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Abstract

The rapid entry of machine learning approaches in our daily
activities and high-stakes domains demands transparency and
scrutiny of their fairness and reliability. To help gauge ma-
chine learning models’ robustness, research typically focuses
on the massive datasets used for their deployment, e.g., cre-
ating and maintaining documentation to understand their
origin, process of development, and ethical considerations.
However, data collection for AI is still typically a one-off
practice, and oftentimes datasets collected for a certain pur-
pose or application are reused for a different problem. Addi-
tionally, dataset annotations may not be representative over
time, contain ambiguous or erroneous annotations, or be un-
able to generalize across domains. Recent research has shown
these practices might lead to unfair, biased, or inaccurate out-
comes. We argue that data collection for AI should be per-
formed in a responsible manner where the quality of the data
is thoroughly scrutinized and measured through a systematic
set of appropriate metrics. In this paper, we propose a Re-
sponsible AI (RAI) methodology designed to guide the data
collection with a set of metrics for an iterative in-depth analy-
sis of the factors influencing the quality and reliability of the
generated data. We propose a granular set of measurements to
inform on the internal reliability of a dataset and its external
stability over time. We validate our approach across nine ex-
isting datasets and annotation tasks and four input modalities.
This approach impacts the assessment of data robustness used
in real world AI applications, where diversity of users and
content is eminent. Furthermore, it deals with fairness and
accountability aspects in data collection by providing system-
atic and transparent quality analysis for data collections.

1 Introduction
As the use of machine learning (ML) and artificial intelli-
gence (AI) becomes more ubiquitous in our daily activities,
e.g., to pick a restaurant for dinner (Burke 2002), as well
as in high-stakes domains, e.g., to select a job candidate (Li
et al. 2021) or choose medical treatment for a patient (Shatte,
Hutchinson, and Teague 2019), the need to scrutinize every
aspect of AI systems is also increasing. This includes evalu-
ating their training and testing data quality, as well as quanti-
fying the level of fairness, transparency, accountability, and
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non-maleficence (Jobin, Ienca, and Vayena 2019) these sys-
tems have. Several actionable toolkits and checklists for both
models and datasets have been proposed, such as Fairlearn
(Bird et al. 2020), AI Fairness 360 (Bellamy et al. 2019),
Aequitas (Saleiro et al. 2018), Model Cards (Mitchell et al.
2019), Datasheets for Datasets (Gebru et al. 2021), PAIR AI
Explorables,1 AI Test Kitchen.2 Furthermore, this also led to
an emerging data-centric research effort on how data quality
can affect the robustness, reliability, and fairness of AI sys-
tems’ performance in the real world (Mehrabi et al. 2021;
Sambasivan et al. 2021; Kapania et al. 2020).

Traditionally, high-quality data for ML is collected from
experts and inter-rater reliability (IRR) scores (e.g., Cohen’s
κ (Cohen 1960), Fleiss’ κ (Fleiss 1971), or Krippendorff’s
α (Krippendorff 2011)) measure their reliability. Employ-
ing experts, however, is often costly and time-consuming.
Crowdsourcing is a widely used alternative to create ground
truth datasets for ML applications. Due to the nature of
crowdsourcing annotation studies (i.e., raters who likely
have limited or no domain expertise), a large body of re-
search has primarily focused on data evaluation and aggre-
gation techniques (Hovy et al. 2013; Dumitrache et al. 2018;
Paun et al. 2018; Braylan and Lease 2020).

Under the assumption that each annotated input sam-
ple has only one correct interpretation (Nowak and Rüger
2010), crowdsourced annotations are typically aggregated
using majority vote (MV) (Dumitrache et al. 2021). How-
ever, research has shown that data quality is complex and
can be influenced by many factors, such as disagreement-
prone or subjective tasks, ambiguous input samples, target
annotations, and guidelines, diverse rater characteristics and
perspectives (Welinder and Perona 2010; Aroyo and Welty
2014; Kairam and Heer 2016; Chang, Amershi, and Kamar
2017; Draws et al. 2022), ethical aspects and power struc-
tures in annotation processes (Miceli, Schuessler, and Yang
2020; Dı́az et al. 2022), or cognitive biases (Eickhoff 2018;
Santhanam, Karduni, and Shaikh 2020; Draws et al. 2022).
In such cases, IRR scores may not always be able to capture
the true annotations’ reliability and MV could eliminate cor-
rect answers vetted by only a few raters. Additionally, IRR
scores cannot be used to directly compare datasets, as they

1https://pair.withgoogle.com/explorables/
2https://blog.google/technology/ai/join-us-in-the-ai-test-kitchen/
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only indicate raters’ consistency rather than data quality.
These factors have led to several streams of research.

First, the notion of ground truth currently adopts a perspec-
tivist stance (Basile et al. 2021; Aroyo and Welty 2015)
which highlights the need of diverse opinions and per-
spectives for a better knowledge representation compared
to MV. Second, before runtime checklists have been pro-
posed (Draws et al. 2021; Thomas et al. 2022) to help re-
searchers consider cognitive biases and other human fac-
tors affecting their annotations. Third, attention is drawn
to formulating dataset artifacts that describe the collection
purpose, method, and raters (Bender and Friedman 2018;
Ramı́rez et al. 2020; Gebru et al. 2021; Dı́az et al. 2022).
Fourth, existing datasets have been extensively judged, im-
proved, and re-annotated based on empirical evidence sug-
gesting that existing annotations are not representative any-
more or contain ambiguous or erroneous annotations (Yun
et al. 2021; Inel and Aroyo 2019; Aroyo and Welty 2015).

However, the research landscape is still lacking a unified
framework that allows for cross-datasets comparisons and
measurement of dataset stability for repeated data collec-
tions. Thus, or proposed approach complements existing re-
search by proposing an iterative metrics-based methodology
for thoroughly scrutinizing the factors influencing the intrin-
sic reliability of datasets and their stability over time and for
various contexts or factors (Fig. 1).

Figure 1: Methodology for measuring reliability and repro-
ducibility of AI data collections.

Our proposed methodology enables a comprehensive
analysis of data collections by applying reliability and re-
producibility measurements in a systematic manner. The re-
liability metrics are applied on a single data collection and
focus on understanding the raters. We then propose that data
collection campaigns are repeated, either under similar or
different conditions. This allows us to study in-depth the re-
producibility of the datasets and their stability under various
conditions or constraints, using a set of reproducibility met-
rics. In short, we propose a set of metrics that are applied (1)
on a single repetition and (2) across repetitions to thoroughly
evaluate the reliability and stability of annotated datasets.
The overall methodology is designed to integrate responsi-
ble AI practices into data collection for AI. This allows data
practitioners to follow our step-by-step guide to explore fac-
tors influencing reliability and quality, ensuring transparent
and responsible data collection practices. We validate our

methodology on nine existing data collections repeated at
different time intervals with similar or different rater qualifi-
cations. The annotation tasks span different degrees of sub-
jectivity, data modalities (text and videos), and data sources
(Twitter, search results, product reviews, YouTube videos).

The following are the key contributions of this paper:3
1. a step-wise guide for practitioners consisting of a set of

metrics to thoroughly investigate and explore factors that
influence or impact the reliability of annotated datasets;

2. a validation and illustration of the proposed metrics-
based iterative methodology for achieving transparency
of the reliability of datasets and their stability over time
on nine existing data collections; and

3. a discussion of implications and lessons learned for re-
sponsible data collection practices.

2 Related Work on Data Excellence
Data quality is an already established field of study (Wang
and Strong 1996; Zaveri et al. 2016; Lukyanenko and Par-
sons 2015), spanning numerous domains and use cases, such
as linked open data, user-generated data, to name a few. Data
quality aspects are also addressed in several ISO standards
(e.g., ISO 25012 (for Standardization 2008; Guerra-Garcı́a
et al. 2023), ISO 80004). Research utilizing crowdsourced
datasets has further broadened the community’s views re-
garding factors influencing or affecting data quality. A large
body of research has been focusing on acknowledging the
impact of cognitive biases, such as confirmation bias or an-
choring effect, on the crowdsourced data quality (Eickhoff
2018; Hube, Fetahu, and Gadiraju 2019; Santhanam, Kar-
duni, and Shaikh 2020; Draws et al. 2022). However, while
various types of cognitive biases are known to impact data
quality, in typical annotation studies, it is not a mainstream
practice to account for raters’ stances, opinions, or knowl-
edge on various issues. Furthermore, despite several pro-
posed mechanisms to mitigate biases (Eickhoff 2018; Hube,
Fetahu, and Gadiraju 2019; Barbosa and Chen 2019), it is
still unclear which mechanisms are suitable for a particu-
lar situation or which individual characteristics of the raters
may lead to systematic biases (Draws et al. 2022). To further
alleviate some of these issues, Draws et al. (2021) proposed
a 12-item checklist for requesters to identify which cogni-
tive biases might affect their data before the start of data
collection. While this checklist offers a powerful tool for re-
questers, many times AI and ML practitioners reuse exist-
ing annotated datasets that might lack proper documentation
or description of the annotation process, which makes the
assessment difficult and leads to worrying outcomes when
deployed in the real world (Paullada et al. 2021).

Unequal distribution of demographic characteristics
among raters may subsequently lead to poor performance
of ML models (Barbosa and Chen 2019). While investigat-
ing whether different cultural communities produce differ-
ent gold standards and whether algorithms perform differ-
ently on gold standards from different cultural communi-

3Supplemental material and analysis at: https://github.com/oana-
inel/ResponsibleAIDataCollection

4https://www.iso.org/standard/81745.html
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ties, Sen et al. (2015) found that AMT-derived gold stan-
dards for knowledge-oriented tasks can not generalize across
different communities and influence ML performance. In
the context of image annotation, Dong et al. (2012) con-
cluded that different cultures provide different tags, be-
ing highly influenced by their cognitive and emotional as-
pects. The same behavior was observed when performing
news sentiment analysis (Balahur et al. 2010). Besides cul-
tural differences, cognitive biases, and stereotypes, societal
events or temporal aspects can also add variance in collected
data (Aroyo and Welty 2015; Christoforou, Barlas, and Ot-
terbacher 2021; Sen et al. 2015). Christoforou, Barlas, and
Otterbacher (2021) showed empirical evidence that signifi-
cant public health events might be reflected in the descrip-
tive tags regarding a person’s identity and body weight that
raters use to annotate images of people.

In the remainder of this section, we review three streams
of research regarding responsible data collection for AI: col-
lection, assessment, and documentation and maintenance.

2.1 Data Collection
Data collection practices strongly affect the quality of
crowdsourced data. This led to extensive explorations
in evaluating raters’ performance and identifying under-
performing pools of raters (Ipeirotis, Provost, and Wang
2010; Bozzon et al. 2013; Soberón et al. 2013), improving
the overall clarity of the annotation task design (Kittur, Chi,
and Suh 2008; Gadiraju, Yang, and Bozzon 2017; Wu and
Quinn 2017; Han et al. 2019), encouraging raters to reflect
on their answers (Kutlu et al. 2020), or experimenting with
several annotation designs to identify the most suitable one
to capture the appropriate answers (Inel et al. 2018; Lau,
Clark, and Lappin 2014; Roitero et al. 2018). More pre-
cisely, at the level of the task design, many studies exper-
imented with annotation scales. For example, Roitero et al.
(2018) showed that fine-grained annotation scales are more
suitable and natural than coarse-grained annotation scales to
capture web documents’ relevance. Intrinsic motivation and
incentives have also been shown to be beneficial in improv-
ing the quality of crowdsourced data (Ho et al. 2015; Kit-
tur et al. 2013). In our research, we present extensive data
analysis of nine existing data annotation tasks which vary in
terms of collection criteria such as input data (tweets, prod-
uct reviews, web documents, facial expression recordings,
and news broadcasts) and annotation goal.

2.2 Data Assessment
To measure the reliability of crowdsourced annotations, re-
search focused on quality control mechanisms (Daniel et al.
2018) and the definition of aggregation techniques (Hung
et al. 2013; Li, Rubinstein, and Cohn 2019; Dumitrache et al.
2018; Hovy et al. 2013; Paun et al. 2018). Typically, current
annotation campaigns rely on the use of multiple raters per
annotated input and reporting of inter-rater reliability met-
rics (Park et al. 2012; Sigurdsson et al. 2016; Park, Shoe-
mark, and Morency 2014), such as Cohen’s κ (Cohen 1960),
Fleiss’ κ (Fleiss 1971), or Krippendorff’s α (Krippendorff
2011). However, the choice of the IRR metric is less im-
portant than having a representative number of raters per in-

put (Artstein and Poesio 2008). Furthermore, Popović and
Belz (2022) found that raw counts are a more suitable in-
put for computing and estimating inter-rater reliability com-
pared to normalized counts or percentages in a machine
translation use case. In a recent study, however, Braylan,
Alonso, and Lease (2022) point out that Krippendorff’s α
relies on mean distances, which can lead to mistakenly dis-
carding good data when dealing with subjective annotations
and propose using more suitable distance functions depend-
ing on the task at hand. When dealing with subjective tasks,
or tasks that could generate diverse opinions or perspec-
tives and potentially multiple ground truths, achieving re-
liable results is thus even more challenging (Graham, Awad,
and Smeaton 2018; Zahálka and Worring 2014; Basile et al.
2021). This could mean that different replications of such a
task could give very different results.

To the best of our knowledge, only a few data collec-
tion experiments addressed repeatability (Blanco et al. 2011;
Welty, Paritosh, and Aroyo 2019). Thus, our work proposes
data collection repeatability as a responsible practice to mea-
sure data stability over time. We propose a set of metrics
carefully chosen to scrutinize the human factors influencing
various aspects of the data over time, thus fostering cross-
comparison between datasets.

2.3 Data Documentation and Maintenance
By systematically reviewing 150 published papers dealing
with classification tasks on Twitter data, Geiger et al. (2020)
concluded that issues such as reliability, transparency, and
accountability in data collection practices are not a main-
stream approach in the ML community. A considerable
amount of analyzed papers offer limited or no details re-
garding raters, their demographic information, compensa-
tion details, IRR scores of the collected datasets, annotation
instructions, and overall setup of the annotation process. Fol-
lowing studies that also showed the extent to which potential
biases are present in extensively used image datasets (Zhao
et al. 2017; Hendricks et al. 2018; Otterbacher 2015), a lot of
attention has been brought to data documentation and main-
tenance approaches, in many fields.

Inspired by medicine and psychology literature, Bender
and Friedman (2018) proposed data statements for charac-
terizing and understanding the raters of a natural language
dataset, their potential biases, and how they might affect
the deployment of ML models. Similarly, informed by the
electronics industry where every component is thoroughly
described in terms of characteristics, test results, or recom-
mended usage, Gebru et al. (2018) proposed datasheets for
datasets. Dı́az et al. (2022) studied ethical considerations
that affect the annotation of the dataset, such as, for instance
raters’ previous experience, and developed the CrowdWork-
Sheet framework to facilitate critical reflection and trans-
parent documentation of dataset annotation decisions, pro-
cesses, and outcomes. Pushkarna, Zaldivar, and Kjartansson
(2022) proposed data cards to record key aspects of datasets
and their life cycle (i.e., explanations concerning the prove-
nance, representation, usage, and fairness of ML datasets
for all stakeholders), allowing for responsible AI develop-
ment. Finally, (Wilkinson et al. 2016) proposed a set of guid-
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ing principles to support researchers, industry practitioners,
and funding and publishing agencies in scholarly data reuse;
these guiding, measurable principles tackle four fundamen-
tal data principles — findability, accessibility, interoperabil-
ity, and reusability (i.e., FAIR). In the crowdsourcing com-
munity, Ramı́rez et al. (2020, 2021) provide guidelines for
requesters to improve dataset reporting and reproducibility.

While our work is not focusing on documenting the an-
notation process of human-annotated datasets, it comple-
ments existing approaches by proposing a set of reliability
analysis metrics that foster responsible data documentation
and adherence to proper data provenance and documentation
guidelines for subsequent dataset alterations.

3 Reliability and Reproducibility Metrics for
Responsible Data Collection

We introduce our proposed methodology for in-depth anal-
ysis of the reliability and reproducibility of data annotation
studies. The proposed methodology brings together, in a sys-
tematic way, a set of measurements typically performed ad-
hoc. However, the ability to observe their interaction allows
data practitioners to provide a holistic picture of the data
quality produced by these studies. Therefore, our proposed
methodology provides a step-wise approach as a guide for
practitioners to explore factors that influence or impact the
reliability and quality of their collected data. While the reli-
ability analysis focuses on the raters that participate in a data
collection, the reproducibility analysis provides insights re-
garding the stability of the overall dataset. As observed in
Figure 1, the chosen metrics provide input for a scorecard
allowing for thorough and systematic evaluation and com-
parison of different data collection experiments.

Ultimately, the proposed reliability and reproducibility
scorecards and analyses allow for more transparent and re-
sponsible data collection practices. This leads to the identi-
fication of factors that influence quality and reliability, the
thorough measurement of dataset stability over time or in
different conditions, and allows for datasets comparison.

3.1 Measuring Reliability of Annotations
We address the reliability of the crowdsourced annotations
by looking at raters agreement, raters variability, and power
analysis (i.e., determine the sufficient number of raters for
each task). These analyses equip us with fundamental obser-
vations and findings for characterizing annotations’ quality
and reliability. It is important to note that depending on the
nature and characteristics of the task (i.e., difficulty, subjec-
tivity, clarity), the assessment of the crowdsourced annota-
tions’ reliability is not always trivial and needs to be consid-
ered when generalizing the results across different tasks.

Rater agreement analysis: indicates the level of consis-
tency among raters’ annotations in an experiment. We com-
pute the inter-rater reliability score (IRR) using Krippen-
dorff’s α (Krippendorff 2011) because is suitable for most
annotation experiments, given that it can deal with multiple
raters, various rating types (i.e., categorical, ordinal, inter-
val), and missing data (i.e., not all units are annotated by
all raters). Typically, α scores above 0.8 are considered to

show strong or high agreement among raters, while values
close to 0.6 are still considered acceptable (Landis and Koch
1977; Carletta 1996; Krippendorff 1980). Note that the IRR
scores can be influenced by various characteristics of the
task, which need to be taken into consideration in the over-
all analysis. For example, a low IRR reliability score (e.g.,
below or very close to 0.33) could indicate both high task
subjectivity and unsuitable annotation guidelines or raters’
qualifications, among others. Interpreting whether the agree-
ment value is low, medium, or high, however, is often task-
dependent and should be discussed on a case basis.

Rater variability analysis: gives insights regarding the
variability in raters’ answers distributions. We use two met-
rics to measure raters’ precision for each individual anno-
tated item in our datasets - we inspect the standard devi-
ations in raters’ annotations (Welty, Paritosh, and Aroyo
2019) when having binary or continuous value annotations
and the index of qualitative evaluation (IQV) (Wilcox 1967)
when having nominal or categorical values. IQV is a mea-
sure for assessing the variability of nominal variables with
values between 0 (all raters’ answers are in one category)
and 1 (raters’ answers are evenly distributed in each cate-
gory). In our analysis, we consider IQV ≤ .33 as low vari-
ability, .33 < IQV > .66 as medium, and IQV ≥ .66 as high.

Power analysis: indicates whether the number of raters
used in each annotation task is sufficient. To identify the op-
timal number of raters (i.e., for which the variability in terms
of IRR is not significant), we bootstrap the number of raters
[3,4,5,..,n] per input item, where n is the maximum num-
ber of raters (Snow et al. 2008). For each number of raters,
we perform 100 runs, where raters are randomly selected
for each input item, and each time we compute the IRR.
Then, we apply a chi-squared test for one standard deviation
and test whether the standard deviation of the IRR scores
for each number of raters is lower or equal to a threshold.
In our experiments, we considered the threshold of .01 and
for each number of raters, we test the following hypotheses:
H0 : σ ≤ .01 and Ha : σ > .01, where σ refers to the
standard deviation of the IRR scores. Given H0, we conduct
a right-tailed test, and we search for the lowest number of
raters for which we fail to reject H0, i.e., p < .05.

3.2 Measuring Reproducibility of Annotations
To investigate how rater populations influence the reliabil-
ity of the annotation results, we propose repeating the an-
notations at different time intervals and in different set-
tings, thus identifying the factors influencing their reliability.
However, just by using the aforementioned reliability mea-
sures, we can not perform a proper comparison of the col-
lected annotations. For instance, high IRR values in several
repetitions indicate highly homogeneous raters’ populations
within each repetition, but it does not necessarily mean that
the experiments are highly reproducible. For this, we per-
form two additional measurements: 1) stability analysis and
2) replicability analysis to understand how much variability
the raters bring and how much we can generalize the results.
For example, a high correlation between two task repetitions
indicates that our results are stable, and the populations that
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participated in the two repetitions are drawn from the same
distribution.

Stability analysis: is the degree of association of the ag-
gregated raters’ scores across two annotation task repeti-
tions. We measure the stability of the data collection with
the correlation of the aggregated raters’ annotations between
pairwise repetitions of each task. The aggregated raters’ an-
notation can be a mean value, majority vote, or any aggrega-
tion technique suitable for the task at hand. To compute the
correlation, we use the Spearman’s rank correlation (Xiao
et al. 2016) for tasks with numerical values and Chi-square
test of independence for tasks with categorical values.

Replicability similarity analysis: indicates the degree of
agreement between two rater pools, making two data annota-
tion tasks comparable. It consists of raters’ agreement across
repetitions of a particular task. To measure this, we use a
metric called cross-replication reliability (xRR) (Wong, Par-
itosh, and Aroyo 2021). The xRR score between two repe-
titions is goes from 0 to the highest IRR score of the two
repetitions. In a perfect replication, the xRR score is equal
to the IRR score of each individual repetition (implying that
the two repetitions also have equal IRR scores). This fur-
ther means that similar IRR and xRR scores indicate both
internal and external validity while much lower xRR values
compared to IRR scores indicate low external validity.

4 Published Annotation Tasks and Datasets
We outline the experimental design to evaluate the reliability
and reproducibility of nine published data annotation studies
covering a wide range of content modalities and annotation
tasks (Table 1). We first outline the data annotation studies
(Section 4.1), and then describe the resulting datasets (Sec-
tion 4.2). Thus, we use these nine data annotation studies as
a two-fold objective: 1) to illustrate how practitioners should
apply the methodology introduced in Section 4 to gain a bet-
ter understanding of their data and 2) to validate the useful-
ness of the methodology to help practitioners explore factors
that influence or impact data reliability.

4.1 Annotation Tasks
We first describe how the datasets (see Section 4.2) used in
our experiments have been collected, i.e., the task, the num-
ber of repetitions, and their settings (summarized in Table 1).
All tasks and datasets have already been published.

Video Concepts Relevance (VCR; Inel and Aroyo
2022). The raters were asked to watch a video of 1-2 minutes
and then select all relevant concepts for the content of the
video from a list of machine-extracted concepts (an average
of 11 concepts). Five different annotation experiments were
run, each focusing on the identifications of different con-
cept types, e.g event (VCR E), people (VCR P), location
(VCR L), and organization (VCR O), and concepts of any
type (VCR ALL). The task was run on Amazon Mechani-
cal Turk (AMT) with ten videos representing short English
news broadcasts from YouTube annotated by 15 raters. Each
task was repeated three times, at least three months apart,
and each repetition used the same raters’ qualifications, and
raters were allowed to participate across repetitions.

Video Human Facial Expressions (IRep; Wong, Pari-
tosh, and Aroyo 2021). The raters were given a video record-
ing containing human facial expressions and were asked to
select all facial expression labels (i.e., emotions) that they
perceived as being relevant from a predefined list of facial
expression labels (Wong, Paritosh, and Aroyo 2021). The
task was run on AMT. A total of 30 emotion labels (from
the set defined by (Cowen and Keltner 2017)) were shown,
together with the option “unsure” (raters were instructed to
choose this option when it was not possible to determine the
facial expressions expressed in the video recording). Each
video recording was annotated by two raters. The task was
repeated three times, each time with raters from a different
pool, namely raters from Mexico City, Kuala Lumpur, Bu-
dapest, and internationals.

Product Reviews (PR; Qarout et al. 2019). The raters
were given a product review and were asked to classify
the issue described in the review into one of three possible
classes (i.e., “size aspects”, “fit aspects”, “no issue with size
or fit”). The task was run on AMT, and each rater was re-
quired to annotate all 20 product reviews, which appeared in
the same order for each rater, and each product review was
annotated by at least 68 raters. The task was repeated five
times at intervals of one week. The raters were not allowed
to participate in more than one repetition.

Crisis Tweets (CT; Qarout et al. 2019). The raters were
given a crisis-related Twitter message and were asked to cat-
egorize it into one of nine possible options (i.e., “injured
or dead people”, “other useful information”, “infrastructure
and utilities damage”, “not related or irrelevant”, “sympathy
and emotional support”, “donation needs or offers or volun-
teering services”, “missing, trapper or found people”, “dis-
placed people and evacuations”, “caution and advice”). The
task was run on AMT, and each rater was required to anno-
tate all 20 tweets which appeared in the same order for all
raters, and each tweet was annotated by at least 68 raters.
The task was repeated five times at intervals of one week.
Each rater was allowed to participate in just one repetition.

Words Similarity (WS353; Finkelstein et al. 2001;
Welty, Paritosh, and Aroyo 2019). The raters were given a
pair of words and were asked to rate the similarity of the
two words on a scale from 0 to 10 (0 indicating the words
are totally unrelated and 10 indicating the words are very
closely related) (Finkelstein et al. 2001; Welty, Paritosh, and
Aroyo 2019) (fractional scores such as .25, .5, and .75 are
also possible). The task was first run by Finkelstein et al.
(2001), and each pair of words was annotated either by 13
or 16 raters, and each rater annotated all pairs. The second
time the task was run by (Welty, Paritosh, and Aroyo 2019)
in 2019 (thus around 20 years apart), on AMT. In this repeti-
tion, each pair of words was annotated by 13 raters, and each
rater was allowed to annotate as many pairs as they wanted.

4.2 Datasets
The tasks described in Section 4.1 resulted in nine annotated
datasets covering different data modalities (text and videos
of various lengths and duration) and sources (Twitter, prod-
uct reviews, YouTube), as described in Table 2 and below.

Video Concept Relevance (VCR E, VCR P, VCR L,
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Task
Type

Dataset
Name HITs Annotation Template Repetitions

Guidelines Value # Distance Pool Platform Repeat Raters

Video Concepts
Relevance

VCR ALL 88

Select all
from list

Relevant concepts

3 >3 months same same yes
VCR E 19 Relevant events
VCR P 23 Relevant people
VCR L 22 Relevant locations
VCR O 9 Relevant organiz.

Video Human
Facial Emotions IRep 1090 Select all

from list Facial expressions 4 - same same no

Product Reviews PR 20 Select one
from list Product issue 5 1 week same same no

Crisis Tweets CT 20 Select one
from list Crisis category 5 1 week same same no

Words Similarity WS353 353 Rate sim. of
two words

From 0 to 10,
increment of 0.25 3 20 years diff diff no

Table 1: Overview of annotation tasks and their settings in terms of input data and annotation template.

Dataset Input
Modality Content Size

VCR E video video - event pairs 208
VCR P video video - people pairs 234
VCR L video video - location pairs 223
VCR O video video - organization pairs 59
VCR ALL video video - concept pairs 969
IRep video human facial recordings 1065
PR text product reviews 20
CT text Twitter crisis messages 20
WS353 text WordNet word pairs 353

Table 2: Overview of datasets used in our experiments.

VCR O, VCR ALL). Dataset of 208, 234, 223, 59, and
respectively 969 video - concept pairs which have been
annotated in terms of relevance in the data annotation
tasks VCR E, VCR P, VCR L, VCR O, and, respectively
VCR ALL. The concepts were machine-extracted (video
subtitles and video stream) from ten short English news
broadcasts (i.e., videos) published on YouTube, from a pub-
licly available dataset (Inel, Tintarev, and Aroyo 2020; Jong
et al. 2018; Inel and Aroyo 2022).

Video Human Facial Expressions (IRep). Dataset of
1090 video recordings of human facial recordings, part
of the International Replication (IRep) dataset5, published
by Wong, Paritosh, and Aroyo (2021). Each video record-
ing is annotated with emotions from 30 available emotions.
The video recordings were generally very short, 5 seconds
on average (a more extensive description of the recordings
is found in (Cowen and Keltner 2017)).

Product Reviews (PR). Dataset of 20 English product
reviews for fashion items (accompanied by a photo repre-
sentative of the respective product), randomly selected from
the dataset published by Chernushenko et al. (2018). Each
product review is annotated with one of three possible issue

5https://github.com/google-research-datasets/replication-dataset

classes, as described in Section 4.1.
Crisis Tweets (CT). Dataset of 20 English crisis-related

Twitter messages (e.g., earthquake, flood), randomly se-
lected from the dataset published by Imran, Mitra, and
Castillo (2016). Each tweet is annotated with one of nine
possible crisis-related options, as described in Section 4.1.

WordSim (WS353)6. Dataset of 353 English word
pairs (Finkelstein et al. 2001), used as benchmark for se-
mantic similarity (Witten and Milne 2008) and word em-
beddings (Levy and Goldberg 2014; Bojanowski et al. 2017;
Pennington, Socher, and Manning 2014). The word pairs
were selected from WordNet, and include the 30 noun pairs
from (Miller and Charles 1991). Each pair is annotated in
terms of how similar the two words are on a 1 to 10 scale.

5 Results
In this section, we report on the results of the reliability anal-
ysis of the data collection studies described in Section 4.1,
and in Table 1, and their repetitions. We apply our iterative
metrics-based evaluation methodology to the nine datasets
from these studies. In the analysis of the results, we denote
each repetition as Rx, where x is the repetition index.

5.1 VCR: Annotation Tasks and Datasets
We first report on the reliability analysis of the VCR datasets
(i.e., VCR ALL, VCR E, VCR P, VCR L, VCR O), as de-
picted in the first five rows in Table 3, columns R1, R2,
and R3. We observe that the datasets of all VCR annota-
tion tasks and repetitions have mostly fair agreement and
less often moderate agreement (R1 & R3 for VCR ALL, R1

for VCR E, and R1 & R2 for VCR P). The tasks VCR O
and VCR L have, overall, the lowest inter-rater reliability.
Similarly, the precision of the annotations in all tasks and
repetitions is not substantial. In Table B1 in the Appendix,
we show an overview of the variability of each repetition of

6https://aclweb.org/aclwiki/WordSimilarity-353 Test Collection
(State of the art)
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the VCR annotation tasks. For each video-concept pair, we
computed the standard deviation of their score. The majority
of the experiments have a mean standard deviation (MSTD)
of around 0.3, with the task VCR O having a higher value of
around 0.36. The standard deviation of deviations (STDD)
is similar across tasks and repetitions, with the lowest value
observed for the VCR O task. These high values observed
for MSTD and STDD show that this task for annotating rel-
evant concepts in videos is subjective and raters consistently
disagree. Concepts of type organization seem to generate the
most disagreement among raters.

In our power analysis, we observe that all repetitions of
each task tend to display similar variability in terms of IRR
score. For each repetition of every task, according to the
right-tailed Chi-squared test, we got very similar results in
terms of the optimal number of raters needed to annotate
a video-concept pair. According to the Chi-square test, the
following number of raters is optimal (with minimal vari-
ation across repetitions): VCR ALL - 6 raters, VCR E - 12
raters, VCR P - 11 raters, VCR L - 11 raters, VCR O - 14
raters. These, in addition to the high variability of IRR scores
shown in Figure C1 in the Appendix, suggest that annotating
the relevance of organizations in videos is a more difficult
task that might require an even larger number of raters.

Although the IRR scores of the annotations gathered in
all repetitions are rather low, the Spearman’s rank correla-
tion between the relevance score of the video-concept pairs
(computed as the ratio of raters that picked the concept as
relevant) in each pair of repetitions is high, above 0.85 for
all tasks and repetitions, showing a statistically significant,
strong positive correlation in Table 4. Furthermore, the pair-
wise xRR scores (see Figures E1, E2, E3, E4, E5) are very
similar to the IRR scores of the repetitions. Thus, we observe
that while the IRR scores are rather low, raters are similarly
consistent in each repetition and across repetitions, showing
that disagreement seems to be intrinsic to the task.

R1 R2 R3 R4 R5

VCR ALL 0.43 0.40 0.44 - -
VCR E 0.44 0.37 0.41 - -
VCR P 0.41 0.40 0.39 - -
VCR L 0.30 0.38 0.34 - -
VCR O 0.25 0.30 0.30 - -
IRep 0.25 0.23 0.50 0.13 -
PR 0.41 0.33 0.32 0.20 0.36
CT 0.59 0.70 0.68 0.72 0.65
WS353 0.59 0.57 0.50 - -

Table 3: Krippendorff’s α agreement for all datasets.

5.2 IRep: Annotation Task and Dataset
Wong, Paritosh, and Aroyo (2021) already provide an in-
depth analysis of the IRR and xRR scores per emotion in
three of the repetitions of the tasks. More precisely, they an-
alyze the agreement among raters from three different re-
gions, i.e., Mexico City (R1), Kuala Lumpur (R2), and Bu-
dapest (R3). Their main conclusion is that raters seem to
have more similar or divergent agreement values depending

on their country of origin. In terms of individual emotions,
they also observe that the most or least agreed-upon emo-
tions are different for each country. Similarly, only a few
emotions seem to have both internal and external validity, as
the xRR scores between pairwise repetitions indicate.

In addition, in this paper, we also analyze R4, a repetition
of the task conducted with international raters, which could
represent any possible region. We recall that in the IRep an-
notation task, the raters were able to select multiple expres-
sions for each input video, which means that we deal with a
multi-label annotation task. To compute rater agreement on
this task, we used Cohen’s κ implementation, which uses the
MASI distance7 (Passonneau 2006). In short, MASI is a dis-
tance metric used to compare two sets, in our case, two sets
of annotated emotions. In Table 3, we observe that the repeti-
tion in which international raters are used, R4, has the lowest
agreement across all emotions. When inspecting agreement
on individual emotions (see Table A3 in the Appendix), we
observe that for almost all emotions, the IRR scores in R4,
the international repetition, have the lowest values.

Our stability analysis (see Table D1 in the Appendix)
shows that emotion scores are poorly correlated across rep-
etitions. We observe many weak correlations and only a few
moderate correlations, statistically significant. Furthermore,
the correlations with R4 seem consistently lower. While the
analysis performed by Wong, Paritosh, and Aroyo (2021)
showed that for certain emotions such as “love” or “sadness”
raters can have both high internal agreement and cross-
replication agreement when comparing R4 with the other
three repetitions we can not draw such conclusions. Overall,
both the internal agreement (see Table A3 in the Appendix)
and the cross-replication agreement (see Figure E8 in the
Appendix) indicate less consistency. More precisely, we can
infer that disagreement seems to be intrinsic to the diversity
of the raters and the way they interpret emotions.

5.3 PR: Annotation Task and Dataset
The inter-rater reliability scores computed on the PR
datasets show, overall, fair agreement among raters. To bet-
ter understand these agreement values, we also computed the
IRR scores for each possible option that the raters could have
chosen (see Table A1 in the Appendix), and we observed that
the option “Fit & Aspect” is consistently generating lower
agreement values, i.e., in each repetition, compared to the
other two options. Furthermore, we also observe a consid-
erable difference of 0.21 in IRR scores between repetitions
R1 and R4. As reported by Qarout et al. (2019), raters par-
ticipating in R4 had indeed lower accuracy compared to all
other repetitions when compared against a ground truth, but
the difference does not seem to be significant.

For the variability analysis, we computed for each unit in
the dataset and, for each repetition, the index of qualitative
variation (IQV). In Figure 2a, we observe that in all repeti-
tions, the majority of the units annotated have high variabil-
ity in terms of categories provided by raters, i.e., it does not
seem to be a predominant category that is chosen by the ma-
jority of the raters. This, in addition to the low IRR scores for

7NLTK: https://www.nltk.org/ modules/nltk/metrics/distance.html
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VCR ALL VCR E VCR P VCR L VCR O

R1 & R2 ρ=0.90, p=0.0 ρ=0.90, p=5.05e-76 ρ=0.91, p=4.72e-89 ρ=0.91, p=9.24e-86 ρ=0.87, p=3.86e-19
R1 & R3 ρ=0.90, p=0.0 ρ=0.89, p=1.97e-72 ρ=0.90, p=4.25e-85 ρ=0.89, p=4.06e-77 ρ=0.86, p=1.05e-18
R2 & R3 ρ=0.90, p=0.0 ρ=0.90, p=2.60e-75 ρ=0.91, p=5.25e-85 ρ=0.91, p=4.50e-86 ρ=0.85, p=8.77e-18

Table 4: Spearman’s ρ rank correlation of the relevance of each video-concept pair for each pair of VCR tasks repetitions.

the option “Fit & Aspect”, could potentially indicate that the
majority of the units annotated in this task are ambiguous or
that the options they have to choose from are unclear or have
overlapping meanings. The poor agreement and annotations
stability across all units in this dataset is also confirmed by
our power analysis, which indicates that a very high number
of annotations is needed in each repetition to achieve stable
results (see Figure C2 in the Appendix). In each repetition,
the optimal number of raters is around 90, a number that is
highly unlikely to be employed in such studies.

Further, we analyzed the stability of the experiments to
understand to what extent the results of any two repetitions
are similar. For this, we computed for each unit in each rep-
etition the answer given by the majority of the raters (in
case of ties, we selected the majority vote at random) and
computed the Chi-square test of independence between ev-
ery two repetitions. On the one hand, this analysis showed
that the majority vote answers in any two repetitions are cor-
related and that there is no statistically significant difference
among them (see Table D2 in the Appendix). On the other
hand, the replicability analysis through the xRR measure
showed similarly low values, just as the IRR scores. This re-
sult indicates that the agreement among raters is, while low,
also consistent across repetitions.

(a) PR dataset (b) CT dataset.

Figure 2: IQV distribution for each unit and repetition (R1

to R5). The distribution is shown as a boxplot (median - blue
line, mean - green triangle).

5.4 CT: Annotation Task and Dataset
The raters participating in all repetitions of the crisis tweets
(CT) annotation task indicate moderate to substantial agree-
ment, as observed in Table 3. Similarly, as for the PR
datasets, we also computed the IRR scores for each possible
option the raters were able to choose. These results are avail-
able in Table A2 in the Appendix. For this task, we observe
that the majority of options generate moderate to substantial
agreement, except for two possible answers, namely “miss-
ing, trapped, or found people” and “other useful informa-
tion”. However, when inspecting the data, we observe that
these two options are rarely chosen by raters which might

explain their very low agreement values (Brenner and Klieb-
sch 1996; Artstein and Poesio 2008).

For the variability analysis, we replicated the process de-
scribed for the PR datasets. In contrast, however, we observe
in Figure 2b that the index of qualitative evaluation for this
dataset has more often values closer to 0, indicating that the
annotated units have much lower variability in categories
that the raters chose. More precisely, the annotated tweets
seem to be easily annotated with a category that is often
chosen by the large majority of the raters. R1 of the dataset
seems to have the lowest precision, which is consistent with
the lower IRR score as well as with the lower overall accu-
racy presented by Qarout et al. (2019). In terms of power
analysis, similarly to the PR annotation task and dataset, we
observe that the mean IRR scores over 100 runs stabilize for
a large number of raters (i.e., 85-95 raters).

The stability analysis for this experiment shows that the
majority vote answers are very similar across repetitions.
More precisely, according to the Chi-square test of indepen-
dence, we found no statistical difference between the major-
ity vote answers of any two repetitions of the CT task (see
Table D3 in the Appendix). In terms of cross-rater reliability,
the xRR metric shows that the results for this dataset are con-
sistent across repetitions (see Figure E7 in the Appendix).
More precisely, we can infer that the high IRR values of
these experiments generalize across different rater pools.

5.5 WS353: Annotation Task and Dataset
Among all the replicated studies we analyzed, the highest
agreement scores are found for the word similarity datasets,
WS353, namely 0.59, 0.57, and 0.50, as shown in Table 3.
Such IRR values are typically acceptable in the context of
natural language datasets. As reported by Welty, Paritosh,
and Aroyo (2019), a thorough precision analysis indicated
that while IRR scores have similar values across repetitions,
there are certain word pairs for which the similarity score
changed dramatically in the second and third repetition (e.g.,
the pairs “Maradona”-“football” and “Arafat”-“peace” had
higher similarity scores in the first repetition, and very low
similarity scores in the second and third repetitions which
were run almost 20 years from the first repetition). Our
power analysis presented in Figure C4 in the Appendix in-
dicates that around 12 raters could provide a reliable set of
annotations in R1, and even fewer raters in R2 and R3.

In terms of stability analysis, the Spearman’s ρ correla-
tion shows that all three repetitions are correlated with each
other (statistically significant), and in particular R2 and R3,
repetitions that were run on the same platform, with raters
having similar characteristics (R1 & R2: ρ=0.87, p=9.93e-
109; R1 & R2: ρ=0.84, p=4.61e-96; R2 & R3: ρ=0.95,
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Reliability Reproducibility

Agreement Variability Power Stability Replicability Similarity

VCR ALL low high 6 raters high high
VCR E low high 12 raters high high
VCR P low high 11 raters high high
VCR L low high 11 raters high high
VCR O low high 14 raters high high
IRep low - - low low
PR low to medium high 90 raters high high
CT medium to high low 85-95 raters high high
WS353 medium low to high 12 raters medium to high medium to high

Table 5: Scorecard summary of the reliability and reproducibility analysis of the nine experimental datasets.

p=2.88e-182). Similar results are observed in terms of cross-
replication reliability, where the xRR values show higher
agreement among raters that participated in the last two rep-
etitions (i.e., R2 & R3: xRR = 0.53), compared to raters that
participated in the first repetition and the subsequent ones
(i.e., R1 & R2: xRR=0.49; R1 & R2: xRR=0.44).

6 Discussion
We discuss the results of our methodology for providing a
coherent overview of data quality in terms of human factors
influencing the reliability and reproducibility of a crowd-
sourced data collection. Our discussion is driven by the
scorecards produced by our proposed methodology for in-
depth analysis of the reliability and reproducibility of data
annotation studies. The summary of our analysis is presented
in Table 5. Furthermore, we provide lessons learned for re-
sponsible data collection practices, reflect on the limitations
of our approach, and give directions for future work.

Factors influencing the quality of data collection. While
we surveyed extensive literature in the area of crowdsourc-
ing and human computation, we only found a handful of
tasks and datasets that we could identify as repeated exper-
iments. Furthermore, the nine annotation tasks and datasets
we identified did not necessarily focus on identifying the
factors that could influence the quality of data collection
and neither on systematic measurement of their reliability
and reproducibility. More precisely, current approaches typ-
ically use limited quality and reliability metrics, such as IRR
scores or accuracy metrics against a gold standard to gauge
data quality. Instead, our metrics provide a scorecard for
comparing the reliability and reproducibility of each dataset
and surfaces specific factors influencing results’ quality.

In the VCR annotation tasks and datasets, we observed
low IRR scores in all repetitions. However, the tasks and
datasets have high stability, as the xRR analysis revealed
similar cross-rater reliability and highly correlated relevance
scores of the video concepts across repetitions. This indi-
cates that raters are similarly consistent within each repeti-
tion and across repetitions and that the disagreement indi-
cated by the low IRR scores is, in fact, intrinsic to the sub-
jective nature of the task. One repetition of the IRep annota-
tion task employed international raters. Overall, compared
to the other repetitions (i.e., region-specific), our analysis

shows consistently low stability and cross-replication relia-
bility. This indicates that not all rater pools are equally con-
sistent across repetition and, more importantly, that the rater
disagreement is correlated with the diverse background of
the raters influencing the way they interpret emotions. More
precisely, for similar tasks, our analysis indicates that di-
verse raters should not be expected to produce a coherent
view of the annotations and we advise repeating the data col-
lection by creating dedicated pools of raters with similar de-
mographic characteristics and comparing their results. In the
PR annotation task and dataset, we found that while stability
can be achieved, the variability analysis and the power anal-
ysis indicated that even a very high number of raters (around
90) can exhibit high levels of consistent disagreement typi-
cally caused by the subjectivity of the task. In this case, we
would advise optimizing the task design in order to decrease
additional ambiguity in the annotation categories. The IRR
analysis on the individual tweet categories on the CT task
indicated that some categories may not be as clear as others
or may only seldom be applicable. This indicates that care-
ful attention should again be given to the design, instruc-
tions, and possible answer categories in the annotation task.
Furthermore, the high number of raters needed to obtain sta-
ble results indicates that the task might benefit from a more
thorough selection of raters and training sessions. Finally,
the high variability for certain word pairs in the WS353 task
indicates that data collection practices are affected by tem-
poral and familiarity aspects. This has serious implications
for when data collections are reused, as certain annotations
may become obsolete or change in interpretation over time.

Recommendations for responsible data collection In
sum, applying our proposed methodology for responsible
data collection does not pose any requirements on how data
is structured or formatted. What we propose, does, however,
affect the current practice and assumes a significant adap-
tation on the use of reliability and reproducibility metrics.
The proposed methodology is centered around a set of sys-
tematic, iterative (i.e., repeated) pilots which allows to mea-
sure different characteristics of the data and task, as well as
to capture raters characteristics and measure their potential
biases. These aspects are captured with the proposed set of
reliability and reproducibility metrics. Finally, we argue for
systematic reporting on data collection provenance.
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Systematic piloting: The proposed methodology for
guiding data collection with a set of metrics for in-depth,
iterative analysis of data reliability and replicability is pri-
marily suitable as an investigative pilot of data annotation
studies. Such early experimentation and thorough analysis
of annotations would provide specific factors that could in-
fluence the data collection and could be ultimately mitigated
for large-scale data collection.

Capture raters, task, and dataset characteristics: We
argue that a responsible data collection practice should bor-
row guidelines for reporting human-centric studies from the
fields of psychology, medicine, and even human-computer
interaction, where human stances, opinions, and other mean-
ingful characteristics are thoroughly recorded. While such a
process would definitely increase the cost and time to gather
the necessary data, it would also allow for more informed
decisions on the proper process of collecting raters’ annota-
tions and possible future reuse.

Cognitive biases assessment: Recent research has
demonstrated that raters’ cognitive biases can strongly af-
fect their annotations and reduce data quality (Hube, Fetahu,
and Gadiraju 2019; Eickhoff 2018; Draws et al. 2022). To
combat the influence of cognitive biases, Draws et al. (2021)
introduced a checklist that can be used to identify and sub-
sequently measure, mitigate, and document cognitive biases
that may present an issue in the data collection tasks. We
recommend using such a checklist between each iteration to
surface possible cognitive biases that may affect annotations
and allow for appropriate mitigation.

Provenance for data collection: To facilitate responsible
reuse of datasets, data documentation, and maintenance ap-
proaches should thoroughly record its provenance, including
quality scorecards. This would alleviate issues regarding the
handling of data, reuse or modifications of annotation tasks,
and platform selection. With proper provenance documenta-
tion, it is easier to identify factors that could influence data
collections’ quality. Such requirement becomes clear when
data collection is influenced by temporal and regional as-
pects (see WS353 and IRep).

6.1 Limitations and Future Work
Diversity and scale of datasets. We experimented with nine
datasets and annotation tasks with various goals, modalities,
sizes, and overall setups. We repeated each task three to five
times. While the overall number of units in some datasets
was small (e.g., ∼ 20 input units), the overall dataset size
was much bigger as the number of raters providing anno-
tations per item was significantly larger than in usual data
collections. Our methodology is agnostic to the dataset size,
and the significance of the results is not influenced by dataset
size. In future work, we could extend the analysis to other
data annotation tasks and input data modalities.

Scale and optimal number of repetitions. The repeata-
bility experiments may not be scalable in terms of time and
cost. However, our methodology provides optimization cri-
teria that can mitigate this limitation in terms of input for the
annotation tasks and the use of the bootstrap technique to
optimize the number of raters needed for reliable results. As
we have shown, iterative instances of collect, measure, re-

peat are suitable for adhering to responsible data collection
practices. However, it is not trivial to decide on the number
of repetitions necessary to determine that the collected data
is reliable. This can be even more problematic for more sub-
jective annotation tasks, which can be affected by raters’ in-
terpretations, opinions, perspectives, or familiarity with the
items. Future work can address this limitation by investigat-
ing additional metrics for determining the suitable number
of repetitions. Furthermore, future work could also focus on
proposing a single suitable reproducibility score for repeated
experiments similar to the one proposed by Belz, Popovic,
and Mille (2022) for system reproducibility.

Raters’ characteristics. The analyzed tasks included
only limited information about the raters, besides some very
general characteristics such as the platform on which they
were recruited, country, or HIT approval rates. Furthermore,
only one dataset out of the nine analyzed had a substantially
different population of raters (i.e., from different countries).
This aspect limits our analysis in terms of additional human
factors that could influence rater agreement and the stabil-
ity of the collected annotations. Future work could focus on
replicating our analysis on more controlled data annotation
experiments to study, for instance, the impact of age, gen-
der, and other demographic information as additional relia-
bility factors for responsible data collection. In future work,
this iterative method of addressing responsible data collec-
tion should also investigate ways of properly maintaining
and describing data provenance.

7 Conclusions
The continuous deployment of AI systems powered by
crowdsourced data in real-world tasks has increased the at-
tention of the research community to further scrutinize the
quality and reliability of such datasets in diverse settings. In
this paper, we propose a Responsible AI (RAI) methodology
designed to guide the data collection with a set of metrics for
an in-depth, iterative analysis of the human factors influenc-
ing the quality and reliability of the data they generate. The
methodology consists of a set of metrics for a systematic
analysis of data that brings transparency in how to interpret
human disagreement and how to validate rater quality as-
suming diverse settings. We propose an iterative process to
measure the reliability and stability of crowdsourced data
from different perspectives. The repetition of experiments
allows us to perform a comparative analysis across repeti-
tions and measure changes both in the annotations and in
the variance and consistency of raters. Due to the variety of
quality metrics we employ, this research can have a strong
impact on the way we measure data quality based on sub-
jective human ratings. This further leads to increased diver-
sity of AI systems and helps us deal with fairness and ac-
countability aspects in data collection. By making the anal-
ysis process transparent through the set of metrics, we also
deal with fairness and accountability aspects in data collec-
tion. We validated our methodology on nine existing anno-
tation tasks and datasets. We found that our systematic set of
metrics allows us to draw insights into the human and task-
dependent factors that influence the quality of AI datasets.
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