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Abstract

Concept-based models perform prediction using a set of con-
cepts that are interpretable to stakeholders. However, such
models often involve a fixed, large number of concepts, which
may place a substantial cognitive load on stakeholders. We
propose Selective COncept Models (SCOMs) which make
predictions using only a subset of concepts and can be cus-
tomised by stakeholders at test-time according to their pref-
erences. We show that SCOMs only require a fraction of
the total concepts to achieve optimal accuracy on multiple
real-world datasets. Further, we collect and release a new
dataset, CUB-Sel, consisting of human concept set selec-
tions for 900 bird images from the popular CUB dataset. Us-
ing CUB-Sel, we show that humans have unique individual
preferences for the choice of concepts they prefer to reason
about, and struggle to identify the most theoretically informa-
tive concepts. The customisation and concept selection pro-
vided by SCOM improves the efficiency of interpretation and
intervention for stakeholders.

Introduction
Humans can reason about a limited number of concepts at
once when making decisions (Miller 1956; Luck and Vogel
1997; Cowan 2001). While concept-based methods such as
Concept Bottleneck Models (CBMs) (Koh et al. 2020) have
been proposed to support human interpretability and inter-
venability in machine learning (ML) systems, such mod-
els typically involve dozens of concepts, well beyond the
number of concepts stakeholders can process at any given
time (Tenenbaum 1998; Ramaswamy et al. 2022).

To reduce the cognitive load of reasoning about many
concepts, we propose Selective COncept Models (SCOMs).
SCOMs provide a streamlined extension of CBMs by select-
ing the concepts that are most pertinent to any given task
from a larger set of available concepts. This enables a stake-
holder to reason with a reduced set of concepts without
compromising task accuracy. Unlike CBMs which require a
fixed concept set, SCOMs make predictions using an arbi-
trary concept subset which can be customised at inference-
time without retraining. For example, one might wish to
prohibit consideration of sensitive attributes such as bio-
logical sex and subjective attractiveness during prediction.
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For SCOMs, withdrawing certain concepts is trivial, whereas
conventional CBMs make such exclusion difficult.
SCOMs enable flexible customisation according to a

stakeholder’s preferences for the number of concepts to use
and their personal trade-off between cognitive load and pre-
dictive accuracy (Ramaswamy et al. 2022). On the task of
bird species recognition, SCOMs require only 6 out of 28
concepts to achieve optimal prediction accuracy. Smaller
concept sets decrease the human cost of interventions, and
increase the impact of each intervention. Thus this work is
complementary to research aimed at designing better inter-
vention policies over a given set of concepts, for example
CooP (Chauhan et al. 2023). Since SCOMs place no restric-
tions on the exact output network architecture, they provide
a simple extension to existing models used by practitioners.

Contributions
• We show how feature selection can be applied to the

problem of concept selection, using mutual information
(MI) maximisation to provide “useful” selections, even
in the presence of duplicated concepts.

• We propose SCOMs; models which make predictions us-
ing an arbitrary subset of concepts, allowing customisa-
tion by stakeholders without retraining.

• We show that SCOMs provide comparable accuracy on
real-world datasets CUB and CelebA, while using only a
fraction of the available concepts. We confirm that SCOM
selection algorithms outperform existing techniques for
feature selection.

• We design a human subject experiment to validate the
use of SCOMs, and gather 900 sets of concept selections,
which we release as CUB-Sel1. We identify that people
have varied preferences for the number of concepts they
select, and favour concepts which are less theoretically
informative for the task. This motivates the use of SCOMs
to adaptively select lightweight concept sets.

Definitions
We follow (Koh et al. 2020) in considering concepts as high-
level, human-interpretable – and human-specifiable – val-
ues. Further, we use “intervenability” to refer to the accuracy

1Dataset available here: https://github.com/barkermrl/cub-sel
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Figure 1: In CBMs, human-interpretable concepts are predicted from the input X and used to infer the output Y . SCOMs extend
CBMs by selecting the most relevant concepts which maximise the mutual information between the selected concepts (C) and
the output (Y ). The output model learns to make predictions using an augmented concept vector, which contains the mask used
to select concepts. This allows the number of concepts (k) and the specific concepts selected to be customised at inference time
by the stakeholder without retraining the model.

improvement as a result of each human test-time interven-
tion on a given concept. We define Z as the complete set of
available concepts, C ⊂ Z as the chosen set of concepts of
size k, and Y as the target predictions. SCOMs aim to iden-
tify the set C for a given k such that the performance for a
mapping C → Y is comparable to the mapping Z → Y . We
largely focus on the setting where Z is obtained from a Se-
quential CBM (Koh et al. 2020), which predicts the concepts
based on inputs X (such as image pixels). However, SCOMs
be applied to the inputs X directly in the case where these
inputs are also human concepts. It is assumed thatZ is given
for the SCOM. We use capitalised letters (e.g. X) to denote
random variables and lowercase letters to denote instances
of a random variable (e.g. x).

Comparison to Prior Work
Concept-Based Models There has been a proliferation of
concept-based models which use concepts as intermediaries
for output predictions. There are several flavours of these
models: those that rely on datasets annotated with concept
attributes (Koh et al. 2020; Marconato, Passerini, and Teso
2022; Espinosa Zarlenga et al. 2022), those that learn con-
cepts (Alvarez Melis and Jaakkola 2018), and those that in-
troduce concept features post-training (Yuksekgonul, Wang,
and Zou 2022). Most models emphasise the motivation of
using human-understandable concepts, yet unlike SCOMs,
typically ignore the overall size of the concept set.

Model Intervenability (Chauhan et al. 2023; Shin et al.
2022) give ways of making interventions in CBMs more ef-
fective than random: their work can be used in conjunction
with SCOM. SCOM reduces the size of the concept set used
for prediction, increasing the impact of each intervention,

while still allowing intervention procedures to select the best
concept to intervene on. While in practice, stakeholders may
prefer to provide soft labels if they are unsure, (Collins et al.
2023) show that existing models perform poorly with uncer-
tain interventions.

Model Interpretability There are a wide range of tech-
niques which attempt to improve the interpretability of
concept-based models (Kim et al. 2018; Zhou et al. 2018;
Ghorbani et al. 2019; Yeh et al. 2020; Crabbé and van der
Schaar 2022; Abid, Yuksekgonul, and Zou 2022; Bai et al.
2022). These techniques often provide metrics highlighting
the importance of relevant concepts to the output prediction.
However, (Kim et al. 2023) show with human feedback ex-
periments that concept-based models using numbers for in-
terpretability can be overwhelming and lose relevance to the
actual image. SCOMs are compatible with these existing in-
terpretability methods, while reducing the number of con-
cepts a human has to consider.

Feature Engineering and Selection Feature engineer-
ing, the process of applying a set of hand-crafted trans-
forms to raw input data, is commonly used to increase
model accuracy and robustness of ML models (Zheng and
Casari 2018), with significant success across domains in-
cluding text modelling (Lewis 1992) and computer vision
(Nixon and Aguado 2019). By considering concepts as
human-interpretable features, concept selection in SCOMs is
an application of feature engineering. Information-theoretic
methods, commonly used to maximise the statistical depen-
dency between features and the output, are well-suited to the
problem of selecting concept sets in SCOMs. (Fleuret 2004)
have empirical success in approximating the best global fea-
ture set using conditional MI.
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Instead of selecting one feature set for the whole dataset,
instance-level techniques can be used to identify custom fea-
ture sets for each datapoint. For example, Learning to Ex-
plain (L2X) (Chen et al. 2018) trains a neural network to
predict a variational approximation to MI, and uses a sam-
pler to select the feature set of a given size which maximises
this quantity. Unlike SCOMs, existing techniques either pro-
vide no control over the feature set size (e.g. INVASE (Yoon,
Jordon, and van der Schaar 2019)), or require the size to be
fixed during training (e.g. L2X). To the best of our knowl-
edge, SCOMs are the first models which allow customisation
for instance-level selection without retraining.

Human Interaction and Crowdsourcing There is signif-
icant prior work which aims to utilise human intelligence to
improve machine learning models, even on complex tasks
such as hyperparameter optimisation (Zhang et al. 2022).
(Chang, Kittur, and Hahn 2016; Zhang et al. 2018) are hy-
brid approaches which use crowdsourcing techniques to help
models cluster complex information. (Chang, Amershi, and
Kamar 2017) emphasise that labelling datasets places signif-
icant burden on human annotators, which may lead to poor
quality labels. SCOMs aim to alleviate this burden by reduc-
ing the number of annotations humans have to provide.

Approach
In this section, we provide a high-level overview for each of
the four key stages in SCOM:
1. Concept model (training). Train a model x → c which

predicts the concepts (c) present in each input (x):
c = g(x) (1)

For some datasets, the concepts may be the input x itself.
2. Output model (training). Train a neural network which

makes predictions using any arbitrarily chosen concept
set C ∈ Z . The original concept vector is augmented to
give c̃ according to the chosen subset, which is then used
for prediction:

ŷ = f(c̃) (2)
3. Concept selection (test). Select the best concept set
C ⊂ Z for each size k, using a greedy algorithm which
maximises MI between the concepts and the outputs:

Cs = argmax
C⊂Z

I(Y ;C) subject to |C| = k (3)

The MI is approximated using the trained network in
Step 2.

4. Inference (test): A value of k is chosen and inference is
performed using the selected concept set of size k:

y∗ = f(c̃s) (4)
Stakeholders may customise the concept set depending
on their individual preferences.
SCOM addresses two main issues: how to select a concept

set for predictions, and how to perform inference without
retraining the model. These two problems are interlinked;
MI estimation in Step 3 necessitates inference with a concept
set to avoid retraining, while test-time prediction requires
concept selection to find an efficient concept set for a given
k. Since concept selection is at the instance level, it occurs
at test time. Further details on each stage are provided next.

Training the Concept Model
The concept model predicts the concepts present in each
input. SCOMs impose no restrictions on the details of this
model, and only require concept predictions for training fur-
ther stages and inference. As a result, the concept model may
take on a variety of forms:
• Sequential Bottleneck. Using human-annotated data-

points (input x, concepts c), a sequential bottleneck (Koh
et al. 2020) trains a model x→ c which predicts the con-
cepts present in each input using a neural network. This
is a direct application of multi-label classification in the
supervised learning setting, which is well-studied in the
literature (Zhang and Zhou 2013).

• Data processing. In cases when it is not possible
to obtain annotated concepts for each datapoint, data-
processing and augmentation techniques may be used to
predict concepts. This is common in the computer vision
domain (Perez and Wang 2017), although it is widely
used across other domains as well (Kotsiantis, Kanel-
lopoulos, and Pintelas 2006).

• Direct Inputs. For certain datasets, such as tabular data,
the inputs may already be human-interpretable and thus
considered as concepts directly. In these cases, the con-
cept model for SCOMwill simply be the identity function,
i.e. ĉ = x.

The further stages below assume the concepts have already
been obtained from each datapoint.

Training the Output Model
The output model predicts the output label using any con-
cept set C ⊂ Z . In comparison to the concept model, there
is a lack of prior work on models which can perform infer-
ence using arbitrary predictions. Yoon, Jordon, and van der
Schaar attempt to address this challenge by “masking out”
any unused inputs by replacing their values with zeros. How-
ever, this approach prevents the network from distinguishing
between “masked zeros” and input zeros.

Concept Augmentation Instead, SCOMs augment the
concept vector with the binary mask vector used to mask
unused concepts, shown in Figure 1. Thus the network has
enough information to identify which zeros are masked, and
which are genuine inputs. The mask is applied to the concept
vector c to give the augmented vector:

c̃ =

[
c⊙m
m

]
(5)

Where ⊙ denotes the elementwise Hadamard product. For
example, consider the case with 2 concepts, and concept 1
is selected. In this case, the concept vector, mask, and aug-
mented concept vector are given below:

c =

[
c1
c2

]
, m =

[
1
0

]
, c̃ =

c101
0

 (6)

For multi-dimensional concepts, each value in the concept is
multiplied by the corresponding mask value. Thus, SCOMs
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Algorithm 1: Training output model

1: for Batch B in [B1, ..., BN ] do
2: m ∼ p(m) ▷ Sample a mask m
3: c← c⊙m ▷ Hadamard Product ⊙
4: c̃← [c,m] ▷ Append mask to input vector
5: ŷ = f(c̃) ▷ Predictive function f
6: θ ← SGD(ŷ, y, θ) ▷ Update θ using SGD
7: end for

can select concepts of any dimension, unlike many existing
methods. Once the model has constructed c̃ from the chosen
subset, the output model makes predictions using c̃ as input:

ŷ = f(c̃) (7)

The function f is complex and can be approximated using a
neural network, the training of which is described below.

Training the Model The output model learns a mapping
from all possible subsets of Z to the output Y , i.e. P(Z)→
Y where P denotes the power set. To achieve this, a new
mask m is sampled for each batch, which then augments
the concept vector. The predictions are used to calculate the
chosen loss (e.g. cross-entropy), and the model parameters θ
are updated using Stochastic Gradient Descent (SGD). The
training procedure is detailed in Algorithm 1 below.

It is illustrative to compare the SCOM output model which
learns P(Z) → Y to a CBM which learns Z → Y . Since
SCOM requires a more complex mapping than CBM it re-
quires greater model complexity in the form of larger/addi-
tional hidden layers. In addition, the concept augmentation
doubles the size of the input layer in comparison to a CBM.

The probability distribution p used to sample each mask
needs to be determined when training the model. To min-
imise the expected loss, the distribution of the mask used
during training should match the true mask distribution.
Consider rewriting p(m) using the dependence on k:

p(m) =

n∑
k=1

p(m, k) (8)

=
n∑

k=1

p(m|k)p(k) (9)

During training, p(m|k) and p(k) are unknown and for
SCOMs we assume both distributions are uniform. The two
step sampling procedure is as follows:

1. Sample k ∼ U(1, k)

2. Randomly set k values of mask m to 1, with equal prob-
ability.

Importantly, this ensures the output model learns to make
predictions using all possible concept set sizes equally. In
cases where the distribution of k is known prior to training,
using this distribution when sampling k may achieve faster
convergence and a lower expected loss. However, through-
out this work k is assumed to be uniformly distributed.

Algorithm 2: Forward selection procedure

1: Z ← {c1, c2, ...} ▷ Complete set of available concepts
2: C ← ∅ ▷ Start with empty set
3: while |C| ≤ k do
4: cnext ← argmaxci∈Z I(Y ;C ∪ ci) ▷ Maximise MI
5: C ← C ∪ cnext
6: end while

Algorithm 3: Backward elimination procedure

1: Z ← {c1, c2, ...} ▷ Complete set of available concepts
2: C ← Z ▷ Start with complete set
3: while |C| ≥ k do
4: cnext ← argmaxci∈C I(Y ;C \ ci) ▷ Maximise MI
5: C ← C \ cnext
6: end while

Concept Selection
We define concept selection as the method of choosing the
concept set in a way that balances the number of concepts
used for a given task and downstream task performance.
(Ghorbani et al. 2019) propose that chosen concepts should
satisfy the three desiderata of meaningfulness, coherency
and importance. In the case of SCOMs, concepts are pro-
vided as dataset annotations which are chosen by humans
to be meaningful and coherent. However, the importance of
a concept determines how necessary it is to make accurate
predictions and is task dependent.

We use MI between the concepts and the labels, I(Y ;C),
as a measure of the collective prediction accuracy of the con-
cept set. Using an MI measure takes into account the cor-
relations between concepts, rather than ranking every con-
cept in isolation. For example, while concepts such as “belly
colour” and “wing colour” might both be important individ-
ually for predicting the bird species, they are likely to be
strongly correlated. Therefore, only one concept may be re-
quired to make accurate predictions. Precisely, the task of
selecting k concepts can be framed as one of maximising
MI subject to a cardinality constraint (Fleuret 2004):

argmax
C⊂Z

I(Y ;C) subject to |C| = k (10)

The naive approach of trying every subset of Z with size
k suffers from combinatorial explosion and is unfeasible.
However, we can achieve a good solution in polynomial time
using greedy algorithms (Nemhauser, Wolsey, and Fisher
1978). There are two common greedy algorithms: forward
selection (FS) and backward elimination (BE). FS starts with
an empty set C = ∅, and then sequentially adds individual
concepts c ∈ Z , maximizing I(Y ;C ∪ ci) at every stage. In
comparison, BE starts with the complete set C = Z , and re-
moves individual concepts c ∈ C, maximizing I(Y ;C\ci) at
every stage. The two procedures are detailed in Algorithms
2 and 3.

Due to the incremental nature of greedy selection, every
concept set of size ≤ k (for FS) and ≥ k (for BE) is also
obtained when finding the concept size of size k. This al-
lows concept sets of all sizes to be calculated by running
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the selection procedure once for k = |Z| (FS) and k = 0
(BE). Since SCOMs place no constraint on the dimensional-
ity of concepts, calculating I(Y ;C) requires an approxima-
tion when concepts are continuous. Existing methods for es-
timating MI between high-dimensional continuous variables
such as the kernel density estimator (Kolchinsky and Tracey
2017) or k-nearest neighbours method (Kraskov, Stögbauer,
and Grassberger 2004) are sensitive to exact parameters and
are not well suited to distributions of concept logits, which
tend to be bimodal for binary concepts. To avoid this issue,
rather than maximising MI directly, we minimise the output
entropy H(Ŷ |C) instead, giving the same optimal concept
set. Unlike MI, output entropy is simple to calculate from
the model predictions:

H(Ŷ |C) = −
∑
y∈Y

p(ŷ|c) log p(ŷ|c) (11)

Using entropy as a proxy for MI, the maximisation at each
stage in FS (Algorithm 2) can be solved using:

cnext = argmax
ci∈Z

I(Y ;C∪ci) = argmin
ci∈Z

H(Y |C∪ci) (12)

Similarly, for BE (Algorithm 3) the optimisation at each
stage is given by:

cnext = argmax
ci∈C

I(Y ;C \ci) = argmin
ci∈C

H(Y |C \ci) (13)

Inference
A core property of SCOMs is that predictions can be made
from arbitrarily chosen concept sets – without retraining the
model. Once the output model has been trained (Step 2) and
the concept set has been selected (Step 3), inference is sim-
ple and follows a three stage procedure:

1. The concepts c are predicted from the test datapoint x∗:

c = g(x∗) (14)

2. A subset of concepts, cs, is chosen according to the se-
lection algorithm, and optionally customised by a stake-
holder.

3. The concept subset is augmented to give c̃s and used to
infer the output:

y∗ = f(c̃s) (15)

Computational Experiments
To validate the SCOM selection algorithms compared to ex-
isting methods, we assess the performance of SCOMs on
datasets for concept-based models popular in the literature:
the CUB dataset for bird species recognition (Wah et al.
2011) and the CelebFaces Attributes Dataset (CelebA) (Liu
et al. 2015) for facial identity recognition. For both datasets,
a multi-layer perceptron with one hidden layer containing
200 neurons was trained for the output model. Using all the
concepts, a prediction accuracy of 75.3% and 63.8% was
achieved for CUB and CelebA respectively. Further details
for each dataset are provided below.

CUB We follow (Koh et al. 2020) in using only 112
of the 312 original CUB binary attributes (e.g. “has blue
wings”, “has a pointed beak”). These attributes are further
categorised into the 28 multi-valued concepts (e.g. “wing
colour”) used in the original crowdsourced annotation by
(Wah et al. 2011). For the purpose of intervention and in-
terpretation, one multi-valued concept more accurately rep-
resents a human “concept” than the binary attributes. Match-
ing (Koh et al. 2020), the concept labels are fixed at the
class-level, so that each bird from the same species is la-
belled with the same concept annotations. This property,
along with large number of concept groups, makes CUB par-
ticularly well-suited for SCOMs. Further, the same predicted
concept logits for the Sequential bottleneck were used when
training and evaluating SCOM performance, which achieve a
concept accuracy of 96.6%.

Since the CUB concepts are multi-valued, methods which
select individual values (e.g. L2X) aren’t suitable. The pre-
diction accuracy of randomly selected concepts is used as a
baseline. Errors are reported over 3 random seeds which de-
termine the concept logit predictions, with the train/test split
given by (Wah et al. 2011).

CelebA CelebA (Liu et al. 2015) is a dataset with 40 con-
cept annotations for 200K celebrity faces from 10K people,
which has been used to evaluate concept models (Ghorbani
et al. 2019; Espinosa Zarlenga et al. 2022). For computa-
tional efficiency, we subsample CelebA by using random
subsets containing 20 identities for the prediction task. Un-
like the processed version of CUB, attributes for CelebA are
determined at the image level, meaning different images of
the same person may have different concept annotations. Al-
though the annotations are noisy, attributes such as “wear-
ing a hat” cannot be sensibly fixed at the class level. Thus
CelebA is used to investigate the suitability of SCOMs for
instance-level concept annotations. A ResNet-50 (He et al.
2016) was trained on all 10k identities to predict the at-
tributes for each face, with an accuracy of 0.916.

Unlike CUB, the concepts are single-valued attributes,
and thus L2X was used as a benchmark. Since L2X cannot
make predictions directly, concepts are selected by L2X and
then used as inputs to the trained SCOM output model. Er-
rors are reported over 5 random seeds which determine the
samples taken from the dataset.

Results
Prediction Accuracy We first investigate how task accu-
racy compares between SCOMs, which permit flexible test-
time intervention without retraining against the L2X base-
line, which retrains a new model for each value of k. The
results are shown in Figure 2.

For CUB and CelebA, the BE methods perform better
than the greedier FS methods. On CUB, BE SCOMs perform
particularly well, achieving the optimal accuracy of 76.1%
when k = 6. In addition, BE SCOM outperforms the L2X
baseline on CelebA for low numbers of concepts, with ap-
proximately equal performance for large concept sets.

Intervention Accuracy One of the key benefits of CBMs
is that they allow interventions from a human expert at the
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Figure 2: Prediction accuracy of SCOMs on the CUB and CelebA datasets as a function of k, compared to L2X and random
baselines. On CUB (left), BE SCOM performs significantly better than FS SCOM at the instance level. On CelebA (right), BE
SCOM performs much better than FS SCOM, and better than L2X for low numbers of concepts. For all plots, errors are ±1σ,
calculated over random seeds which affects the concepts randomly selected, the concept model chosen for CUB, and the dataset
sample for CelebA.

Figure 3: Prediction accuracy for CUB and CelebA vs number of oracle interventions, for certain values of k. Smaller concept
sets have a greater increase in accuracy after the same number of interventions. Errors are ±1σ, calculated over 10 random
seeds which determines the concepts that are intervened.

concept level to improve the accuracy of the model. To test
this property for SCOMs, concepts were replaced by predic-
tions from an oracle, chosen randomly for simplicity. We as-
sume that human experts are able to identify the true value of
the concepts with perfect accuracy. The task of intervening
on concepts is separate from the concept selection procedure
performed in the human experiment.

The initial concept sets were selected using the BE variant
of SCOMs, since that gives the greatest prediction accuracy
for both CUB and CelebA. For CUB, the oracle provides bi-
nary values for each concept, which are determined by the

species that the bird belongs to. For CelebA, there is no clear
class-level oracle, and individual image annotations are too
noisy to be considered an oracle. Following work on human-
derived soft annotations (Peterson et al. 2019; Collins, Bhatt,
and Weller 2022), we assume that the CelebA oracle inter-
venes on each concept with the “correct uncertainty”, esti-
mated as the mean value of that concept over all images of
the same person. While we acknowledge that this oracle is
unrealistic, we aim to show the efficacy of interventions as-
suming they can be obtained. Though beyond the scope of
this work, we refer to Collins et al. for an exposition of why
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Figure 4: Example interventions using selected concept sets from CelebA (left, 8 concepts) and CUB (right, 6 concepts). The
concept logit predictions are rounded to give binary predictions, and only the positive concepts are shown. Each intervention
changes one concept which corrects the original incorrect model prediction. When using selected concept sets, it is much easier
for experts to identify incorrect concepts and reduces the human cost of interventions.

such an oracle-intervention assumption may not always be
wise in practice.

Figure 3 highlights that the intervention accuracy in-
creases more with each intervention for smaller concept set
sizes (k). After only a few interventions, the accuracy gain
for small k overcomes the initial accuracy penalty compared
to the full concept set. As each concept in a small concept
set has a greater impact on the overall prediction, it is in-
tuitive that each intervention yields a larger effect. Exam-
ples of interventions are shown in Figure 4, where a single
oracle intervention corrects the initial prediction made by
the model. Since oracle interventions are more effective for
smaller concept sets, SCOMs exhibit greater intervenability
compared to existing concept models.

Takeaways
On the real-world datasets CUB and CelebA, SCOMs per-
form better than existing methods. BE methods are much
more accurate than FS, and require a fraction of the number
of concepts for optimal performance.

Human Experiment
Our computational results demonstrate the methodological
prowess of SCOMs. However, we care principally about
SCOMs to work with and support real humans. One of the
key motivations for SCOMs is that they allow stakeholder
customisation of concept sets at inference time. The need
for customisation rests on the assumption that humans have
varied preferences for the number of concepts they prefer
to reason with (k). Further, the desire for algorithmic selec-
tion of those concepts assumes that people may not always
choose the most informative concepts on their own. We val-
idate these two assumptions through a human subject exper-
iment, wherein participants were asked to select the concept

Figure 5: Interface for the human experiment. Participants
were shown an image of a bird, and then asked to select the
relevant concepts from the list of 28 total concepts.

groups for each image. We release the resulting annotations
in a new dataset, CUB-Sel.

Experimental Details We recruited 30 US-based partici-
pants from the crowd-sourcing platform Prolific (Palan and
Schitter 2018). Participants were asked to select as many
concepts as they thought were relevant when predicting the
bird species for each image. Selection implicitly captures
their preference for the number of concepts to reason with
(k). Each participant was shown 30 images, yielding a total
of 900 concept set selections (which compose CUB-Sel).
The images were randomly sampled from the CUB test
dataset, with a total of 28 possible concepts for each image.
Participants were paid at a base rate of $8/hour, with a bonus
rate of up to $9/hour to encourage high-quality selections.
The study interface is shown in Figure 5. Further details on
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Figure 6: Prediction accuracy on the CUB dataset as a func-
tion of k. Accuracy using human selections is even worse
than random, motivating the need for SCOMs to provide al-
gorithmic selections. Errors are ±1σ, calculated over ran-
dom seeds which affects the concepts randomly selected and
the concept model chosen.

CUB are provided in the Computational Experiments.

Results
Preferred Concept Set Sizes To motivate the customi-
sation SCOMs provide, we first investigate the distribution
over k, i.e., the number of concepts people selected. Fig-
ure 7 shows the distribution of k values both for each image
and for each participant. A participant’s k was calculated as
the mean k selected over the 30 images they were shown.
Both distributions have a large variance, showing that the
number of concepts humans prefer to reason about varies
significantly – across people and individual images. There
was a mean difference of 9.6 concepts when several partic-
ipants labelled the same image, emphasising that different
people prefer to reason with different concepts. Examples of
multiple concept selections for the same image are shown in
Figure 8. Thus, the customisation SCOM provides is essential
to cater for individual stakeholder preferences.

Comparison Between Humans and SCOMs SCOMs as-
sume that humans struggle to select the relevant concepts
from a larger set. To evaluate the quality of human selec-
tions, we computed the accuracy of the SCOM output model
on CUB using human selections and define this as the “hu-
man accuracy”. Importantly, although the concept sets are
chosen by humans, the SCOM model is still used for infer-
ence. Thus, the “human accuracy” is a measure of how infor-
mative concepts are for the model; the information concepts
provide may differ if people were responsible for classifica-
tion instead.

We compare the human accuracy to SCOM and L2X
instance-level selection methods in Figure 6. Remarkably,
the human accuracy is lower than random for all k values
and far lower than the BE SCOM algorithms. To explore

human versus model selection further, we compare the fre-
quency of concepts selected by humans to the selections by a
SCOM2 in Figure 9. There is a significant difference between
the distribution of concepts selected by humans vs SCOM.
Concepts such as “Shape” and “Bill length” are frequently
selected by humans, but not favoured by SCOM. Concepts
which are not specific to bird species recognition are eas-
ier to understand and thus treated preferentially by humans,
even if they are not the most informative concepts. Challeng-
ing concepts such as “Nape color” and “Under tail color” are
rarely selected by humans, and some participants noted that
they struggled to understand these concepts.

Takeaways
The human subject experiment shows that humans have in-
dividual k values which vary significantly, motivating the
test time customisation SCOMs provide. Further, humans
favour concepts which are less theoretically informative, as
measured by SCOM selections. Consequently, the accuracy
of model predictions when using human selection is signifi-
cantly lower than SCOM selection.

Discussion
We investigated the performance of SCOMs compared to
random and L2X baselines, for two real world datasets. The
selection algorithm uses MI to select the best concept set of
a given size at either the dataset or instance level, and is ro-
bust to correlations between concepts. For CUB, prediction
accuracy is far superior to random and human selections. For
CelebA, SCOMs outperform L2X, especially for low num-
bers of concepts. After a few interventions, predictions us-
ing the selected subset outperforms those using all concepts.
Through our human subject experiment, we show that hu-
mans have different individual preferences for the number
and type of concepts they prefer to reason about, motivating
the value of SCOMs. By avoiding retraining on different con-
cept sets, SCOMs allow stakeholders flexibility to customise
the concepts used to make predictions after the model has
been trained. Next, we discuss implications of the results
and potential limitations of SCOMs.

Choosing the Concept Set Size k in Practice
When SCOMs are used by real stakeholders, there are sev-
eral methods of choosing the concept set size k. A practi-
tioner could employ a validation set and choose k to either
maximise the accuracy, or as the minimum value which sur-
passes a certain accuracy threshold. Alternatively, k may be
chosen according to the preferences of the experts who are
intervening on the concepts.

Human vs Algorithm Concept Preferences
Our human experiment elucidated that humans and SCOM
selection algorithms disagree on which concepts should be

2We use BE as the SCOM baseline, evaluated on the same im-
ages shown to participants (which represent a subset of the test set).
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Figure 7: Distribution of number of concepts selected for each image (left) and the mean number of concepts selected by each
participant (center). Both distributions have a large variance, showing the number of concepts humans prefer to reason varies.
The standard deviation of the number of concepts selected by each participant (right) is comparatively large, motivating the
instance-level selection SCOM provides.

Figure 8: Example human selections of the most relevant concepts. Here, we depict cases where three participants labelled the
same image. Concepts with at least one disagreement are shown in blue, and illustrate people’s varied individual preferences.

selected; humans prefer generic concepts, while SCOMs pre-
fer specific concepts which provide more information. Al-
though it decreases the human cost, allowing humans to cus-
tomise the concept sets originally selected algorithmically is
likely to decrease the prediction accuracy as well. Hence,
there is a compromise between accuracy and cost of inter-
vention/interpretation which ought to be considered when
using SCOMs in practice. Note, we acknowledge that the
participants who contributed to CUB-Sel were not neces-
sarily experts in the task. Experts may have different prefer-
ences when selecting concept sets, potentially changing the
overall prediction accuracy as well.

Limitations
While our approach holds promise for improving the us-
ability of concept models for stakeholders, it is worth not-
ing conditions which permit maximal effectiveness: SCOMs
work best on datasets with a large number of concepts (e.g.,
CUB) and rely on a well-trained output model. In cases
where all the concepts are required for good prediction,

smaller concept sets selected by SCOM will suffer an ac-
curacy penalty. Our selection algorithms aim to minimise
output entropy which is only a good measure of MI when
the output model is well-trained. Since the output model
learns a mapping from every concept subset to the output,
it may converge slower during training than models which
only consider one concept set. Moreover, so far our work
has only studied SCOMs in the classification setting; it is
worth studying SCOMs in other paradigms (e.g., regression)
and over additional real-world concept datasets.

When removing concepts at test-time, we recognise that
while this removes explicit dependence from the model, it
does not completely cleanse implicit dependence on the re-
moved concepts. Sensitive concepts may be highly corre-
lated with other concepts which are not removed, meaning
some bias may still be present in the model. Further, the out-
put model was trained on all the concepts, which each affect
the parameters of the model even if they are later removed
from selection. For concept sets initially selected, it is as-
sumed that all concepts are available for selection. Remov-
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Figure 9: Bar chart comparing the frequency of concepts selected by participants to the selections by the BE SCOM. Humans
prefer concepts which SCOMs rarely select, emphasising the importance of customisation for the concept sets selected by SCOM.
Errors bars of ±1σ are provided for the human selections.

ing a concept at test time invalidates this assumption and
reduces the efficacy of the concept selection procedure.

Future Work
One of the benefits of our prediction method, which uses
arbitrary concept subsets, is that it allows stakeholder cus-
tomisation at inference-time without retraining. The human
experiment in this work was focused on evaluating human
concept selection. In reality, the concept sets are likely to
be selected by SCOM, and then provided to human experts
for interpretation and intervention. An exciting direction fol-
lowing this work is to validate these usability benefits of
SCOMs through further human experiments. By reducing the
cost of expert interventions, SCOMs facilitate end-to-end ex-
periments involving concept selection, stakeholder customi-
sation and expert intervention. Such experiments would test
the use of concept models in real-world settings, paving the
way for the deployment of SCOMs in industry.

We encourage further investigation into discrepancies be-
tween human and algorithm concept preferences – and po-
tential for complementarity (Steyvers et al. 2022) – through
CUB-Sel and related datasets such as CUB-S (Collins et al.
2023). In addition, smarter intervention methods, such as
CooP (Chauhan et al. 2023), could be used in conjunction
with SCOMs to further increase the efficacy of interventions.

Conclusion
In this work, we have introduced SCOMs, an algorithmic
framework which makes predictions using a selected con-
cept set for a given task. SCOMs provide a way of improv-

ing the intervenability and interpretability of concept based
models, with no compromise on accuracy. On the task of
bird species classification, optimal accuracy (76.1%) was
achieved using only 6 out of the available 28 concepts. Ora-
cle interventions are more effective for the selected concept
sets, demonstrating greater intervenability for SCOMs com-
pared to existing concept models.

Using a human subject experiment we have shown that the
concept sets humans choose often differ from the concepts
which are most useful to the model. SCOMs account for
this difference by allowing humans to customise the selected
concept sets at inference time without retraining, according
to their individual preferences. SCOMs place no restrictions
on the form of concepts selected or the output model archi-
tecture, allowing for easy integration with other techniques.
We release the annotations from our human experiment in
a new dataset, CUB-Sel, to encourage further investigation
into the utility of SCOMs in concert with real humans.
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