ (6)

Bayesian Optimization
Bayesian optimization (Frazier 2018; Brochu, Cora, and
De Freitas 2010) is the problem of finding xopt =
arg max

x∈X
f(x) while minimizing the number of evaluations

of the black-box function f(x). Since the uncertainty of
the function must also be taken into account to minimize
the number of evaluations, Bayesian optimization often as-
sumes that the function is sampled from a Gaussian pro-
cess. Bayesian optimization using Gaussian process regres-
sion is performed by repeating the process of sampling
a new point that considers both exploration and exploita-
tion using an acquisition function and obtaining the func-
tion value by evaluating it. There are several acquisition
functions, each of which selects an item in various crite-
ria. For example, probability of improvement (PI), expected
improvement (EI), and Gaussian process upper-confidence
bound (GP-UCB) are commonly used as the acquisition
function (Snoek, Larochelle, and Adams 2012). The value
of the acquisition function is calculated for all points, and
the point with the largest value of it is selected in each itera-
tion.

In the proposed cluster-aware Bayesian optimization,
we extend a generic acquisition function GP-UCB. Let
E[y∗|x∗,D(t)] and V[y∗|x∗,D(t)] be the expected value and
variance of the distribution in point x∗ created by Gaussian
process regression for the pointsD(t) selected up to the first t
iterations and their function values, respectively. In this case,
the acquisition function GP-UCB that determines the point
to be evaluated at the t+ 1 iteration is expressed by the fol-
lowing equation.

acquisition(x∗) = E[y∗|x∗,D(t)] + α1

√
V[y∗|x∗,D(t)]

(7)
The α1 is a weight for the standard deviation term and

which is a hyper-parameter. When α1 is large, the value of
the standard deviation term, which represents the uncertainty
of the function, is reflected in the acquisition function to a
greater extent, thus making it easier to sample a point for
the exploration. When α1 is small, the value of the expected
value term, which represents the function’s evaluation value,
is reflected in the acquisition function to a greater extent,
thereby making it easier to sample a point for exploitation.
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Proposed Method
Problem Setting
In this study, we assume a set of the respondents W =
{w1, ..., w|W|} each of which returns the function value y
for the given point x. We define the obtained data from a
respondent as Dw = {(xi, yi)}, and the all obtained data as
D = {Dw}w∈W . Especially, we note D(t)

w = {(xi, yi)} as a
set of obtained data from a respondent w from 1st to t-th iter-
ations. We define the predictive distribution of a respondent
w as p(y∗ | x∗,Dw) of which the mean and the covariance
matrix is calculated byDw, and the expected value and vari-
ance are E[y∗ | x∗,Dw] and V[y∗ | x∗,Dw], respectively.

Proposed Method:
Cluster-Aware Bayesian Optimization (CBO)
This section expresses our proposed method CBO, which
exploits the preference of clusters of humans to efficiently
find their preference while avoiding unpleasant items.

CBO firstly divides people whose preferences have al-
ready been estimated into several clusters based on the sim-
ilarity of their preferences. After estimating their clusters,
CBO applies the average of the expected values of the distri-
bution of people in the appropriate cluster (call it c-expected
value) to the generic acquisition function GP-UCB. Using
the information from the clusters allows exploration accord-
ing to the respondent’s preferences, which is thought to al-
low for efficient optimization while avoiding interactions
that are less preferred by the respondent.

Since the importance of the information from the clusters
should be changed during the optimization process, our pro-
posed method transfers the information from the clusters to
the acquisition function.

Clustering People CBO uses the k-means method to di-
vide people into clusters. We note nc as a number of clus-
ters. The function µk(x) is the centroid of each cluster, and
rw = (rw1, · · · , rwnc)

⊤ is a vector that expresses to which
cluster an respondent w belongs after t iterations. The k-
means clustering is a minimization problem for the follow-
ing loss function L.

L =
∑
w∈W

∑
k∈nc

rwk

∫
∥ E[y∗ | x∗,Dw]− µk(x) ∥22 dx

(8)
rw is determined by the following equation.

rwj =

{
1 j = arg min

k

∫
∥ E[y∗ | x∗,Dw]− µk(x) ∥22 dx

0 Otherwise.
(9)

That is, for each respondent, the cluster Ck to which they
belong is determined by the following two equations.

{rw}w∈W , {µk}k∈[nc] = arg min
rw,µk

L (10)

Ck = {w ∈ W | rwk = 1} (11)
A centroid µk(x) is calculated as an expected value of a k-th
cluster which is defined by the following equation:

µk(x
∗) =

1

|Ck|
∑
w∈Ck

E[y∗ | x∗,Dw]. (12)

We call µk(x
∗) as c-expected value. The number of clus-

ters nc is a hyper-parameter in the k-means. Note that, the
number of clusters can be automatically determined by us-
ing x-means (Pelleg, Moore et al. 2000).

How to Apply the C-Expected Value When estimating
a respondent’s preference, the c-expected value of the clus-
ter to which a respondent belongs is added to an acquisition
function in CBO. Acquisition functions that take into ac-
count cluster information are considered to be more likely to
fall into locally optimal solutions than acquisition functions
not considering it. Therefore, GP-UCB was selected as the
generic acquisition function for our method, as it provides
the most flexible balance between search and utilization.

We note r(t)w as the cluster assignment at t iterations which
is estimated by using the equation 9 with recalculated E[y∗ |
x∗,D(t)

w ].
The acquisition function of CBO is expressed by the fol-

lowing equation using the expected value E[y∗|x∗,D(t)
w ] and

variance V[y∗|x∗,D(t)
w ] estimated at time t and the vector

r
(t)
w .

acquisition(x∗, w, t) = E[y∗ | x∗,D(t)
w ]

+ α
(t)
1

√
V[y∗ | x∗,D(t)

w ]

+ α
(t)
2

∑
k∈[nc]

r
(t)
wk µk(x

∗)

(13)

where α
(t)
1 , and α

(t)
2 are the hyper-parameters. To control

the effect of the c-expected values and the variance, we dy-
namically change the parameters according to the number
of iterations. We discuss a good strategy for changing the
parameters in the experiment.

The point that maximizes the acquisition function 13 is
then presented to w at t-th iteration. In other words, the fol-
lowing point xt is presented.

xt = arg max
x∗∈X

acquisition(x∗, w, t) (14)

Compared to the GP-UCB (equation 7), we can see that
equation 13 has an additional term for the c-expected value.
There are two hyper-parameters, α1 and α2. By tuning these
values, we can adjust what the points to be acquired. It is
no different from GP-UCB in that when α1 is set to a large
value, points for exploration are more likely to be chosen.
When α2 is set to a large value, points that emphasize the
c-expected value, that is, points for exploitation are more
likely to be selected. When the cluster to which a respondent
belongs is accurately determined, it is expected that the c-
expected value term can be used to sample a point with a
high rating even when the number of iterations is small.

The entire flow of the method is shown in Algorithm 1.
This Algorithm 1 is not for a single respondent, but for a
set of respondents. There is a step of repeated recalculation
of the expected value, variance, and cluster to which a re-
spondent belongs for each iteration and a step of repeated
recalculation of the clustering for each respondent.
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Notation Description
W respondent set. A respondent is w ∈ W .
D Data set. A respondent’s data is Dw = {(xi, yi)}
C Set of clusters. C = {C1, C2, ..., Cnc

}
µk(x) c-expected value (Centroid function) of each cluster.
nc Number of clusters.
rw A vector expresses to which cluster a respondent w belongs.
x Solution’s feature.
y Function value of each solution.
T Number of queries per respondent.

Table 1: Notations used in the problem setting

Algorithm 1: Entire flow of CBO

Input: A setW of respondents, T
Output: D

1: D ← ∅
2: for w ∈ W do
3: for t ∈ [T ] do
4: xt = arg max

x∗∈X
acquisition(x∗, w, t)

5: yt ← value from a respondent w.
6: Dw ← Dw ∪ {(xt, yt)}
7: Recalculate E[y∗|x∗,D(t)

w ],V[y∗|x∗,D(t)
w ]

8: Recalculate r
(t)
w

9: end for
10: {rw}w∈W , {µk}k∈[nc] = arg min

{rw},{µk}
L

11: end for

Experiments
We conducted experiments with real-world and synthesized
data sets to answer our research question: whether CBO
can optimize human preferences efficiently with less prefer-
able interactions than Bayesian optimization without trans-
fer learning. We also investigate the detailed behavior of
CBO in terms of different hyper-parameter settings and dif-
ferent numbers of dimensions of the search space. The ex-
periments were approved by the university’s ethical review
board. In all experiments, we used the Matern kernel (ν =
2.5) for calculating the covariance matrix of the Gaussian
process.

Data Sets
We collected preferences from the crowd for three domains
(Smartphone, Face, Voice) with different statistics and
prepared four other data sets with different dimensions con-
sisting of synthesized personalized preference models. The
preference models serve as the ground truth in the experi-
ment.

Domains Table 2 summarizes their statistics.
• Smartphone is represented in two dimensions: 180

levels of “Hue” and 255 levels of “Saturation”. All col-
ors are represented in a search space of 45,900 possible

Domain #dimensions and
#values

Size of Search
Space

Face 4 (21, 21, 21, 21) 194,481
Voice 3 (76, 151, 151) 585,276

Smartphone 2 (180, 255) 45,900
Synthesized 1 2 (11 for each) 121
Synthesized 2 5 (11 for each) 161,051
Synthesized 3 5 (3 for each) 243
Synthesized 4 10 (3 for each) 59,049

Table 2: Data Set Statistics

values by multiplying these values.
• Face is created by changing the values of each of the

four facial expression muscle parameters (“Eyebrow”,
“Eye”, “Nose”, and “Mouth”) using FaceGen1. Since
each parameter has 21 possible values, there are 214 =
194, 481 possible facial expression images.

• Voice contains Japanese voice clips, each of which is
10 seconds long and created by VOICEPEAK2. Their pa-
rameters are “Speed”, “Pitch”, and “Happiness Level”.
There are 76 levels of “Speed” and 151 levels of “Pitch”
and “Happiness Level”, resulting in 585,276 synthesized
voices.

• Synthesized i are synthesized data sets with different
numbers of dimensions (2,5,10) and the numbers of their
possible values (11, 3). We sampled data from multi-
variate Gaussian distribution, and we assume there are
three clusters of people, i.e., we assume three different
Gaussian distributions, and each person belongs to only
one of them.

Obtaining Personalized Preference Models For each of
the first three domains, we recruited 300 people through
AMT3 (for Smartphone and Face) and Lancers4 (for
Voice) 5. And for each w of the 300 people, we obtained
personalized preference modelsDw that represent the distri-

1https://facegen.com/
2https://www.ah-soft.com/voice/6nare/
3https://www.mturk.com/
4https://www.lancers.jp/
5We used Lancers for Voice because it supports the microtask

template to incorporate voice data.
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Figure 2: We generatedDw as follows: (1) We choose the representative points in the search space and generate the tasks to ask
a crowd worker for his or her preference of each item (such as a smartphone) corresponding to each representative point (2) the
Crowd worker give preference values for all representative points, and (3) we complemented the missing preference value in
the search space.

bution of w’s preference. Note that, we eliminated respon-
dents who scored all items to the same score from the exper-
iment.

Each Dw consists of preference values of w for ev-
ery point in the search space (e.g., 45,900 points for
Smartphone). Therefore, we generated Dw in the follow-
ing way (Fig. 2).
1. We first divided the search space into the subspace in

the same size (32, 54, 64 for Smartphone, face, and
Voice. We divided the space based on the result of our
preliminary experiment so that the number of values in
each dimension is larger if we see a bigger change in
preference in the dimension. For example, we chose four
“Hues” and eight “Saturation” for Smartphones (Table 2)
because we know that “Saturation” was more critical in
our preliminary experiment.),

2. Then, we ask each crowd worker to give their preference
(on a seven Likert scale) on the representative point of
each subspace. For example, we asked them to give their
preferences on 4 × 8 = 32 points for Smartphones. We
paid 0.5 USD for each Smartphone task, considering the
time we needed to answer the questions. We paid about
0.5 and 1 USD for Face and Voice tasks, respectively,
with the same policy.

3. Finally, we applied the Gaussian process regression to the
values of all pairs of the representative points to obtain
the whole distribution. We normalized the function value
from the respondents between 0 and 1.

Evaluation Metrics
We evaluate methods in the average of preference values for
all respondents. Specifically, we evaluate the above criteria
by mean average preference value (MAPV). The definition
of MAPV is as follows:

MAPV (t) =
1

|W |
∑
w∈W

y(t)w (15)

where y(t)w is a preference value of w in t-th query. The larger
the minimum value of MAPV and the larger the final value,

we define the overall process D as the better Bayesian opti-
mization.

Preliminary Experiment
In the preliminary experiment, we verify how CBO is ef-
fective for achieving more preferable items while avoiding
less-preferred items in simple parameter settings.

Procedure We applied CBO to Smartphone and com-
pared the result with a baseline (GP-UCB). We set T , the
number of queries for learning a preference model, to 20, be-
cause a large number of queries is impractical in real-world
applications. The procedure is as follows.

1. Phase 1: We randomly chose 50 from the 300 respon-
dents and asked each of them T = 20 queries chosen by
GP-UCB. They answered the queries according to their
preference models.

2. Phase 2: We used X-means to compute nc (the number
of clusters. See Table 1), and we randomly chose the
remaining 250 respondents and iteratively applied CBO
one by one to learn the preference model of each respon-
dent. In the optimization process for each w of the 250
respondents, he or she returns answers to the queries ac-
cording to his or her preference model Dw.

In this preliminary experiment, hyper-parameter were as
follows: α(t)

1 = α
(t)
2 = 1 (GP-UCB had α

(t)
1 = 1). (We ex-

plore good hyper-parameters in the following experiment).
To reduce the computational complexity of the experiment,
we approximated the integral in eq. 8,9 by selecting the
equally spaced reference points in the distribution.

Results Fig. 3 shows the results of the proposed method
CBO and the baseline method GP-UCB. We repeated to ap-
ply the 20 queries seven times (The order of the respondents
is shuffled after each iteration). The line represents the aver-
age and standard deviation of MAPV of the seven iterations.
The result shows that CBO achieves a higher average MAPV
than GP-UCB in all stages of the queries, which means our
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Figure 3: Result of Preliminary Experiment. When we as-
sume simple parameter setting (CBO has α(t)

1 = α
(t)
2 = 1,

and GP-UCB has α(t)
1 = 1), our method CBO outperforms

the baseline.

CBO is more efficient in obtaining the respondents’ pref-
erences. Furthermore, we observed that GP-UCB obtained
lower MAPV in the early stage of optimization because GP-
UCB explores the items with low-preference values. In con-
trast, CBO achieves higher lowest MAPV. This indicates our
transfer learning approach is beneficial for achieving higher
MAPV faster and avoiding low-preferable items, even when
the parameters are not well optimized.

Experiment 1: Effects of Hyper-Parameters
Given that CBO looks better than the baseline in terms of its
efficiency and the number of shown unpreferable items, we
explored good parameter settings with the three real-world
data sets.

Procedure We repeated the procedure of the preliminary
experiment with different parameter settings to find good
setting strategies for the CBO hyper-parameters.

Since it is not realistic to exhaustively explore two inde-
pendent parameters (α(t)

1 and α
(t)
2 ) of the CBO acquisition

function, we explored the optimal settings of α(t)
1 for GP-

UCB (Experiment 1.1), and α
(t)
2 of CBO when α

(t)
1 is set to

the optimal one found in Experiment 1.1 (Experiment 1.2).
We conducted this experiment with all three domains. We

ran the experiment seven times for Smartphone and Face
domain and five times for the Voice.

In experiment 1.1, we repeated the experiments with sev-
eral parameter settings to determine whether it is better to
control α(t)

1 to be monotonically increasing or decreasing,
the timing to switch the α

(t)
1 and E, and the initial value of

α
(t)
1 . In experiment 1.2, we conducted the same process as

experiment 1.1 with respect to α
(t)
2 .

We set the change of α
(t)
1 and α

(t)
2 as a × 10(−b× t

20 ).
Therefore, by changing the values of a and b, we can control
the behavior of each of the two parameters. In the equations,
t represents that CBO is processing the t-th query, ranging

from 1 to 20 in this experiment. The basic idea is that the
importance of the expected value term, the standard devi-
ation term, and the c-expected value term change as CBO
processes new queries. The weight for the expected value
term in the acquisition function is always 1, which is explic-
itly expressed as “E” to compare with the magnitude of α(t)

1

and α
(t)
2 .

Result of Experiment 1.1 Figure 4a show the good α
(t)
1

settings and the orange lines in Figure 4c show the change
of MAPV of GP-UCB. The figure on the left represents
Smartphone domain, the middle represents Face, and
the right represents Voice. In all domains, when setting
α
(t)
1 is monotonically decreasing, with an initial value of 10,

GP-UCB achieves optimal MAPV. In this experiment, we
note T1 is the time that values of α(t)

1 and E are switched.
We found there is a trade-off between the MAPV in the
early stage of optimization and the final value of the MAPV,
we assume the smallest T1 such that the MAPV in the 20-
th iteration exceeds a certain value p is the optimal T1.
In this experiment, p is set to 0.95, 0.75, and 0.9 for the
Smartphone, Face, and Voice domains, respectively.
As a result, in the three datasets, we found the optimal T1

are T1 = 5, T1 = 5, and T1 = 8, respectively.

Result of Experiment 1.2 In the experiment where we
compared the different α(t)

2 settings to each other while fix-
ing α

(t)
1 to 10 which was the best value obtained in Exper-

iment 1.1, we found that the first value of α(t)
2 needs to be

set less than α
(t)
1 to show good performance. Actually, in

all the three domains, we found that setting α
(t)
2 monotoni-

cally decreasing with an initial value of 5, yields the optimal
MAPV. Figure 4b show the best α(t)

1 and α
(t)
2 settings in the

experiment and the blue lines in Figure 4c show the change
of MAPV of CBO.

Similar to Experiment 1.1, we note T2 as the time that
values of α(t)

2 and E are switched. For T2, if T2 increases
to a certain value, there is no significant difference in the
experimental results for the subsequent parameters. Figs 5
show the range of α(t)

2 that of MAPV is almost the same.
Discussion. The results show that the following hyper-

parameter setting is good for CBO regardless of data sets:
α
(t)
1 is set to the largest in the beginning, then α

(t)
2 becomes

the largest, and finally, E becomes the largest. The setting
can be explained as follows. In the first few queries during
the exploration process, CBO’s acquisition function sample
points are expected to be a somewhat larger preference value
by focusing on α

(t)
1 while also taking into account informa-

tion on the clusters. Then, by focusing on α
(t)
2 , points are

samples for exploitation considering the c-expected value.
Finally, by focusing on E, points at which the function val-
ues are expected to be large are sampled. This allows CBO to
estimate the points respondents prefer with fewer iterations
while avoiding interactions they do not prefer, compared to
ordinary Bayesian optimization.
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(a) Optimal settings of parameter α(t)
1 in each domain, which are used for GP-UCB. Note E indicates the weight for the expectation part in

eq.7, which is constant 1.
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(b) Optimal setting of parameters α(t)
1 and α

(t)
2 which are used for CBO. Note, E indicates the weight for the expectation part in eq.13, which

is constant 1.
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(c) MAPV in each domain.

Figure 4: Results of Experiment 1.1 and 1.2 in each domain. Left: Smartphone, Center: Face, Right: Voice. (a)(b) show
the optimal parameters by the process of Experiments 1.1 and 1.2. The lines in (c) show the results of each method using the
optimal parameter settings. The results show our CBO achieves higher values in the earlier stage, and the lowest value in the
optimization process is higher than GP-UCB. It indicates CBO is efficient in getting higher value while avoiding unpreferable
items.
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Figure 5: Valid range of α(t)
2 in each domain. Left: Smartphone, Center: Face, Right: Voice. In the area of α2, CBO

performs almost the same results in Experiment 1.2.
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(a) MAPV in Synthesized 1. Dimension is 2; possible
values are 11 for each dimension.
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(b) MAPV in Synthesized 2. Dimension is 5; possible
values are 11 for each dimension.
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(c) MAPV in Synthesized 3. Dimension is 5; possible
values are 3 for each dimension.
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(d) MAPV in Synthesized 4. Dimension is 10; possible
values are 3 for each dimension.

Figure 6: Result of experiments 2 using synthesized datasets. CBO is effective in every setting.

Experiment 2: Effects of Dimensions
Next, we explored the effects of the number of dimensions
on the performance.

Procedure. We did the experiment in the same way as in
Experiment 1, assuming that we fix the hyper-parameters to
the best ones we found in the experiment, and we used the
four Synthesized data sets Synthesized 1–4 in Table 2.

Result. Figure 6 shows the results. It shows that CBO
constantly achieves higher results than the baseline and is
even more effective the high-dimensional settings.

Discussion. The result showed that CBO works further
better compared to the baseline. This is not surprising be-
cause transfer learning changes the problem of inferring the
preference model into the problem of finding an appropriate
cluster the person belongs to.

Limitation
This work has several limitations. First, our experiment
deals only with cases in which respondents answer their
preferences accurately. When people respond to their pref-
erences, they sometimes do not answer accurately and give

noisy responses, but this study does not deal with such cases.
We believe that we can introduce existing techniques to deal
with noisy observations (Letham et al. 2019), but the appli-
cation is out of the paper and interesting future work. Sec-
ond, the maximum number of dimensions in our experiment
is limited to ten. As we discussed in the previous section,
CBO’s transfer learning allows us to focus on choosing the
best cluster if we already know the set of clusters. Note that
in some cases, a larger number of dimensions may require
a larger number of people to obtain clusters. However, this
depends on the distribution and does not apply to all cases.
Addressing the problem is independent of our problem, so
we can combine our approach with some dimensionality re-
duction methods (Bouveyron and Brunet-Saumard 2014;
Kriegel, Kröger, and Zimek 2009). Third, if the cluster to
which a respondent belongs is incorrectly determined dur-
ing the optimization process, the optimization may be less
efficient than existing methods. We will address this issue
by further improving the acquisition function in the future.
Fourth, although cluster-aware transfer learning was suc-
cessful in not only optimizing the personalized model ef-
ficiently and in reducing the number of unpreferred interac-
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tions, it is an essential limitation that we cannot completely
avoid such interactions.

Conclusion
In this study, we proposed a method named Cluster-aware
Bayesian optimization (CBO), which considers the clusters
of people to optimize efficiency. We conducted simulation
experiments in three domains. We found that CBO is more
efficient than the generic no-transfer Bayesian optimization
method and that a good parameter setting strategy is to set
the CBO hyper-parameters α(t)

1 and α
(t)
2 to be the largest in

the order of α(t)
1 , α(t)

2 , and E, respectively. The experiments
show the strategy was effective for all three data sets with
different solution dimensions and search space sizes.
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