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Abstract
Collecting high quality annotations to construct an evalua-
tion dataset is essential for assessing the true performance
of machine learning models. One popular way of performing
data annotation is via crowdsourcing, where quality can be of
concern. Despite much prior work addressing the annotation
quality problem in crowdsourcing generally, little has been
discussed in detail for image segmentation tasks. These tasks
often require pixel-level annotation accuracy, and is relatively
complex when compared to image classification or object de-
tection with bounding-boxes. In this paper, we focus on im-
age segmentation annotation via crowdsourcing, where im-
ages may not have been collected in a controlled way. In this
setting, the task of annotating may be non-trivial, where an-
notators may experience difficultly in differentiating between
regions-of-interest (ROIs) and background pixels. We imple-
ment an annotation process on a medical image annotation
task and examine the effectiveness of several in-situ and man-
ual quality assurance and quality control mechanisms. Our
observations on this task are three-fold. Firstly, including an
onboarding and a pilot phase improves quality assurance as
annotators can familiarize themselves with the task, espe-
cially when the definition of ROIs is ambiguous. Secondly,
we observe high variability of annotation times, leading us to
believe it cannot be relied upon as a source of information
for quality control. When performing agreement analysis, we
also show that global-level inter-rater agreement is insuffi-
cient to provide useful information, especially when annota-
tor skill levels vary. Thirdly, we recognize that reviewing all
annotations can be time-consuming and often infeasible, and
there currently exist no mechanisms to reduce the workload
for reviewers. Therefore, we propose a method to create a
priority list of images for review based on inter-rater agree-
ment. Our experiments suggest that this method can be used
to improve reviewer efficiency when compared to a baseline
approach, especially if a fixed work budget is required.

1 Introduction
Recent advances in deep learning often depend on large-
scale training datasets, and many applications require these
to be high quality to obtain satisfying results (Freeman et al.
2021; Sambasivan et al. 2021).

One prominent way to create large labelled training
datasets is to source them via crowdsourcing by engag-
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ing third party annotators on commercial platforms, such
as Amazon Mechanical Turk1. In a crowdsourcing setup,
participating annotators may have different backgrounds
and varying skills levels, and a major concern of this ap-
proach is the resulting annotation quality. There are various
studies on quality control and assurance in crowdsourcing
tasks (Daniel et al. 2018). Broadly, these can be categorized
into two types: (i) in-situ methods which include agreement
analysis, such as computing Krippendorff’s α (Krippendorff
2011) or telemetry analysis (e.g., annotation time analysis),
and (ii) manual methods which require the involvement from
experts and task owners, including the “shepherd mecha-
nism” (Dow et al. 2012) or manual review (Ørting et al.
2020). Similarly, research in computer vision often lever-
ages large-scale annotated datasets, such as ImageNet (Deng
et al. 2009) or MS COCO (Lin et al. 2014). While much
progress has been made in model development, researchers
and practitioners are aware of the critical role that high
quality annotated datasets play (Freeman et al. 2021), espe-
cially for challenging tasks such as medical image segmen-
tation (Wang et al. 2022; Ji et al. 2021).

However, despite the adoption of recommended practice
around general crowdsourcing setups for computer vision
annotation tasks (Kovashka et al. 2016; Ørting et al. 2020),
there are still gaps in quality control and assurance meth-
ods for image segmentation tasks. Image segmentation an-
notation differs from other computer vision annotation tasks
such as classification, where labels are assigned to whole
images or specified ROIs, or object detection where anno-
tations are typically made with rectangular bounding-boxes.
ROIs in segmentation tasks can be arbitrary polygonal re-
gions. In this way, annotators must often perform a classi-
fication assertion on each pixel in an image to differentiate
whether they belong to an ROI. Many of the quality control
and assurance methods proposed in the crowdsourcing liter-
ature are not easily adaptable to image segmentation tasks,
especially when images are collected from unconstrained
environments (Lampert, Stumpf, and Gançarski 2016) such
as medical images, or remote sensing. Detailed findings and
experiments for crowdsourced segmentation annotation are
not often discussed (Ørting et al. 2020).

This paper considers two types of quality control and as-

1Amazon Mechanical Turk: https://www.mturk.com/
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surance mechanisms. The first of these types is in-situ re-
dundancy analysis and annotator behavioral analysis. Re-
dundancy analysis assesses the quality of multiple annota-
tions made over the same instances, and is widely adopted in
almost all types of crowdsourcing tasks. Specifically, inter-
rater agreement (IRA) analysis is often used to assess an-
notator reliability across sets of labels, and can be used for
quality control. Multiple labels which may be noisy can also
be merged (Warfield, Zou, and Wells 2004) or directly incor-
porated into the modeling process (Jungo et al. 2018). In this
paper, we consider the former scenario which is appliable
for assessing evaluation datasets, whereas the latter meth-
ods are better suited to building training datasets. Specifi-
cally, we explore how to adopt Krippendorff’s α (Krippen-
dorff 2011), a common tool for measuring IRA, for quality
assurance. We demonstrate that image-level Krippendorff’s
α values provide insufficient information for assessing label
quality when multiple ROIs are present. Therefore, we pro-
pose computing localized Krippendorff’s α values in addi-
tion to image level to gain a comprehensive understanding of
annotation label inconsistency, which can then be provided
back to annotators with a view to improving their output
quality. Annotator behavioral analysis is another mechanism
for quality control (Pei et al. 2021) which tries to correlate
annotation quality with monitored telemetry such as annota-
tion elapsed time, or number of clicks. In our work, we also
explore whether annotation time is indicative of quality, es-
pecially for image segmentation, as it is rarely reported in
existing work in the same setting.

The second type of quality control and assurance we con-
sider requires external effort, relying on domain experts and
task owners. While being more expensive than the afore-
mentioned in-situ approaches, they are critical for many
domain-specific annotation tasks such as medical data anal-
ysis (Ørting et al. 2020). For example, the shepherd mech-
anism (Dow et al. 2012) asks domain experts to interact
with annotators to assist them in understanding definitions
of ROIs clearly, and is critical when dealing with images
collected in an unconstrained setting. However, most crowd-
sourcing workflows are optimized with respect to the expe-
rience of the annotators or task owners, and supervisory or
reviewer-based roles are often overlooked.

In our work, we propose and test a simple yet effective
way to help prioritize images for reviewers to assess, which
our experimental results suggest can support the review pro-
cess when the review budget is limited. Given the current
gaps in the literature, we anticipate that our observations
provide insights for future annotation work not only in med-
ical image annotation, but other similar use cases, especially
when non-expert annotators are involved.

2 Related Work
Quality Control and Assurance in Crowdsourcing. The
quality of crowdsourced annotations is determined by a va-
riety of factors, including ambiguities in annotator guide-
lines (Chang, Amershi, and Kamar 2017), or in the task it-
self which may be subjective, such as relevance judgements
in information retrieval (Kutlu et al. 2018). Ensuring that

crowdsourcing produces high quality labels is still an ac-
tive research area. A comprehensive survey by Daniel et al.
(2018) summarizes recent work in quality control and as-
surance for improving crowdsourced label quality, where
it is observed that most all components and roles involved
in crowdsourcing can have an impact on overall quality.
Although there are many methods proposed for improv-
ing label quality, not all of them are generally applicable
across domains. Understanding the extent to which some
popular quality control methods provide useful insight in
certain high stakes domains remains a largely unexplored
area (Sambasivan et al. 2021), and we provide an overview
in the next section. Arguably, most quality control tech-
niques are implemented during the annotation process and
roughly fall into one of three categories: (1) gold standard
(e.g., (Kazai and Zitouni 2016)), which compares labels
from annotators to ground truths; (2) redundancy analy-
sis (e.g., (Waggoner and Chen 2014; Sheng, Provost, and
Ipeirotis 2008)), which analyses the aggregated outputs from
multiple annotators over common instances; and (3) annota-
tor behavioral analysis (e.g., (Pei et al. 2021)), which tries
to understand connections between annotator behaviors (e.g.
annotation time) and annotation quality.

Besides starting a crowdsourcing annotation task with
clear and well-written guidelines, “Train People” (Daniel
et al. 2018) is another quality assurance mechanism which
supports continuous learning by providing feedback to an-
notators throughout the entire process. Dow et al. concludes
this strategy often yields better quality results. Involving do-
main experts or experienced annotators in the annotation
process is another key strategy adopted in many high-stakes
applications, such as the medical domain. Evaluating anno-
tation quality for medical image segmentation is often done
by incorporating reviewers in the annotation process. How-
ever, how such images are selected for review is not often
detailed in the literature, but strategies include exhaustively
reviewing all images (e.g., (Wang et al. 2017; Amgad et al.
2019)) or only a random sample (e.g., (Wang et al. 2022)).
The workload of exhaustively reviewing all images can be
time-consuming, as the image segmentation task itself is dif-
ficult, and one image may contain many annotations. There
is currently limited work addressing this issue.
Inter-Rater Agreement in Image Segmentation Annota-
tion Tasks. Inter-rater agreement (IRA), or annotation con-
sistency, is commonly implemented in crowdsourcing tasks
as an indicator of annotation quality. Many computer vision
annotation tasks such as object-detection (Lin et al. 2014) or
classification (Kovashka et al. 2016) also adopt this mech-
anism. However, few studies provide detailed descriptions
on how inter-rater agreement is used for image segmenta-
tion tasks. One reason may be cost: due to the complex-
ity of image segmentation annotation, many studies do not
seek to acquire more than one annotation per image or in-
stance (Lin et al. 2014; Lampert, Stumpf, and Gançarski
2016). In domains such as medical imaging or satellite im-
agery analysis where the annotation task can be complex and
ambiguous, it is common to acquire multiple annotations for
the same instances. Moreover, studies in these domains re-
veal high variability in inter-rater agreement analysis (Lam-
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Figure 1: In the medical imaging domain, identifying
anomalous features such as cancerous tissue or calcification
in mammograms via segmentation can be challenging, often
requiring domain expertise or deep familiarity with the task.

pert, Stumpf, and Gançarski 2016; Ribeiro, Avila, and Valle
2019; Krause et al. 2018) and subsequently focus on infer-
ring ground truth from combining multiple labels. For exam-
ple, STAPLE (Warfield, Zou, and Wells 2004) is a prominent
annotation fusion algorithm for image segmentation tasks,
which estimates the ground truth and annotator performance
simultaneously using the Expectation-Maximization algo-
rithm. However, such algorithms have revealed weak per-
formance in some benchmarks (Gurari et al. 2015), and can
lead to overly confident estimations of model performance
when trained on fused annotations.

Recent development (Ji et al. 2021) try to leverage mul-
tiple labels directly in the modeling process and treats dis-
agreement among raters as uncertainties. While noisy labels
can successfully be used for training models with good per-
formance, developing a gold standard test set with little am-
biguity is nonetheless required for concluding the actual per-
formance of a model.

Our work focuses on how to best measure the inter-rater
agreement in the annotation process for image segmentation
tasks with multiple annotators. We describe how the agree-
ment value can be fed back to the crowdsourcing process
in order to improve annotation quality. The closet published
work to ours appears to be (Lampert, Stumpf, and Gançarski
2016) in which the authors examine the inter-rater agree-
ment via the F1 score and evaluate how it impacts final
model performance. Other work considered using Cohen’s
κ (Ribeiro, Avila, and Valle 2019) to measure agreement.
However, when measuring the agreement for image segmen-
tation, these methods consider the annotation task as one of
binary classification task, with ROIs belonging to the posi-
tive class, and background pixels being negative. Our work
demonstrates the ineffectiveness of this method in light of
providing feedback to annotators, and proposes and analy-
ses a modified version.

3 The Annotation Workflow
3.1 Background
Task and Data. We consider those segmentation annotation
tasks whereby annotators are required to define and label

arbitrarily complex polygonal ROIs in images, and where
ROIs are not easily distinguishable by non-experts. This task
requires annotators to both clearly understand the definition
of ROIs and to use polygonal drawing tools to precisely cap-
ture which pixels belong to ROIs as opposed to background
pixels. One such complex example is shown in Figure 1,
where the task may be to highlight anomalous areas (e.g.
cancerous, or calcified) within a mammogram X-ray image.
In this paper, we refer to annotated ROIs as masks. Such
masks may also be associated with a number of categories
or labels (e.g., malignant, or benign), and although we fo-
cus on the use of a single category, we believe our work
applies more generally to tasks with an arbitrary number of
labels. Images such as mammograms as shown in Figure 1
can be considered an example of those collected in uncon-
strained environments with high variability, similar to the
work of Lampert, Stumpf, and Gançarski, as they can be
sourced from a number of different environments like hos-
pitals or clinics, from various imaging sensors with varying
settings and sensor angles, and taken of different patients
with various physical characteristics. Unlike natural images
of scenes where annotators may be required to identify and
segment commonly well-understood ROIs such as cars or
people, the ROIs in such medical images are often not easily
distinguishable by non-experts, increasing the task difficulty.
Roles. We identify three roles involved in the overall anno-
tation process: task owners, annotators, and reviewers. Task
owners and annotators are no different from those in most
other crowdsourcing tasks. Task owners are responsible for
defining the crowdsourcing tasks, producing clear annota-
tion guidelines, and the definition of ROIs for annotators to
follow. Annotators are recruited to perform the annotation
task, and we assume have some baseline level of understand-
ing of the task and will not act maliciously (e.g., provide
random annotations). Reviewers are often seen in difficult
annotation tasks (Ørting et al. 2020), and can be experienced
annotators or domain experts. For example, radiologists fa-
miliar with mammograms, or geographers who specialize in
remote sensing. A major difference between reviewers and
annotators besides expertise is their cost: hiring expert re-
viewers can be much more expensive than hiring annotators,
however expert review is often critical to achieve high qual-
ity annotation datasets.

3.2 An Overview of the Annotation Workflow
Based on prior work in the crowdsourcing literature (Dow
et al. 2012; Kovashka et al. 2016; Freeman et al. 2021),
together with our task setup, we implement the annotation
workflow shown in Figure 2 which consists of three main
stages: Onboarding, Pilot, and Formal.

The Onboarding phase aims to familiarize the annotators
with the task annotation itself, together with the platform
and tools they are required to use. In this phase, annota-
tors receive the task guidelines along with a small set of im-
ages, which they annotate. These images are pre-associated
with gold-standard annotations and provide reviewers with
the ability to assess annotator performance. Optionally, an-
notators can then be “pre-filtered” (Ørting et al. 2020; Lin
et al. 2014) based on an acceptable performance threshold,
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Figure 2: An overview of the annotation workflow considered in this work. Onboarding involves familiarizing annotators with
the task over a small gold-standard dataset, then assessing their suitability for further participation. Selected annotators then
participate in a Pilot phase where the task owner updates the task settings and revises the guidelines in preparation for the
Formal annotation phase. In the Formal phase, the task owner updates the task settings and revises the guidelines as required.

and other factors such as task complexity, and annotation
budget. Any annotators selected for further participation are
then invited to participate in subsequent phases.

At this point in the workflow, a Pilot phase is often rec-
ommended (Daniel et al. 2018) before commencement of
a formal annotation phase. The intention of a Pilot phase
is to help the task owner assess whether the task setup and
guidelines are correct, for example whether images are suf-
ficiently prepared, and the description of ROIs is well con-
veyed. It also helps establish a communication channel be-
tween annotators, reviewers, and the task owner, which is
the basis for implementing the “shepherd mechanism” (Dow
et al. 2012) with feedback.

Once the Pilot phase in complete and the task settings and
guidelines have been updated, the Formal annotation phase
can begin. As shown in Figure 2, this phase is similar to
the Onboarding and Pilot phases, in that selected annotators
will work on the annotation task based on the updated task
guidelines, and reviewers will assess the annotator outputs,
deciding if annotations should be accepted or if they require
revision. Instead of treating the task setup and guidelines as
static, we incorporate the idea proposed by Freeman et al.
(2021) that they should be updated throughout the annota-
tion phases as required, including as the formal annotation
phase progresses.

Lastly, it is possible that new annotators require onboard-
ing midway through the execution of the annotation work-
flow, potentially after the Pilot phase has been completed. In
this case, we expect that new Onboarding phases are con-
ducted for any new group of annotators to prepare them to
contribute, and can skip the Pilot phase if the task owners
feel the workflow settings or task guidelines no longer need
updating.

3.3 Quality Control and Assurance
External Quality Assurance. Figure 2 includes sev-
eral external quality assurance methods, including re-
viewer/annotator interactions. We note that the review pro-
cess provides for more than simply generating a binary de-
cision (i.e. accept, or reject), as it also permits reviewers
to convey informative or instructional comments to anno-

tators, as motivated by Dow et al. (2012) as a “shepherding
mechanism”. By interacting with reviewers, annotators can
better understand the task and the definition of ROIs. When
applying this mechanism, each annotation phase (Onboard-
ing, Pilot, and Formal) will have produced multiple versions
of annotations for each image. Those annotations for which
no further revisions are deemed required are treated as the
“final” version and will be used in downstream tasks (e.g.,
training deep learning models). Our hypothesis is that, when
annotators become sufficiently familiar with the task and
our setup is adequately tuned, we would expect a signifi-
cant number of annotations to be accepted without requir-
ing further revision. By assessing annotator performance in
review, task owners can identify any corner cases not ade-
quately described in the existing task guidelines, and update
them accordingly.

In-Situ Quality Assurance. As one of the widely adopted
strategies for behavioral analysis, we choose to inspect an-
notation time spent per image. This is the most tangible sig-
nal, as almost all mainstream annotation platforms provide
such statistics. Through analysis of annotation time, we aim
to understand if there is any correlation between low quality
annotations, the time spent on these images, and the anno-
tation task difficulty. However, such behavioral analyses can
only provide a weak signal to understand annotation quality.
As per most other crowdsourcing methods, our main mech-
anism for in-situ quality assurance is redundancy analysis.
Specifically, we rely on Krippendorff’s α as it supports as-
sessment over the results of multiple annotators, and handles
missing labels (Krippendorff 2011). Computing a Krippen-
dorff’s α score for multiple segmentation annotations of the
same image is not as straightforward as for other annotation
tasks like classification. At first glance, it can be computed
by treating each pixel in an image as a subtask. For exam-
ple, in Figure 3, we consider the annotation and ground truth
as two 0-1 sequences, where “0” means background pixel
and “1” indicates some ROI. An overall image-level Krip-
pendorff’s α score can then be computed over these two
sequences. However, this approach hides local differences
which could be informative of annotator error. For example,
in Figure 3, the image-level Krippendorff’s α score is 0.73,
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Annotation Ground Truth Union

Figure 3: An example of an annotator’s image mask and
a ground-truth annotation marking highlighting ROIs, and
their union with bounding-boxes around discrete connected
regions. The underlying image has been omitted, and only
ROI masks are shown. The image-level Krippendorff’s α
score between the annotator and ground truth masks is
0.73 (moderate agreement), while the average bounding-
box-level Krippendorff’s α score is −0.092 (disagreement).

which we might regard as “moderate agreement”. However,
clearly the annotator has missed many discrete regions when
compared to the ground truth annotation. This error pattern
suggests that the annotator may have had difficulty identify-
ing certain ROIs in this image, instead of accidentally miss-
ing these areas. This is an important distinction, so in this
paper, we propose to compute a localized bounding-box-
level Krippendorff’s α score in addition to the image-level
Krippendorff’s α score as a new signal for analysis. The
bounding-box-level Krippendorff’s α scores for each image
are computed using the following steps:

1. Create a union of all annotation masks, and compute dis-
crete connected component mask contours from these.

2. Generate a set of bounding boxes which localize all dis-
crete contour masks. This can be seen in Figure 3, as the
bounding boxes over discrete masks in the union.

3. For each bounding box, compute a Krippendorff’s α
score by treating multiple annotations within the bound-
ing box region as separate 0-1 sequences. Consider the
example shown in Figure 3, where we have six Krippen-
dorff’s α scores for the entire image.

The example shown in Figure 3 has an average bounding-
box-level Krippendorff’s α score of −0.092, indicating
strong systematic disagreement between the annotator and
ground-truth. This example highlights why a manual review
step may be necessary for image segmentation annotation
tasks involving multiple ROIs, because if image-level Krip-
pendorff’s α scores are used exclusively, we may be led
to believe the annotation is of sufficient quality. However,
when looking at the bounding box-level Krippendorff’s α
scores, we reach a different conclusion. There is no rule-
of-thumb when determining quality based on image-level
or bounding box-level Krippendorff’s α scores. Instead, re-
viewers must interpret disagreements in localized regions
where they occur. This can provide insight into new patterns
or cases for ROIs which may not have been made clear to
annotators through the task guidelines, which could be sub-
sequently revised.

4 Prioritizing Images for Review
Thus far, we have discussed the necessity for manual review
steps throughout the annotation workflow. However, if the
volume of annotations is large, and if reviewer effort is lim-
ited due to high costs or a fixed budget, we are motivated to
find those images for which review can be the most informa-
tive to annotators.

Random image selection for review is an easy and widely
adopted strategy, however may cause reviewers to skip an-
notations with systematic problems, resulting in low qual-
ity annotations overall if not corrected with annotators. In-
stead, our approach is to tackle image selection for review
as a ranking problem, which prioritizes those annotations
we deem most likely to be informative when reviewed in top
ranked positions. We interviewed our reviewers, and their
preference is (paraphrased) as follows:

“At an early stage, image-level inconsistencies are
more critical to inspect, as it is a step before deter-
mining an accurate ROI . . . The accurate localization
of ROIs is also important, especially for building seg-
mentation models . . . ”

Therefore, images with a low Krippendorff’s α score, es-
pecially an image-level Krippendorff’s α score, ought to be
ranked higher in a priority list for review. We therefore pro-
pose three methods for review prioritization which can be
classified into two main categories: sorting-based methods
and scoring-based methods. Sorting-based methods only
perform a simple sort operation over a number of “features”,
while scoring-based methods aggregate such “features” into
a single numeric value as the basis for ranking.
Sorting-Based Methods. As reviewers prefer to assess im-
ages with low Krippendorff’s α scores across annotations,
a natural ranking method is to sort images by ascending
Krippendorff’s α scores. This guarantees that images will
be sorted according to the level of disagreement computed
at an image level.

For the same ROIs, we permit two possible labels, certain
and uncertain, allowing annotators to mark areas for which
they are unsure, primarily to focus expert review. For sort-
ing by Krippendorff’s α scores, we distinguish two cases,
which we denote strict and relaxed. Strict scores ignore ar-
eas labelled as uncertain, and relaxed scores treat these as
belonging to ROIs. We employ both strict and relaxed Krip-
pendorff’s α scores as primary and secondary sorting fea-
tures, respectively. Besides these top two features, others are
listed in Table 1 and can be used for tie-breaking. Namely, if
a clear ranking is established for images using only a strict
Krippendorff’s α score, other features can be ignored. If us-
ing both strict and relaxed Krippendorff’s α scores still re-
sults in ties, then we can perform tie-breaking by the level of
uncertainties indicated by annotators (i.e., the unsure label%
and total number of unsure pixels), as we assume that a high
percentage of uncertain pixels indicates the annotator expe-
rienced difficulty in segmentation, requiring manual review.
The annotation area-related features are followed by those
based on the intra-rater Krippendorff’s α scores, which are
the final rows of image-level features in Table 1, and are
only considered if ties are still present after sorting based on
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all previous features. However, based on our observations in
Section 3.3, we believe that image-level Krippendorff’s α
scores may not reflect the true severity of disagreement for
this task. Therefore, we also propose a bounding-box-level
sorting method, using features listed in Table 1. Unlike the
image-level Krippendorff’s α score which is a scalar value,
the bounding-box-level score of an image may consist of
multiple Krippendorff’s α scores as each bounding box is
associated with one Krippendorff’s α score. Instead of us-
ing descriptive statistics such as mean or average to aggre-
gate Krippendorff’s α scores for each image, we break the
Krippendorff’s α scores into different ranges according to
default thresholds (Krippendorff 2011) and then count the
number of bounding boxes for which their Krippendorff’s α
scores fall into each range:
• Disagreement: Krippendorff’s α ≤ 0.1;
• Low agreement: 0.1 < Krippendorff’s α ≤ 0.667;
• Moderate agreement: 0.667 < Krippendorff’s α ≤ 0.8;
• High agreement: Krippendorff’s α > 0.8.

The sorting operation then is performed similarly to the im-
age level, whereby features are considered according to the
row order listed in Table 1. Since our primary features are
counting-based features, they have a higher chance of pro-
ducing ties due to being integer values. Therefore, a tie-
breaking method is required for bounding-box-level sorting.
One way is to consider both the area of each bounding box
and their Krippendorff’s α scores. Let i be i-th bounding
box, αi its Krippendorff’s α score, areai its area in pixels,
and N be the total number of bounding boxes in the union
of all annotations. We then define the weighted bounding-
box area Wbbox, as:

Wbbox =
N∑
i=1

(1− αi) · areai (1)

As image size can vary, we further normalize Wbbox with
the image size, and apply it as our last feature for bounding-
box-level sorting.
Scoring-Based Methods. A limitation with sorting meth-
ods is that only one or two features will often be consid-
ered as primary and others as tie-breaking features. There-
fore, we propose a ranking function that leverages bounding-
box-level Krippendorff’s α scores, as we believe it pro-
vides more detail when compared to image-level Krippen-
dorff’s α scores. Motivated by the literature in information
retrieval (Singhal, Buckley, and Mitra 1996; Jones 1972),
we first consider a pivoted normalization of Wbbox. For
each image, we compute the total bounding-box area us-
ing

∑N
i areai, and for all images in the current batch, we

then have an average bounding-box area which we refer to
as avg bbox area. The pivoted normalization of Wbbox is
computed as:

pivoted-Wbbox =
Wbbox∑N

i areai/avg bbox area
(2)

Compared to normalizing with the image size, this approach
down-weights images with large annotation areas compared

to smaller ones. The intuition here is that when there is a
large area of annotation that exceeds the average area, it is
more likely to contain inaccurate labels. This may be less
interesting to reviewers when compared to complete misses,
or a large percentage of false positives or negatives, which
potentially indicate missed ROI patterns or features.

In addition to the pivoted-Wbbox, we also consider an
inverse document frequency (IDF)-like weighting scheme,
which we refer to as WN :

WN = ln

(
N

#images with N bounding boxes

)
(3)

The final score of an image with multiple annotations is then
computed using pivoted-Wbbox ·WN . By sorting the score
in descending order, we obtain a priority list for review.

5 Experiments
We conduct our experiments over a medical image segmen-
tation task, as the images have been collected in uncon-
strained settings, and the ROIs are difficult to discern for
non-expert annotators (as described in Section 3.1). Specifi-
cally, we explore three main questions in our experiments:
• How useful is external quality assurance for this task?
• How much information can in-situ quality assurance

methods provide us in terms of label quality?
• How effective is the priority list we create for reviewers?

5.1 Experiment Setup
The Task. Breast arterial calcification (BAC) is the build-up
of calcium deposits in the walls of arteries in breast tissue.
These calcium deposits are often visible as high-contrast
white areas in mammogram images due to their strong atten-
uation of X-rays. Recent findings have linked the presence of
BAC with coronary artery and cardiovascular diseases (Irib-
arren et al. 2022; Lee et al. 2020), and the number of studies
that localize and quantify BAC using image segmentation
models is increasing. Identifying BAC deposits in mammo-
grams to build training and evaluation datasets for segmen-
tation models is a non-trivial task, and accurate localization
of BAC requires training.

While patients with limited BAC deposits indicative of
early-stage cardiovascular disease are likely to benefit most
from diagnosis and treatment, BAC in these patients can be
particularly difficult to identify. Over-diagnosis of BAC in
patients is also undesirable, as it may lead to expensive and
unnecessary referrals to cardiologists or medical interven-
tion. Therefore, highly accurate identification and localiza-
tion of BAC in patients is desirable. Given the nature and
difficulty of the task, localization of BAC lends itself pri-
marily to expert radiologists who are familiar with the con-
dition. However, in order to train deep learning models for
automatic segmentation of BAC deposits, the exclusive use
of medical experts to construct large training datasets is of-
ten prohibitively expensive. This is why we are motivated
to seek efficient ways of incorporating cheaper non-experts
in the annotation process through crowdsourcing, together
with medical experts in a way which reduces their overhead
in annotation and review for the BAC segmentation task.
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Image-Level Bounding-Box-Level

Feature Sorting Feature Sorting

Strict Krippendorff’s α asc # Disagreement boxes desc
Relaxed Krippendorff’s α asc # Low agreement boxes desc
Unsure labels% desc # Moderate agreement boxes desc
Total number of unsure pixels desc # High agreement boxes asc
Annotation areas (relaxed) std. desc # Bounding boxes (N ) desc
Average annotation areas (relaxed) desc Wbbox (Eq 1) divided by image size desc
Intra-rater Krippendorff’s α strict asc
Intra-rater Krippendorff’s α relaxed asc

Table 1: Features used in the sorting-based methods. “asc” refers to the feature being sorted in ascending order, and “desc”
refers to the feature being sorted in descending order. The sorting is performed by considering features from top to bottom.

We establish a crowdsourcing task for annotating BAC
deposits in mammogram images, and provide task guide-
lines including why the task is important, how to annotate,
examples of good and bad BAC annotations, and easily con-
fused non-BAC patterns.

Annotators can identify BAC deposits using polygonal
drawing tools to produce masks over BAC areas, labelling
them red if they are certain, or green if they are uncertain.
Areas without BAC are to be left unmarked. They are also
instructed that not all images may contain BAC, and that
images may require manual adjustment of their contrast or
brightness in order to improve BAC visibility. As the im-
ages are collected in an unconstrained way, it is not feasible
to apply standardized image normalization beforehand.
Data. We use 1,195 mammogram images sourced from a
breast imaging clinic, consisting of scans from 168 unique
patients, and 298 individual studies. Each study consists of
three or four scans of the same patient, sourced over time.
All patients in these studies were considered to have BAC
by an expert radiologist, however while most images con-
tain BAC, some do not. To use this data in our research,
we have obtained ethics approval, and all image data used
in this paper is pre-processed and HIPAA2-compliant. In-
dividual identifying patient information had been removed
to protect patient privacy. All annotators and reviewers re-
ceived these pre-processed images, ensuring they could not
access any identifying patient metadata, and their judgement
is based exclusively on image features.

Working directly on unprocessed mammogram images is
difficult, especially for non-experts, as it requires manual ad-
justment of the image histogram or the application of com-
plex transformations to make subtle BAC patterns more vis-
ible. In this paper, we use Volpara® software to generate
so-called pseudo density maps for annotators to work on as
opposed to the original images (Highnam et al. 2010). A
pseudo density map is based on physical characteristics of
breast tissue in an image, and exposes high density areas
such as calcium deposits as bright white, with low density
areas being dark, as shown in Figure 4. We randomly select
20 images from the 1,195 images and obtain gold standard

2HIPAA: The US
Health Insurance Portability and Accountability Act of 1996.

annotations for these from expert annotators. This gold stan-
dard dataset is used for onboarding annotators, over which
we can compute Sørensen-Dice coefficient (Dice/F1) scores
to quickly ascertain image-level annotation quality.

Figure 4: An example of a Volpara® pseudo density map
with BAC annotations. Annotators identify BAC areas they
are certain of in red, and low confidence areas in green.

Participants and Tools. In our study, we consider three
groups of participants: A0, A1, and A2 (each with 5, 5, and 3
participants respectively), with each participant being famil-
iar with the image data labelling process but having varying
levels of expertise in interpreting mammograms and identi-
fying and localizing BAC. Both A1 and A2 group annotators
were familiar with interpreting mammograms, but only A1
annotators were expertly trained to identify BAC prior to the
task. In contrast, A0 and A2 annotators were crowdworkers
recruited from independent contracting firms paying at least
minimum wage in each country of residence. As such, our
experiments that explore the impact of different quality as-
surance approaches only consider these latter two groups.

In this paper, we use V7 Darwin3 as the annotation plat-
form. V7 Darwin provides several annotation tools like a
brush, polygon, and auto-annotation tools for image seg-
mentation. It also allows task owners to establish a workflow
that involves an arbitrary number of review stages, which is
useful for implementing a shepherd mechanism. Besides the

3https://darwin.v7labs.com
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annotation tool, we communicate with annotators through a
Slack4 team channel. When annotators had any questions or
requests about their tasks, we were able to respond quickly.

5.2 Effectiveness of External QA Methods
Experiment Settings. In this experiment, we consider only
externally recruited crowdsource annotators from A0 and
A2 groups. Since our goal is to explore the effectiveness of
the external quality assurance method of shepherding, we
split the two groups of annotators to let them work on differ-
ent annotation processes:

• A0 annotators only participated in Onboarding and For-
mal phases, receiving no interactions from reviewers. Re-
viewers were tasked only with assigning “reject” or “ac-
cept” to annotations after the entire annotation process
was complete.

• A2 annotators participated in the full annotation process
as described in Figure 2, which included an additional
Pilot phase. During all annotation phases, annotators in-
teracted with reviewers to better understand the reasons
behind rejected annotations.

Note that the “acceptance” ratio reported in this paper is
measured after the first round of iteration. There are 20 ran-
domly sampled images in Onboarding phase, and 500 and
675 images in Pilot and Formal phases, respectively.
Initial Annotator Performance. Before exploring how an-
notators perform across different annotation phases, we use
the Onboarding phase to assess their understanding of the
task. A0 and A2 annotators initially participated in an On-
boarding phase. Although both these groups of annotators
claimed to have medical backgrounds and exposure to im-
age segmentation tasks for machine learning, they were not
initially familiar with identifying and localizing BAC areas
in mammograms.

In their Onboarding phase, A0 and A2 participants were
asked to annotate a small set of images.

Some annotators were not confident in carrying out the
task, and were filtered out. The remaining annotators from
groups A0 and A2 produced average Dice/F1 scores of 0.684
and 0.772 respectively, suggesting similar performance and
assumed level of understanding of the task. However, as
discussed in Section 3.3, we take caution in interpreting
such image-level agreement scores, as these may not re-
veal fine-grained segmentation performance where multiple
ROIs/BACs are present.
Shepherd Mechanism and Living Task Guidelines. In the
Onboarding phase, we observe that annotators from both A0
and A2 groups have similar performance over the 20 im-
ages as per the acceptance ratio in Table 2. A0 annotators
only have three more images accepted relative to the A2 an-
notators. However, in the Pilot phase, A2 annotators show
a much improved acceptance ratio from 35% to 85%. We
believe this is due to the frequent interactions between A2
annotators and reviewers, as although the acceptance ratio is
low in the Onboarding phase, we believe that the annotators
learn from feedback about reviewer-rejected annotations,

4https://slack.com

Phase Group Images Annotation Time (s) Acc.
Ratio(%)All Accept Reject

Onboarding A0 20 – – – 50
Onboarding A2 20 – – – 35
Pilot† A2 200 107±138 88±121 218±176 85
Formal† A2 655 64±69 57±68 79±69 70
Formal† A0 655 58±34 50±42 59±33 14

Table 2: Average annotation times (sec) with stdev for each
image and acceptance ratio (Acc. Ratio%), denoting the pro-
portion of accepted annotations overall. A † means annota-
tion times between accepted and rejected is significantly dif-
ferent at p = 0.05 via a two-sided Welch t-test.

helping them better understand how to identify ROIs/BACs.
Further evidence is observed when comparing the final A0
and A2 acceptance ratio after the Formal phase, where A2
annotators achieve an acceptance ratio of 70% when com-
pared to A0 annotators at 14%. For A0 annotators, the drop
in acceptance ratio between Onboarding (50%) and Formal
phases (14%) suggests errors were perpetuated across larger
image batches.

Reviewers also learn from this interactive process, as
when they leave comments, they may observe patterns in
mistakes made by annotators and can summarize them. We
observed this amongst reviewers in the Formal phase where
new error patterns were discovered which were not yet cap-
tured the guidelines, and explains why the acceptance ratio
is lower in this phase. This leads to our design of a “living”
task guideline document. Besides communicating directly
with annotators on their mistakes, we add any common er-
ror patterns to the task guidelines. Annotators may then refer
to these guidelines in subsequent work to avoid making the
same mistakes. We also observed from the acceptance ratios
that the interaction effort required by reviewers decreases as
batches of images are annotated.

We conclude that both the shepherd mechanism and the
living task guidelines can assist in quality assurance and in
obtaining high quality annotations, both of which we believe
contributed to an increase of the annotation acceptance ratio
in our experiments.

5.3 Effectiveness of In-Situ QA Methods
Experiment Setting. We explore two types of in-situ qual-
ity assurance methods: annotation time, and redundancy
analysis. Annotation time is provided by the annotation plat-
form. As per the acceptance ratio, we only consider the first
round of annotation, where the interaction time with review-
ers is omitted. For redundancy analysis, we explore two as-
pects: intra-rater Krippendorff’s α that measures the consis-
tency of the same individual annotator on the same image;
and inter-rater Krippendorff’s α that measures annotation
consistency between different annotators on the same im-
age. Besides A0 and A2 annotators, we also asked the expe-
rienced A1 group to annotate images from the Formal phase.
Results in this section are from the first round of annotation.
Annotation Time Analysis. Annotation times for A0 and
A2 groups are captured in Table 2 except for the Onboarding
phase, where annotators spent time exploring the annotation
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platform and tools. Here, we observe a decreasing trend in
the annotation times for A2 annotators, but also see that an-
notation times have high standard deviation for all annota-
tors regardless of group, indicating variability in each anno-
tator’s ability to identify and localize BACs across images.

Continuing to breakdown annotation times based on
whether they were accepted or not, a two-sided Welch t-test
reveals that a significantly longer annotation time is spent on
rejected annotations than accepted ones for both A0 and A2
groups. This observation suggests that when an annotator
spends more time annotating an image, it is likely to be dif-
ficult to annotate (i.e. the features or patterns are not clearly
distinguishable). However, given the wide range of annota-
tion times, it is difficult to rely on this as a quality control
method. We may still apply this analysis in the annotation
workflow in order to understand if annotators are experi-
encing difficulties with a certain batch of images, especially
when observing longer than average annotation times.
Redundancy Analysis. We show the intra-rater Krippen-
dorff’s α results in Figure 5a for A2 annotators, where it
is observed that even for the same image, only a small
amount of annotations achieve sufficient consistency with
high agreement (where Krippendorff’s α > 0.8). The re-
maining annotations reveal a large amount of disagreement,
which suggests that annotators may not remember their pre-
vious annotations on the same image. This is normal for seg-
mentation annotation as it is a pixel-level task.

For inter-rater consistency analysis, we compute two dif-
ferent values on images from the Formal phase: consistency
between all three groups of annotators shown in Figure 5b,
and only between A1 and A2 annotators shown in Figure 5c.
In both cases, we observe different distributions of image-
level and bounding-box-level Krippendorff’s α scores, lend-
ing weight to our discussion in Section 3.3 that bounding-
box level Krippendorff’s α can give rise to more informa-
tion about annotation inconsistencies for use in review. Fur-
thermore, the discrepancy between bounding-box level and
image-level Krippendorff’s α scores highlights the difficulty
of relying on these as quality assurance methods. Therefore,
external mechanisms such as expert review are often neces-
sary for such image segmentation tasks, especially when the
visual patterns of ROIs is ambiguous.

These results also highlight the difficulty due to noise on
agreement analysis, in that blindly applying annotation ag-
gregation may result in low-quality outcomes, as the under-
lying mechanism of many such methods is majority voting.

5.4 Effectiveness of Priority List for Reviewers
Experiment Setting. We now explore how our proposed
priority list can help reviewers identify annotations which
are likely to have severe quality issues. We use the results
from the Formal phase obtained from three annotators with
the aforementioned annotation workflow. As there is no es-
tablished approach for the reviewer’s workflow, we consider
Random image selection as the baseline. The actual imple-
mentation was to assign each image with a random score 10
times with different seeds, and then build a final priority list
by averaging the 10 random scores per image then sorting
based on these results. We also implement the ranking ap-
proaches proposed in Section 4. Note that, one annotation
phase can contain multiple annotation iterations, depending
on whether an annotation is accepted, and we use the initial
annotation when creating a priority list. The final output is
only used to evaluate our priority list in this experiment.
Ground Truth Simulation and Evaluation Methods. Di-
rectly letting reviewers provide qualitative evaluation over
different ranking lists is difficult. Therefore, to evaluate our
results, we adopt approaches often used in evaluating rank-
ing methods by giving a label to each item and then comput-
ing common metrics such as Precision (P), Recall (R), and
Normalized Discounted Cumulative Gain (N) to understand
their effectiveness. Since this approach is still experimental
and not implemented, we simulate the ground truth based on
whether we believe annotation quality is low enough for re-
viewers to assess. Our assumption is that annotations are im-
portant to review if reviewers have left comments on them,
or if the final annotation is very different from the initial
annotation. We adopt a graded value for the ground truth
because there is a difference in review preference: an anno-
tation tagged as requiring “expert review” has a higher pri-
ority when compared to other comments, or no comments.
The ground truth label generation process is:
1. Images labelled for “expert review” were scored “3” (36

images).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Krippendorf's 

0

1

2

3

4

5

6

7

8

Co
un

t

calculation
image
bbox

(a) Intra-rater consistency for A2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Krippendorf's 

0

50

100

150

200

250

300

350

Co
un

t

calculation
image
bbox

(b) Inter-rater consistency for A0, A1 and A2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Krippendorf's 

0

50

100

150

200

250

300

350

Co
un

t

(c) Inter-rater consistency for A1 and A2

Figure 5: Inter- and intra-rater annotation consistency analyses with Krippendorff’s α.
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2. In the remaining images, if reviewers left any comments,
these were scored “2” (191 images).

3. In the remaining images, those with an image-level
Krippendorff’s α ≤ 0.667 (the default threshold value)
were scored a “1” (8 images).

4. All remaining 440 images were scored a “0”.

Analyzing the Priority Lists. We show the evaluation
scores at cutoff position k = 20 in Table 3, because in the
annotation tool, the first 20 images are shown to the review-
ers first. More detailed precision and recall at rank positions
are shown in Figure 6.

Method Level With A0 annotation Without A0 annotation

P@20 R@20 N@20 P@20 R@20 N@20

Random - 0.30 0.03 0.15 0.30 0.03 0.15

Sorting Image 0.10 0.01 0.05 0.75 0.07 0.38
BBox 0.60 0.05 0.31 0.45 0.04 0.35

Scoring BBox 0.45 0.04 0.29 0.70 0.06 0.41

Table 3: Effectiveness of the various priority list methods.

The worst method is Image-Level Sorting when all three
annotations are taken into account, which is worse than the
Random method. Since the Image-Level Sorting method
heavily depends on image-level Krippendorff’s α scores, its
poor performance may be attributed to noisy A0 annota-
tions which reach significantly different conclusions than the
bounding-box-level Krippendorff’s α scores. When exclud-
ing A0 annotations, Image-Level Sorting becomes much
better. The Random method becomes the worst compared
to our proposed methods. The sensitive behavior of image-
level ranking further confirms our concern with image-level
Krippendorff’s α scores, which we believe hides too many
details when measuring agreement rates for segmentation
tasks such as these. It is worth noting that regardless of
whether A0 annotations are included in the ranking pro-
cess, both bounding-box level approaches are consistently
better than the baseline approach, especially when consider-
ing NDCG (N) values where graded relevance is used.

Finally, these results suggest that given a fixed review
budget, our method can be used to make better use of ex-
perts reviewer time. This is highly desirable for complex
use-cases where domain experts are expensive and may only
afford limited time to spend on review tasks.

6 Conclusions and Future Work
In this paper, we considered the specialized task of crowd-
sourcing multi-ROI image segmentation annotations in set-
tings where the images for annotation are uncontrolled,
highly variable, and where ROI definitions can be ambigu-
ous. Such settings often require crowdsourced annotations to
be reviewed by domain experts to ensure high quality anno-
tations are ultimately produced. There are many such real-
world settings which fall into this category, including high-
stakes medical imaging domains, or environmental remote
sensing applications where precise image segmentation an-
notations are required to build accurate image segmentation
models.
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Figure 6: P@k (the 1st column) and R@k (the 2nd column)
(k = {1, 2, . . . , 675}) of the priority list with three anno-
tations (the 1st row) and only A1, A2 annotations (the 2nd
row). The x-axis is log-scaled.

We have shown that basic annotation workflows with min-
imal quality assurance can result in low quality annotations.
The interpretation of complex images with ambiguous ROIs
is not straightforward, and relying on crowdsourced anno-
tators to precisely localize ambiguous ROIs can result in
high variability, hindering techniques such as annotation fu-
sion. We also observed that the same annotator may not re-
liably reproduce the same annotations for the same image,
and adding more annotators is simply likely to introduce
more disagreement. Our proposed annotation workflow ex-
tends the basic annotation workflow by introducing phases
which allow task owners to iteratively improve the task set-
tings and annotator understanding through feedback to avoid
mistakes. We have demonstrated through our experiments
that this new workflow provides us with a better acceptance
ratio for finalized image annotations, as well as higher qual-
ity annotations overall.

Our experimental results also suggest that our proposed
methods of prioritizing annotations for review are robust to
noise or error, and the priority list generated with our meth-
ods ranks “interesting” annotations highly to ensure that a
suitable trade-off between reviewer effort and annotation
quality can be met. We expect that our methods for prioritiz-
ing images for review can be applied to other image segmen-
tation annotation tasks outside the medical imaging domain.

In the future, we plan to extend our work in the following
ways: (i) incorporating automated methods of image selec-
tion in the annotation workflow using active learning. Such
methods aim to select new images on the basis that their
annotation will be informative to a model in re-training to
improve its quality or performance; and (ii) reducing the ef-
fort of annotators by incorporating trained deep segmenta-
tion models to generate pre-annotations to speed up the an-
notator training and labelling processes.
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